沙门氏菌–谷禾健康

群体感应(QuorumSensing,QS)是一种细胞间的通讯机制,广泛存在于细菌、微生物以及某些多细胞生物中。通过这种机制,细胞能够感知周围环境中同类细胞的密度,并根据细胞数量变化调节基因表达和行为,这种现象在细菌中尤为显著。

在胃肠道等竞争激烈且不断变化的环境中,微生物群已经开发出独特的相互交流方法。肠道菌群产生的群体感应分子调节多种细胞功能,例如毒力基因的表达、生物膜的形成、能力和孢子形成,通常仅在细胞数量达到一定密度时启动这些过程。

肠道细菌产生的群体感应分子在肠道微生物组内建立物种和菌株水平结构方面很重要,但也用于与宿主交流。

微生物之间的对话各不相同,范围从种间交流、自我对话或种内交流到来自一个属的细胞对另一个属产生的信号做出反应。无法产生自身通信信号的细胞正在“监听”其他细胞产生的信号,这种现象类似于为“窃听”。

肠道微生物群使用某些代谢物作为群体感应分子与肠上皮细胞(IEC)进行通讯。例如,金黄色葡萄球菌分泌多种毒力因子,这些因子操纵宿主的免疫系统以保护自身的生存。这些生存策略对宿主的影响通常表现为:

虽然我们目前还不知道哪些群体感应分子与肠道和感觉神经元有最直接的相互作用,但很多证据显示它们会影响我们的生理和心理健康。

例如细菌产生的信号多种多样,包括自诱导剂(AI)、高丝氨酸内酯(HSL)、喹啉、肽、毒素和蛋白酶。这些信号分子激活细菌细胞壁中的特定受体,并触发细胞质中调节基因表达的传感器。

注:自诱导剂(sAutoinducers)是细菌在群体中相互交流的一种信号分子。它们通过细菌的分泌进入环境,并在细菌密度达到一定水平时被其他细菌重新摄取。它使细菌能够协调其行为,例如生物膜的形成、毒素的产生和其他群体行为。

高丝氨酸内酯(HomoserineLactones,HSL)是一类特定类型的自诱导剂,主要在革兰氏阴性细菌中发现。当HSL达到一定浓度时,它们会与细菌细胞内的特定受体结合,激活基因表达的调节机制。这种调节可以影响细菌的生长、代谢和致病性等多种生物学过程。

目前,研究很多研究已经建议可以将群体感应分子可用作辅助诊断的生物标志物:

未来,应该有可能使用QS生物标志物来诊断神经和精神疾病,例如:焦虑和抑郁、重度抑郁症、精神分裂症、双相情感障碍、自闭症、强迫症等。

InterbacterialCommunication

革兰氏阴性菌(Gram-NegativeBacteria)

细菌是一类单细胞微生物,它们需要通过各种方式来感知周围环境,并协调自身的行为。革兰氏阴性细菌就利用一类称为自诱导剂(Autoinducers,AI)的小分子物质来实现这种细胞间通信。

AHL:细菌间的通用密码

其中最著名的自诱导剂是AHL(N-酰基-高丝氨酸内酯N-Acyl,HomoserineLactones,AHL)。AHL是一种小的中性脂质分子,由高丝氨酸内酯(HomoserineLactone,HSL)部分和4到18个碳原子的酰基侧链组成。

不同细菌产生的AHL可能有不同的酰基侧链长度和取代基,这使得细菌能够区分彼此释放的信号分子。

AHL的合成

AHL的合成需要依赖于S-腺苷甲硫氨酸(S-AdenosylMethionine,SAM)作为底物,由LuxI或LuxM等合成酶催化产生。有些细菌只有一种AHL合成酶,而另一些细菌则拥有多种AHL合成酶,能够产生多种形式的AHL。

AHL的产生水平受到严格调控,取决于底物的可用性

这些LuxR型受体在不同细菌中高度保守,序列同一性可达67%-84%。它们不仅存在于大肠杆菌,还广泛分布于其他肠道细菌,如肠杆菌(Enterobacter)、柠檬酸杆菌(Citrobacter)、克罗诺杆菌(Cronobacter)、克雷伯菌(Klebsiella)、沙门氏菌(Salmonella)、志贺氏菌(Shigella)中。

doi.org/10.3390/microorganisms10101969

大肠杆菌的多种群体感应系统及其生理调控

以致病性大肠杆菌(E.coli)为例,它利用多种QS系统来调控自身的生理过程:

此外,大肠杆菌还利用QS系统调控其毒力基因的表达、生物膜的形成、细菌运动性、III型分泌系统的活性,以及毒素和细菌纤毛的产生。

总之,细菌利用这些精细的群体感应系统,能够在复杂的环境中有效地感知周围情况,并协调自身的生理活动,从而增强其生存和致病能力。这种细菌间的通信机制对于理解细菌的生态和致病机制具有重要意义。

革兰氏阳性菌(Gram-PositiveBacteria)

除了革兰氏阴性菌使用自诱导剂(Autoinducer,AI)进行群体感应(QuorumSensing,QS)外,革兰氏阳性菌也采用了一种独特的QS机制。

革兰氏阳性菌的独特群体感应机制

革兰氏阳性菌使用由5-17个氨基酸组成的小线性或环状寡肽(QuorumSensingPeptide,QSP)进行细胞间通信。

其中,研究最多的是芽孢杆菌产生的QS系统,包括能力孢子形成因子(CSF)、五肽和七肽SDLPFEH(PapRIV)等。这些七肽是由48个氨基酸的前体肽经过NprB蛋白酶的裂解而形成的。

QSP在细胞膜上的ATP结合盒转运蛋白的帮助下被分泌到细胞外,并与膜结合的受体或细胞质传感器(如Rap、NprR、PlcR和PrgX蛋白)发生相互作用。

QSP系统在细菌中的实例

以金黄色葡萄球菌为例,其辅助基因调节因子(Agr)就是一个编码肽信号分子Agr的四基因操纵子,起到膜结合传感器的作用。Agr调节多种基因的表达,包括毒力因子、蛋白酶和成孔毒素等。

缺失agr基因(Δagr)的金黄色葡萄球菌菌株会形成生物膜,更容易引起慢性感染和菌血症。

另一种革兰氏阳性菌肠球菌也使用Fsr-QS系统,该系统由四个基因位点fsrABDC控制。一旦肽被裂解激活,就会通过跨膜激酶在细胞内进行磷酸化级联反应,从而诱导靶基因的表达。

总的来说,革兰氏阳性菌利用这种基于寡肽信号分子的QS系统,能够感知周围细菌的数量,并协调自身的生理活动,如毒力因子的表达、生物膜的形成等。这种细菌间的通信机制对于理解它们的生态和致病机制具有重要意义。

革兰氏阳性菌使用的群体感应的一般表示

InterspeciesCommunication

自身诱导剂-2(Autoinducer-2,AI-2)是一种广泛存在于细菌中的信号分子,在细菌间的种间通讯和调节特定生物行为中起着关键作用。

AI-2的的合成途径

AI-2是一种呋喃硼酸酯二酯,既可以被革兰氏阴性菌,也可以被革兰氏阳性菌产生。它的合成受到luxS基因的调控。在这个过程中,首先S-腺苷同型半胱氨酸(SAH)被SAH水解酶(SahH)转化为同型半胱氨酸,然后经过Pfs和LuxS两步反应,形成中间体4,5-二羟基-2,3-戊二酮(DPD),最终重排成AI-2分子。

AI-2在细菌中的广泛分布

值得注意的是,在超过三分之一的细菌基因组中都能检测到编码luxS同源物的基因,包括大肠埃希菌(Escherichiacoli)、粪肠球菌(Enterococcusfaecalis)、空肠弯曲杆菌(Campylobacterjejuni)、金黄色葡萄球菌(S.aureus)、艰难梭菌(Clostridiumdifficile)、芽孢杆菌属(Bacillus)、链球菌属(Streptococcus)、福氏志贺氏菌(Shigellaflexneri)、幽门螺杆菌(Helicobacterpylori)、鼠伤寒沙门氏菌血清型、伤寒沙门氏菌血清型、双歧杆菌属(Bifidobacterium)、乳酸菌属(Lactobacillus)、真杆菌属(Eubacterium)、罗氏菌属(Roseburia)和瘤胃球菌属(Ruminococcus)。

这表明:

AI-2系统在细菌的种间通讯中扮演重要角色

例如,大肠杆菌、肺炎链球菌等细菌就利用AI-2系统来调节编码细菌素产生的基因表达。

双歧杆菌也使用AI-2信号来对抗沙门氏菌的感染。此外,AI-2还可能参与调节细菌的运动性、生物膜形成等行为。

有趣的是,在肠道微生物群落中,AI-2信号也被用来帮助细菌应对胃肠道中的各种应激条件。研究发现,通过调控AI-2水平,可以在抗生素治疗后帮助恢复肠道微生物的平衡。但这需要谨慎控制,因为AI-2的细胞内水平受到LsrK激酶的调节。

AI-2在调节肠道微生物群中的应用

一种经改造的大肠杆菌菌株随着AI-2的产生增加,导致链霉素抑制的厚壁菌门恢复,并抑制拟杆菌门的生长。从这些发现可以推断,AI-2可用于在抗生素治疗后恢复肠道微生物群的平衡。如果遵循这种策略,则必须仔细控制,因为AI-2的细胞质水平受LsrK激酶调节。

利用AI-2来维持肠道微生物平衡,可以但需谨慎

一方面,AI-2确实可以帮助调节肠道细菌的行为,如影响细菌素的产生、生物膜的形成等。但另一方面,高浓度的AI-2也可能上调某些细菌的毒力因子,如增加粪肠球菌噬菌体的释放和基因转移。

在小鼠实验中,AI-2的给药虽然没有影响细胞因子的表达,但却加重了铜绿假单胞菌的肺部感染。这表明,单纯依赖AI-2来维持肠道稳态的做法可能会带来意想不到的后果。

AI-2受体的多样性及其生理影响

目前已经确定了两类AI-2受体,分别是LuxP和LsrB。这两种受体在结构上存在差异,序列相似性仅为11%。它们广泛分布于变形菌门、芽胞杆菌等细菌中。

其他肠道细菌可能也使用类似的受体来感知AI-2信号。有趣的是,有些细菌即使没有这些典型的AI-2受体,也能对AI-2产生反应,这可能涉及其他未知的感知机制。

InterkingdomCommunication

细菌利用复杂的群体感应系统来感知周围环境,并协调自身的生理活动。除了前面提到的自身诱导剂-2(AI-2)外,细菌还使用其他类型的信号分子进行细胞间通讯。

AI-3信号系统在肠道病原体中的作用

其中,自身诱导剂-3(AI-3)/肾上腺素(Epi)/去甲肾上腺素(NE)界间信号系统在一些重要肠道病原体中发挥关键作用。这种信号系统可以促进鼠伤寒沙门氏菌、啮齿柠檬酸杆菌和肠出血性大肠杆菌(EHEC)等细菌的毒力基因表达。

以EHEC为例,它利用一种双组分QS系统(TCS)来感知和响应这些环境信号分子。该系统由QseBC和QseEF两个TCS组成。当EHEC感知到Epi、NE、AI-3、岩藻糖或乙醇胺等信号分子时,会激活跨膜组氨酸激酶受体,进而激活或抑制相应的反应调节因子。

例如,QseC组氨酸传感器可以激活QseB,QseB则调节鞭毛基因的表达,同时抑制参与岩藻糖代谢和毒力基因表达的fusK/-R基因。

QseC还可以磷酸化KdpE反应调节因子,与Cra蛋白一起刺激LEE操纵子中的基因,从而促进EHEC的黏附和毒力因子的注射。此外,QseC还可以激活QseF,进而诱导志贺毒素的产生。

细菌群体感应系统对宿主免疫的影响

另一方面,铜绿假单胞菌(P.aeruginosa)产生的3-oxo-C12-HSL(下图)在上皮细胞和免疫细胞中积极转运,并通过抑制编码紧密连接蛋白(TJ)的基因表达来破坏肠壁的通透性。这导致occludin、tricellulin、ZO-1、ZO-3、JAM-A、E-cadherin、β-catenin的重新排列(错位),并阻止粘蛋白的产生。

这不仅使上皮细胞受到感染,还会激活粘膜免疫系统,导致白细胞增加和促炎细胞因子的积累。此外,3-oxo-C12-HSL还抑制肿瘤坏死因子TNF-α和IL-12的产生,导致T辅助细胞-1(Th1)反应功能障碍,并刺激Th2产生免疫球蛋白G1。

抑制Th1和Th2T淋巴细胞分化会增加细胞因子的产生,加剧氧化应激,刺激细胞凋亡并灭活线粒体。这些细菌间通信机制的研究,有助于我们更好地理解和预防细菌性疾病的发生。

铜绿假单胞菌产生的3-oxo-C12-HSL诱导各种细胞类型(包括上皮细胞)的细胞凋亡;破坏紧密连接并减少粘蛋白的产生。

3-oxo-C12-HSL与3-氧代-C12:2-HSL对肠壁影响相反

结构相似的3-oxo-C12-HSL、3-oxo-C12:2-HSL对肠壁具有相反的作用。

3-oxo-C12:2-HSL不是破坏上皮细胞的稳定性,而是保护紧密连接蛋白occludin和tricellulin以及细胞质ZO-1免受促炎细胞因子(如干扰素-γγ)、TNF-α和IL-8的侵害。

3-oxo-C12:2-HSL在肠道免疫细胞中的作用及对IBD的潜在影响

除了一些开创性研究外,3-oxo-C12:2-HSL对人类肠道免疫细胞的影响在很大程度上仍然未知。

在诊断为IBD的患者中,3-oxo-C12:2-HSL的浓度要低得多。这表明3-oxo-C12:2HSL在保护暴露于免疫冲击的上皮细胞中起重要作用。需要进一步的研究来确定3-oxo-C12:2-HSL是否可以用于治疗IBD。这也需要更好地了解3-oxo-C12:2-HSL群体猝灭、AHL裂解和高丝氨酸内酯(HSL)环水解所涉及的过程。

到目前为止,已在人类和其他哺乳动物的GIT中鉴定出三种参与HSL环水解的对氧磷酶(PON1、PON2和PON3)。其中,PON2最活跃,主要在空肠中表达。PON1和PON3在诊断为克罗恩病和溃疡性结肠炎患者中的表达水平较低。

因此,这些胃肠道疾病有可能通过恢复PON1和PON3水平来逆转。需要深入研究对氧磷酶在GIT不同领域中的作用,以及它们在治疗胃病中的可能应用。

肠道是人体与外界环境直接接触的重要器官,也是细菌与宿主细胞进行密切交流的场所。除了前面提到的自身诱导剂-2(AI-2)和自身诱导剂-3(AI-3)等细菌信号分子外,肠道细胞还能感知和响应其他细菌代谢产物。这些相互作用对维持肠道健康至关重要。

宿主对细菌信号的感知机制

首先,肠道细胞表达一些重要的受体,如:孕烷X受体(PXR)、过氧化物酶体增殖物激活受体(PPAR),这些受体能够感知细菌代谢物,并调节宿主细胞的基因表达,参与解毒、代谢和炎症反应的调控。

例如,PPARγ可以抑制巨噬细胞的活化,减少炎性细胞因子的产生,从而有助于缓解炎性肠病。

细菌-宿主信号相互作用网络

另一方面,细菌也能感知和利用宿主细胞的信号分子。例如,假单胞菌产生的PQS和HHQ信号分子,能够与淋巴细胞、树突状细胞和巨噬细胞相互作用,抑制宿主的先天性和适应性免疫反应。

作为应对,宿主细胞则通过激活芳烃受体(AhR)来感知这些细菌信号,并启动有益的免疫反应,如IL-22和IL-17的表达。

PapRIV

由芽孢杆菌产生的PapRIV穿过胃肠道,尽管速度很慢,并进入循环系统,大多数肽(87%)从那里以单向方式穿过BBB(血脑屏障)。从体外研究中可以推断,PapRIV激活小胶质细胞,因此可能在肠-脑相互作用中发挥作用。

氨基酸

根据2020比利时一项研究,氨基酸天冬氨酸和脯氨酸在小胶质细胞的激活中起关键作用。apRIV还诱导促炎细胞因子IL-6和TNFα的产生,增加细胞内ROS并刺激阿米巴样细胞的增加。丙酮丁醇梭菌(Clostridiumacetobutylicum)产生的自体诱导肽(AIP)比肺炎链球菌产生的AIP更容易穿过(血脑屏障)。

自诱导肽AIPs

自诱导肽(Autoinducerpeptides,AIPs)是细菌用于细胞间通信的一类信号分子。它们在细菌群体感应中起重要作用。

革兰氏阳性菌穿过肠壁产生的AIPs已在Caco-2细胞的体内研究中得到证实。该研究表明,胃肠道中葡萄球菌(Staphylococcus)、链球菌(Streptococcus)、乳酸杆菌(Lactobacillus)和芽孢杆菌(Bacillus)产生的AIPs对肌肉细胞具有促炎和抗炎作用。

这些屏障的穿越似乎取决于肽的结构和大小。信号肽降解过程中产生的可扩散小分子,称为可扩散信号因子(DSF),也可能起到自诱导剂的作用。

肠道细菌产生的信号由肠壁中的特殊细胞记录(下图),导致身体或心理健康发生暂时或持久的变化。这些细胞通过使用模式识别受体(PRR)区分本地(地方性)和外来、潜在致病性微生物群产生的信号。

AHL

细菌在生长过程中会产生各种化学信号分子,比如AHL(丙酰基-亮氨酸同系物)。这些信号分子可以被宿主细胞感知到,并引发一些生理反应。

比如,AHL可以增加中性粒细胞的活性,促进成纤维细胞向肌成纤维细胞的转化。这些变化对于组织的修复和再生非常重要。

这些受体广泛存在于肠道的免疫细胞、上皮细胞和间质细胞等,在调节炎症反应和维护肠道屏障功能中起重要作用。

肠壁中的肠内分泌细胞(EEC)检测肠道细菌和微生物代谢物,并通过分泌与免疫细胞反应的肽激素和细胞因子来做出反应。EEC产生的激素调节肠道屏障功能并与肠神经反应。后者通过迷走神经与中枢神经系统进行交流。

芳香烃受体AhRs

AhRs调节免疫反应和发病机制(下图)。大量的AhR由肠上皮细胞和免疫细胞(如先天性淋巴细胞、上皮内淋巴细胞、TH17细胞和Treg细胞)表达,但也存在于肝脏、肺、膀胱和胎盘中。AhR的关键功能之一是恢复屏障稳态,这是IBD中突出的现象。

芳烃受体(AhR)通路总结

AhR

芳香烃受体在维护肠道健康中的关键作用

芳香烃受体(ArylhydrocarbonReceptor,AhR)是一种重要的细胞内受体蛋白,在人体内广泛分布,尤其集中于肝脏、肠道和免疫细胞等组织。

AhR的基本功能

AhR能够感知和结合各种芳香烃类化合物,包括细菌代谢产物、环境污染物等。

当AhR与这些化合物结合后,会进入细胞核内,调控一系列基因的表达,参与解毒代谢、免疫调节、细胞分化等重要生理过程。

AhR与疾病的关联

例如,AhR可以感知细菌产生的PQS信号分子,并激活一些有益的免疫反应,如促进IL-22和IL-17的表达,增强肠道屏障功能,维持肠道微生态平衡。

研究发现,在炎症性肠病(IBD)、代谢综合征或乳糜泻等疾病患者中,粪便中AhR配体的浓度较健康人明显降低,AhR活性也相应降低。而在艰难梭菌感染患者中,则检测到更高的吲哚浓度。

AhR可以被多种细菌代谢产物激活,包括色氨酸降解产物(吲哚、吲哚并[3,2-B]咔唑、吲哚乙酸等)以及假单胞菌产生的2,4-二羟基喹啉、喹诺酮衍生物等。

这些AhR配体的浓度在炎症性肠病、代谢综合征和乳糜泻患者中较健康人有所降低,提示AhR活性的降低可能与这些疾病的发生有关。

AhR在调节肠道屏障和免疫稳态中的作用

AhR参与调节肠道屏障完整性、免疫稳态、上皮内淋巴细胞的产生和存活、炎症反应以及肠道菌群密度等多个关键过程。

通过调节紧密连接蛋白的表达、促进IL-22和IL-10的产生、诱导抗菌肽分泌等,AhR在维持肠道健康中发挥重要作用。

在炎症性肠病患者中,AhR水平降低,尤其是在回肠部位,可能导致ILC1细胞增多,进而促进炎症因子IFN-γ和TNF-α的产生,破坏肠屏障。

因此,饮食中色氨酸的摄入量可能影响AhR配体的水平,进而影响肠道健康。

耐药菌与群体淬灭技术的兴起

五年前,世界卫生组织公布了一份对目前使用的抗菌剂最具耐药性的病原菌清单。下列物种在名单上名列前茅:

2020年,天津大学的研究团队发现,可以利用QS信号分子丙酰基-亮氨酸同系物(AHL)来控制革兰氏阴性细菌引起的感染。这种方法的关键是要破坏QS对细菌毒力基因表达的调控作用。

群体淬灭的应用效果与风险

也许最令人担忧的是,在luxSQS系统功能失调或缺失的细菌中,细胞聚集和生物膜形成增加的证据,如幽门螺杆菌、霍乱弧菌(Vibriocholerae)、放线菌集聚杆菌(Aggregatibacteractinomycetemcomitans)、胸膜肺炎放线杆菌(Actinobacilluspleuropneumoniae)、副猪嗜血杆菌(Haemophilusparasuis)、金黄色葡萄球菌(S.aureus)、表皮链球菌(S.epidermidis)、变形链球菌(Streptococcusmutans)、粪肠球菌(Enterococcusfaecalis)、蜡样芽孢杆菌(Bacilluscereus)。美罗培南和左氧氟沙星刺激鲍曼不动杆菌(A.baumannii)外排泵的表达,促进AHL的释放,导致QS介导的生物膜形成增加。

群体淬灭技术的局限性与挑战

此外,一些细菌在缺失LuxS等QS系统时,反而表现出更强的细胞聚集和生物膜形成能力,这可能导致难以根除的持久性感染。一些抗生素如美罗培南和左氧氟沙星,也可能通过刺激细菌外排泵表达,促进AHL释放,增强QS介导的生物膜形成。

因此,单纯使用群体淬灭技术可能并不能完全解决细菌感染问题。研究人员建议,在使用群体淬灭疗法时,还需要结合具体的细菌感染情况,评估其与抗生素联合使用的效果。

此外,细菌也可能通过一些机制,如外排泵基因突变,对群体淬灭疗法产生耐药性。这可能导致难以根治的持久性感染。

群体感应分子对中枢神经系统的影响研究不足。几种QSpeptides(群体感应肽分子,QSP)可通过肠粘膜扩散并进入循环系统,从那里它们可以穿透血脑屏障(BBB)。基于这些发现,QSP可能在肠道微生物组和大脑之间的交流中发挥关键作用。如果是这种情况,QSP可能会影响神经发育并引发神经退行性疾病。需要进一步的研究来证实这些发现。

金黄色葡萄球菌外毒素对神经系统的影响

金黄色葡萄球菌产生的外毒素激活转录因子辅助基因调节因子(Agr)A,该调节多种基因的表达,包括毒力因子、成孔毒素(PFT)和细菌蛋白酶。这些毒素会增加细胞内的钙水平,导致感觉神经元的激活。

金黄色葡萄球菌产生的一种毒素叫做PSMS,它能特异性地结合到宿主细胞表面的一种受体叫做FPR(甲酰肽受体样蛋白)。

此外,FPR在肠道感觉神经节和背根神经节中有广泛表达,并与肠-脑轴(GBA)中涉及群体感应依赖性通路有关。

此外,金黄色葡萄球菌产生的毒素叫做α-溶血素(Hla),它也能通过增加细胞内钙的转移来激活神经元。与PSMS相比,Hla在细胞膜中形成的孔更小、破坏性也更小。

总之,肠道病原菌类似于金黄色葡萄球菌产生的这些毒素,通过作用于宿主细胞表面的不同受体,如FPR和MRGPRX2,从而引起神经元的激活,导致疼痛、过敏等症状。这些毒素在肠-脑轴通信中也可能发挥重要作用。

根据英国和澳大利亚联合的一项研究结果表明:与PSMS相比,Hla在细胞膜中产生更小、破坏性更小的孔。作者还观察到了Adam10的表达,Adam10是一种在感觉神经元中产生的膜结合金属蛋白酶,Hla与该酶结合。外毒素在肠脑轴通信中的重要性尚不清楚。

然而,由于金黄色葡萄球菌(S.aureus)与肠易激综合征和食物有关,这些QS分子有可能直接调节肠-脑通讯和肠道反射。

上面这篇研究在6种不同的神经元细胞系上筛选了85个群体感应肽,发现了22个可能对肠脑轴有影响的肽。其中,4个肽诱导神经突生长,2个肽抑制神经生长因子(NGF)诱导的神经突生长,8个肽诱导人SH-SY5Y神经母细胞瘤细胞的神经突生长。2个肽杀死SH-SY5Y细胞,6个肽诱导IL-6表达或一氧化氮(NO)产生。

细胞壁成分在肠脑轴中的作用

已经发表了几篇关于细胞壁成分(如脂多糖、多糖和肽聚糖)在神经元激活和肠脑轴中的作用的报道。细胞壁成分还诱导神经肽、ATP和细胞因子的释放。短链脂肪酸、色氨酸、微量胺和外毒素也具有神经调节剂特性。

5-羟色胺和组胺刺激神经末梢附近的肥大细胞。

阿尔茨海默病(AD)、自闭症谱系障碍(ASD)、多发性硬化症(MS)、帕金森病(PD)和肌萎缩侧索硬化症(ALS)等神经元疾病与功能失调的小胶质细胞有关。

将患有注意力缺陷多动障碍(ADHD)、阿尔茨海默病和帕金森病的人类粪便移植到小鼠身上,激活了大脑中的小胶质细胞,并加剧了认知和身体损伤。

这些发现以及更多证据表明微生物群失调与神经发育、神经退行性和精神疾病(如自闭症谱系障碍、精神分裂症、阿尔茨海默病、重度抑郁症和帕金森病)之间存在明确联系,促使研究人员更仔细地研究肠脑轴。

扩展阅读:

肠道菌群检测报告解读——肠道菌群代谢产物包括激素,神经递质等

兴奋神经递质——谷氨酸与大脑健康

胃肠道特殊的环境下生存着海量的细菌微生物,因此它们已经开发出与宿主细胞交流的机制也就不足为奇了。

一些群体感应分子是属特异性的,但少数被革兰氏阴性菌和革兰氏阳性菌使用。Epi和NE等激素以及某些碳水化合物(例如岩藻糖和EA)激活细菌中的特定受体,进而触发细胞质中的传感器以调节基因表达。

在健康的胃肠道中,这些信号分子对于维持稳态状态很重要。一些QS分子,如3-oxo-C12:2-HSL,保护紧密连接蛋白,在治疗肠漏综合征中可能很重要。

通过更深入地了解肠道细菌产生的不同QS系统,未来可能能够开发可用于诊断神经和精神疾病的生物标志物,例如焦虑和抑郁、MDD、精神分裂症、双相情感障碍、自闭症和强迫症。

主要参考文献:

DicksLMT.HowdoesQuorumSensingofIntestinalBacteriaAffectOurHealthandMentalStatusMicroorganisms.2022Oct5;10(10):1969.

JanssensY.,DebunneN.,DeSpiegeleerA.,WynendaeleE.,PlanasM.,FeliuL.,QuartaA.,ClaesC.,VanDamD.,DeDeynP.P.,etal.PapRIV,aBV-2microglialcellacti-vatingquorumsensingpeptide.Sci.Rep.2021;11:10723.

DeSpiegeleerA.,ElewautD.,NoortgateN.V.D.,JanssensY.,DebunneN.,VanLangenhoveS.,GovindarajanS.,DeSpiegeleerB.,WynendaeleE.Quorumsensingmoleculesasanovelmicrobialfactorimpactingmusclecells.Biochim.Biophys.Acta(BBA)Mol.BasisDis.2019;1866:165646.

MillerM.B.,BasslerB.L.QuorumSensinginBacteria.Annu.Rev.Microbiol.2001;55:165–199.

CoquantG.,AguannoD.,PhamS.,GrellierN.,ThenetS.,CarrièreV.,GrillJ.-P.,SeksikP.Gossipinthegut:Quorumsensing,anewplayerinthehostmicrobiotainteractions.WorldJ.Gastroenterol.2021;27:7247–7270.

YashirodaY.,YoshidaM.Intraspeciescell–cellcommunicationinyeast.FEMSYeastRes.2019;19:foz071.

PrescottR.,DechoA.W.FlexibilityandAdaptabilityofQuorumSensinginNature.TrendsMicrobiol.2020;28:436–444.

TamK.,TorresV.J.StaphylococcusaureusSecretedToxinsandExtracellularEnzymes.Microbiol.Spectr.2018;7:GPP3-0039-2018.

FüllingC.,DinanT.G.,CryanJ.F.GutMicrobetoBrainSignaling:WhatHappensinVagus….Neuron.2019;101:998–1002.

KrasulovaK.,IllesP.Intestinalinterplayofquorumsensingmoleculesandhumanreceptors.Biochimie.2021;189:108–119.

GallowayW.R.J.D.,HodgkinsonJ.T.,BowdenS.D.,WelchM.,SpringD.R.QuorumSensinginGram-NegativeBacteria:Small-MoleculeModulationofAHLandAI-2QuorumSensingPathways.Chem.Rev.2010;111:28–67.

WuS,LiuJ,LiuC,YangA,QiaoJ.Quorumsensingforpopulation-levelcontrolofbacteriaandpotentialtherapeuticapplications.CellMolLifeSci.2020Apr;77(7):1319-1343.

KrzyekP.ChallengesandLimitationsofAnti-quorumSensingTherapies.Front.Microbiol.2019;10:2473.

WuS.,LiuJ.,LiuC.,YangA.,QiaoJ.Quorumsensingforpopulation-levelcontrolofbacteriaandpotentialtherapeuticapplications.Cell.Mol.LifeSci.2019;77:1319–1343.

JanssensY,WynendaeleE,VerbekeF,DebunneN,GevaertB,AudenaertK,VanDeWieleC,DeSpiegeleerB.Screeningofquorumsensingpeptidesforbiologicaleffectsinneuronalcells.Peptides.2018Mar;101:150-156.

让食物成为你的药物,让药物成为你的食物

随着现代生活节奏的加快,疲劳、压力、不均衡的饮食,都在悄悄侵蚀着我们的健康。多糖,这些来自植物、真菌乃至海洋生物的天然赠礼,正以其独特的方式,为我们提供了一种全新的健康支持。

虽然部分多糖如淀粉可以在人体胃和小肠中被消化吸收,但仍有许多特殊结构的多糖不能在这两个部位分解。对于那些不能被宿主消化的多糖,它们可以进入结肠,而结肠是大多数肠道菌群居住的地方。在结肠中,多糖可以与肠道菌群相互作用,从而发挥营养或药理作用。

多糖与肠道菌群之间相互作用可以影响健康,同时也通过肠道菌群的代谢作用,转化为有益的代谢产物,如短链脂肪酸,这些产物对维持肠道屏障的完整性、调节免疫反应发挥着至关重要的作用,甚至扩展到了全身的健康状况,可以影响我们的精力水平、情绪状态,对疾病的抵抗力等方方面面。

本文将深入探讨多糖,了解其在人体内的消化过程、与肠道菌群的相互作用,以及它们如何通过调节肠道菌群代谢物影响健康,如短链脂肪酸、三甲胺、色氨酸,还讨论了多糖在疾病预防和治疗中的应用,包括它们在改善代谢性疾病、炎症性肠病、缓解疲劳、改善肿瘤,神经系统疾病等方面的潜在效果。这为靶向肠道菌群开发新型的营养补充剂和药物提供了新的思路。

本文目录

01多糖

02多糖调节肠道菌群的组成

为什么多糖可以调节肠道菌群的组成?

多糖促进或抑制肠道微生物群

多糖分子量、糖苷键影响其细菌调节活性

03肠道微生物将多糖代谢为短链脂肪酸

短链脂肪酸的生物学效应

人体内的多糖代谢

多糖补充与短链脂肪酸的生成

04多糖调节其他肠道微菌群代谢物

三甲胺和氧化三甲胺(TMAO)

色氨酸及其代谢产物

胆汁酸、脂多糖、胃肠道气体

05多糖调节肠道菌群修复肠道屏障

06多糖通过肠道菌群改善疾病

2型糖尿病、非酒精性脂肪肝、肥胖、高血脂症

炎症性肠病、其他肠胃疾病、肿瘤

疲劳、神经系统疾病(认知障碍、抑郁等)

07部分多糖营养与菌群调节

路易波士茶多糖、地黄多糖、五指毛桃根多糖

大蒜多糖、槐耳多糖、黄芩多糖、枸杞多糖

岩藻多糖、桑叶多糖、沙棘多糖、蘑菇多糖

08结语

糖,这个小小的分子,是能量的源泉,是细胞的加油站。除了我们熟知的葡萄糖以外,还有一种叫做多糖,由许多糖分子手拉手组成,从植物的根茎到海洋生物的细胞壁,它们以复杂多样的形态存在。

根据糖单元的数量,碳水化合物可分为几类:

多糖是由10个以上相同或不同的单糖通过α或β糖苷键连接而成的大分子化合物,分子量从几万到数百万。

例如,透明质酸和硫酸软骨素属于动物多糖,而纤维素、淀粉和糖原是常见的植物多糖。

淀粉

由大量葡萄糖分子通过α-1,4-糖苷键和α-1,6-糖苷键连接而成,形成直链淀粉和支链淀粉两种结构。广泛存在于谷物(如大米、小麦、玉米)、薯类(如土豆、红薯)等食物中。在人体消化过程中,被淀粉酶逐步分解为葡萄糖,为身体提供能量。

纤维素

由葡萄糖分子通过β-1,4-糖苷键连接而成,形成长而直的链状结构。是植物细胞壁的主要成分,在蔬菜(如芹菜、菠菜)、水果(如苹果)中含量丰富。由于人体缺乏分解β-1,4-糖苷键的酶,纤维素难以被人体消化吸收,但对促进肠道蠕动、预防便秘等具有重要作用。

果胶

是一种复杂的多糖,由半乳糖醛酸等组成。常见于水果(如柑橘、苹果)中。在食品工业中,常用于制作果酱、果冻等,增加其黏稠度和稳定性。

近年来,一些新的方法,如超声波提取、微波提取、超滤、高压电场法、超临界流体萃取、亚临界水萃取等也用于多糖的提取。这些方法不仅能够提高多糖的提取率,还能够在一定程度上保护多糖的结构完整性,从而保留其生物活性。

通常,人体分泌的消化酶只能分解几种多糖,而纤维等许多多糖不能被吸收和直接使用。因此,多糖可以通过小肠进入结肠,这是大多数肠道细菌居住的地方,然后与肠道微生物群相互作用。

细菌在肠道中通过发酵降解多糖

doi.org/10.3390/nu14194116

多糖转化为短链脂肪酸

短链脂肪酸对肠道细菌的影响

例如,短链脂肪酸能够通过调节侵袭基因的表达,抑制沙门氏菌(一种常见的食源性病原体)的生长。因此,短链脂肪酸的增加可以改变肠道菌群的功能,进而影响其组成。

肠道pH值的变化

短链脂肪酸的增加还会导致肠道pH值下降,影响细菌的适应能力。每种细菌都有其适宜的pH范围,不同细菌在特定pH条件下的适应能力各异。

综上所述,多糖通过影响肠道菌群的代谢功能,直接调节了肠道菌群的组成。这些发现为我们理解多糖如何通过肠道菌群影响宿主健康提供了新的视角。

多糖的益生元效应

多糖抑制病原菌

多糖的双向调节作用

疾病的发生是一个复杂的过程,涉及不同的微生物,包括有害细菌和有益细菌。例如:

多糖能够对肠道微生物发挥双向调节作用,即促进有益细菌的同时抑制有害细菌。

例如,口服灰树花多糖(GFHP)对非酒精性脂肪肝病的积极作用与调节肠道菌群有关。

在分子量方面,不同分子量的魔芋葡聚糖(KGM)对2型糖尿病(T2DM)大鼠的降血糖作用研究表明,中等分子量的KGM显著增加了Muribaculaceae,减少了Romboutsia和Klebsiella,但高分子量和低分子量的KGM对这些细菌的影响不显著。

高分子量的黄芪多糖具有一定的生物活性,但其相对分子量较大,溶解性差,生物利用度低,限制了其功效的发挥。低分子量的黄芪多糖具有较好的水溶性,能够在更大程度上刺激巨噬细胞摄取中性红、NK细胞增殖,发挥免疫活性。

多糖由各种通过糖苷键连接的单糖组成,糖苷键的类型和位置导致肠道微生物群的选择性发酵存在差异。

多糖的单糖组成越复杂,调节细菌的活性越强

一项关于龙眼多糖和燕麦多糖的研究表明,龙眼多糖能显著促进干酪乳杆菌、嗜酸乳杆菌、植物乳杆菌、粪肠球菌的增殖,但燕麦多糖的作用并不明显。原因是龙眼多糖由葡萄糖、甘露糖和阿拉伯糖组成,而燕麦多糖的单糖主要是葡萄糖。

短链脂肪酸(SCFA)是一组含有少于六个碳的脂肪酸,包括甲酸盐、乙酸盐、丙酸盐、丁酸盐、戊酸盐。

乙酸盐、丙酸盐和丁酸盐是肠道中的主要SCFA,约占所有SCFA的95%,三者的比例约为3:1:1。

作用机制

与GPRs的相互作用

抗炎作用

免疫调节

HDAC抑制作用

丁酸盐的作用

与疾病的关系

多糖对SCFA的调节及其对靶标的影响

doi.org/10.1016/j.foodres.2022.111653

人体内消化酶的局限

在人体消化系统中,我们自身分泌的消化酶往往难以分解复杂的多糖。这些多糖分子,因其结构复杂,通常在我们体内无法被有效代谢。

肠道菌群的代谢作用

我们的肠道菌群拥有破解这些复杂多糖的秘密武器——一系列的酶,统称为碳水化合物酶(CAZymes)。这些酶能够分解多糖,将其转化为对人体健康有益的短链脂肪酸。

碳水化合物酶的种类

肠道菌群中的“专家”与“通才”

在肠道菌群中,拟杆菌门和厚壁菌门是编码CAZymes的两大主力。

多糖的初步降解

在属的水平上,多糖最初可以由某些微生物降解,例如双歧杆菌属、真杆菌属、梭菌属、罗氏菌属(Roseburiaspp.)。

SCFAs的生成途径

尽管人体自身无法分解复杂的多糖,但我们的肠道菌群却具备了这一能力,它们通过一系列特殊的酶,将多糖转化为对人体健康有益的短链脂肪酸。

多糖对SCFAs生成的促进作用

饮食补充多糖可以为产生SCFAs的细菌提供有利的生长环境,从而促进SCFAs的生成。例如,沙棘多糖(CCPP)通过调节肠道菌群和SCFAs,能够缓解2型糖尿病。

沙棘多糖调节肠道菌群和SCFAs,缓解2型糖尿病

枸杞多糖调节肠道菌群,提高SCFAs

多糖结构对短链脂肪酸生成的影响

不同的多糖因其分子结构的不同,对SCFAs的调节作用也不尽相同。

多糖的疗效与SCFAs的非直接关联

多糖通过调节肠道菌群和促进SCFAs的产生,对健康具有多方面的益处。然而,多糖的结构与它们对SCFAs生成的调节作用之间的关系仍需进一步研究。此外,多糖的疗效可能不仅限于SCFAs的产生,还可能涉及肠道菌群产生的其他分子。

三甲胺和TMAO的代谢过程

在肠道中,饮食中的四胺类物质如胆碱、L-肉碱和卵磷脂(来自红肉、鸡蛋、鱼、海鲜)首先被微生物胆碱三甲胺裂解酶分解成三甲胺(TMA)。随后,TMA被吸收进入门脉循环,并运输到肝脏,在黄素单加氧酶1和黄素单加氧酶3的作用下转化为三甲胺-N-氧化物(TMAO)。

TMAO的潜在危害

多糖对TMA和TMAO代谢的影响

最近的研究表明,TMA和TMAO在理解多糖的作用机制中扮演重要角色。例如:

不同多糖对肠道菌群的调节作用

多糖通过调节肠道菌群,影响TMA和TMAO的代谢,从而可能对人体健康产生积极影响。然而,多糖与TMAO之间的关系复杂,需要更多的研究来阐明这些相互作用的确切机制。

色氨酸代谢的重要性

色氨酸(Trp)是人体必需的氨基酸。它的代谢可以分为内源性代谢和细菌性代谢。内源性代谢主要通过犬尿氨酸途径(KP)和5-羟色氨酸途径进行,前者产生犬尿氨酸(KYN)、犬尿酸(KA)、烟酸、黄嘌呤酸等,后者转化为5-羟色氨酸(5-HT)和褪黑素。

色氨酸代谢物的生理功能

增强免疫:色氨酸可加强免疫力,减少炎症。

神经保护:KA作为谷氨酸受体拮抗剂,具有神经保护和抗惊厥作用,还能调节能量代谢。

情绪调节:5-HT作为神经递质,可调节情绪、肠道通透性和肠道蠕动。

肠道菌群在色氨酸代谢中的作用

肠道细菌代谢色氨酸产生吲哚及其衍生物,如吲哚丙酸、吲哚乙酸等,这些物质可以缓解炎症,促进肠道上皮屏障功能。肠道菌群的色氨酸代谢异常与肠易激综合症、代谢综合症和结肠癌等疾病有关。例如,结肠癌患者常伴有色氨酸水平下降和KP代谢物水平升高。

多糖影响肠道微生物色氨酸代谢,从而改善疾病

吲哚是硫酸吲哚酚的前体,是一种蛋白结合尿毒症毒素,是心血管疾病的危险因素。对于患有终末期肾病心血管疾病的患者,吲哚水平升高,患者粪便中产吲哚细菌丰富。

总的来说,多糖可以通过调节肠道菌群来改变色氨酸代谢,最常见的是增加乳杆菌和阿克曼菌,从而缓解疾病。

胆汁酸的生物合成与功能

胆汁酸(BAs)是一类由肝脏产生的特殊类固醇分子,经过肠道菌群转化。肝脏中存在两种BA生物合成途径:

CA和CDCA是体内的主要胆汁酸。经过肠道菌群的改造,CA转化为脱氧胆酸(DCA),CDCA转化为鹅去氧胆酸(LCA)。

胆汁酸受体及其作用

胆汁酸受体包括细胞表面受体和细胞内受体。细胞表面受体包括TGR5,细胞内受体包括法尼酰X受体FXR、孕烷X受体、维生素D3受体(VDR)和组成型雄烷受体。胆汁酸通过激活相应的受体调节脂质、葡萄糖和能量代谢。例如,TGR5和VDR的激活导致GLP-1和FGF19分泌,GLP-1可以改善胰岛素敏感性,FGF19可以通过抑制脂肪生成减少肝脏脂肪变性。

多糖对胆汁酸代谢的调节作用

近年来的研究表明,多糖可以通过恢复胆汁酸的代谢来缓解疾病。

多糖对胆汁酸代谢影响的总结

多糖通过调节肠道菌群的组成,特别是Bacteroides、Lactobacillus、Clostridium、Ruminococcus、Bifidobacteria,影响胆汁酸的代谢。

某些多糖如岩藻聚糖和灰树花多糖减少了Clostridium的水平,这与文献报道的促进胆汁酸转化的作用似乎矛盾,需要进一步研究确认这些肠道细菌与多糖之间的关系。

脂多糖的危害

脂多糖(LPS)是由革兰氏阴性细菌(如大肠杆菌)产生的内毒素。持续暴露于LPS或LPS异常增加,可通过减少肠道上皮细胞活性、降低肠道细胞增殖、抑制肠道细胞迁移和诱导肠道细胞凋亡等方式,导致肠道损伤。

LPS的转移还能损伤肠道,并可能通过与多种受体的相互作用,如LPS结合蛋白、簇分化14、髓样分化2和Toll样受体4,引发糖尿病、非酒精性脂肪肝病、肥胖、动脉粥样硬化等一系列疾病。

多糖对LPS产生菌的抑制作用

许多多糖能够抑制产生LPS的细菌。例如,在链脲佐素(STZ)诱导的糖尿病肾病模型中:

多糖调节肠道菌群的矛盾效应

尽管多糖可以通过调节肠道细菌来抑制LPS,但对特定细菌的调节作用可能存在矛盾。例如,作为LPS产生菌的拟杆菌门,在多糖处理后的水平变化并不一致。有研究表明,黄精多糖和蝉花多糖增加了拟杆菌门的水平,而竹荪多糖却降低了它。这些研究表明,多糖对肠道菌群的调节效应有时可能相互矛盾,需要进一步研究以确认结果。

胃肠道气体的生成

胃肠道内通过细菌发酵食物,会产生一系列气体,包括氢气(H2)、甲烷(CH4)、二氧化碳(CO2)、硫化氢(H2S)和一氧化氮(NO)。这些气体在胃肠道中发挥着调节作用,例如影响结肠蠕动、神经通讯、血管功能和免疫反应等。

气体产生的部位和作用

CO2主要在胃中产生,而其他气体如H2、CH4、CO2和H2S主要在小肠和结肠中产生。

这些气体对人体健康至关重要,它们可以调节肠道功能,影响营养物质的吸收和疾病的发生。

多糖对气体产生的调节

尽管多糖对H2、CH4和CO2的产生有明显影响,但关于多糖结构与气体产生之间具体关系的研究会相对较少。需要更多的研究来明确这些关系,以及多糖如何通过影响肠道菌群来调节气体的产生。

肠道菌群是一个复杂的微生物群落,具有显著的组成和功能多样性。不同的微生物可以介导相同或不同的代谢物的产生,相同的微生物也有助于不同代谢物的生产。

例如,持续的研究表明:

拟杆菌门(特别是Bacteroidesthetaiotaomicron、Bacteroidesfragilis)、厚壁菌门(如Clostridiaceae、Erysipelotrichia)、以及变形菌门可以促进TMA的产生。

放线菌门(如Bifidobacteria)、厚壁菌门(如Lactobacillus、Clostridium、Peptostreptococcus)、拟杆菌门(如Bacteroides)可以促进色氨酸(Trp)的转化。

双歧杆菌、乳酸菌、梭菌、Peptostreptococcus、拟杆菌也有助于次级胆汁酸(BAs)的产生。

因此,就像肠道菌群组成的调节一样,多糖对特定肠道菌群代谢物功能的调节作用不是孤立的。

肠道是我们抵御外界有害物质和病原体侵袭的第一道防线。它由多个层次的子屏障构成:

生物屏障:由肠道细菌和病毒组成;

化学屏障:包含免疫球蛋白A(IgA)、抗菌肽(AMPs)和粘液(MUC);

物理屏障:由肠道上皮细胞构成;

免疫屏障:含有T细胞、B细胞、巨噬细胞和树突细胞等免疫细胞。

肠道菌群及其代谢物可以直接或间接影响肠道屏障:

越来越多的证据表明,多糖通过调节肠道菌群对肠道屏障有益。正常的肠道菌群组成可以通过竞争性排除,通过消耗营养源和占据附着位点,作为抵御外界病原体的屏障。

多糖→调节肠道菌群→修复肠道屏障

肠道菌群可以刺激宿主产生抗菌化合物,如IgA和AMPs,这些是化学屏障的关键组成部分。

例如,菊粉型果聚糖可以促进乳杆菌的丰度和IgA的分泌。在DSS诱导的溃疡性结肠炎小鼠模型中,金银花多糖通过增加双歧杆菌和乳杆菌,增加了分泌型IgA含量,从而调节肠道屏障。

在DSS诱导的结肠炎小鼠中,海蜇皮多糖增加Akkermansia,Akkermansiamuciniphila作为粘液的降解者,可以增强肠道屏障的完整性,减少炎症。同时海蜇皮多糖增加结肠中TJs和MUC2的表达,保护了肠道屏障。

多糖→短链脂肪酸→修复肠道屏障

短链脂肪酸和胆汁酸等肠道菌群代谢物在调节肠道屏障功能中也扮演重要角色。

多糖→色氨酸和胆汁酸代谢→修复肠道屏障

这些研究表明,多糖可以通过调节肠道菌群及其代谢物,维护肠道屏障的完整性。

代谢性疾病包括一组因碳水化合物、脂质和蛋白质代谢错误而导致的疾病。2型糖尿病(T2DM)、非酒精性脂肪性肝病(NAFLD)和肥胖是常见的代谢性疾病。

生活方式干预、全身药物治疗和外科手术等多种方法被用于预防和治疗代谢性疾病。尽管代谢性疾病的药物治疗取得了最新进展,但潜在的不良反应仍然是关键挑战。

使用天然物质的药物治疗被认为是改善代谢疾病的一种有前途且可行的方法。

doi.org/10.1016/j.biopha.2023.114538

多糖通过多种机制在治疗2型糖尿病方面表现出良好的效果,比如:

肠道菌群在代谢紊乱,特别是2型糖尿病的发展中起着重要作用。

◤车前子多糖对STZ诱导的2型糖尿病大鼠有抗糖尿病作用,这可能与其调节肠道菌群和增加短链脂肪酸水平有关。车前子多糖可显著增加糖尿病大鼠粪便中Bacteroidesvulgatus、发酵乳杆菌、Prevotellaloescheii、Bacteroidesvulgates等结肠细菌的多样性和丰度,以及短链脂肪酸的浓度。

◤桑果多糖可以丰富糖尿病小鼠的功能菌并调节微生物多样性。具体而言,该多糖显著富集了一些有益细菌(拟杆菌目、乳杆菌属、Allobaculum、拟杆菌属、阿克曼菌属),同时减少了一些致病菌(葡萄球菌、棒状杆菌属、Jeotgalicoccus、Aerococcus、Enterococcus、Facklamia)。

◤罗布麻叶的两种富含多糖的提取物改善了糖尿病小鼠的肠道微生物群失调,包括增加了Odoribacter、Anaeroplasma、Parasutterella、Muribaculum的丰度,并降低了肠球菌属、克雷伯菌属、Aerococcus的丰度。这可能有助于它们的抗糖尿病作用。

◤青钱柳叶中分离的多糖通过增加SCFAs含量和有益的肠道细菌瘤胃球菌科来减轻HFD/STZ诱导的2型糖尿病大鼠的糖尿病症状。

◤苦瓜中的天然多糖通过增加SCFAs含量和Prevotellaloescheii、Lactococcuslaudensis的丰度来改善HFD/STZ诱导的2型糖尿病大鼠的高血糖、高脂血症、高胰岛素血症。

◤天然南瓜多糖通过增加阿克曼氏菌和减少丹毒丝菌科(Erysipelotrichaceae)来显示出对HFD/STZ诱导的2型糖尿病的降血糖作用。此外,南瓜多糖还能增加2型糖尿病模型中肠道短链脂肪酸的产生。

◤灵芝多糖(GLP)通过恢复HFD/STZ诱导的肠道微生物群失调,特别是通过增加Blautia、拟杆菌、Dehalobacterium、Parabacteroides,以及减少有害的肠道细菌Aerococcus、Corynebacterium、Ruminococcus、Proteus,显示出抗糖尿病作用。

◤薏苡仁多糖通过降低厚壁菌门/拟杆菌门的比例和增加SCFAs的含量,在HFD/STZ诱导的T2DM小鼠模型中表现出降血糖活性。

◤葡甘聚糖作为铁皮石斛、芦荟和魔芋的天然多糖,通过增加厚壁菌门的丰度和减少拟杆菌门、变形杆菌的丰度,改善HFD/STZ喂养大鼠的T2DM代谢紊乱。

多糖对改善NAFLD具有有益作用,比如:

多糖可以改善肠道菌群失调并保护非酒精性脂肪性肝动物的肠道屏障完整性

◤枸杞多糖结合有氧运动通过改善肠道菌群失调改善NAFLD,包括调节肠道菌群的丰度和多样性,增加微生物代谢产物SCFA的水平,减少变形菌和厚壁菌门/拟杆菌门的比例。厚壁菌门和拟杆菌门是参与宿主代谢和脂肪积累的关键细菌。

◤麦冬多糖可以通过调节肠-肝轴显著保护NAFLD。具体来说,这种多糖显著降低了一些有害细菌的相对丰度,包括乳球菌、肠杆菌、Turicibacter、Clostridium-sensu-stricto-1、Tyzzerella、Oscillibacter,并增加一些有益菌的相对丰度,如Alistipes、Ruminiclostridium、Rikenella。这种多糖还显著增加了两种产SCFAs菌(Butyricimonas、Roseburia)的丰度以及乙酸和戊酸的水平,从而改善了炎症反应和肝脏脂质代谢。

◤灰树花杂多糖可通过调节肠道菌群来改善高脂饮食诱导的NAFLD,包括显著增加Allobaculum、拟杆菌属和双歧杆菌属丰度,减少Acetatifactor、Alistipes、Flavonifractor、Paraprevotella、Oscillibacter的丰度。

◤黄芪多糖可减轻HFD喂养小鼠的NAFLD,丰富了脱硫弧菌属,尤其是作为SCFAs、乙酸的产生者的Desulfovibriovulgaris,减轻肝脂肪变性。

◤核桃青皮多糖通过提高肠微生物群(包括普氏菌科、Allobaculum)的SCFAs含量和丰度,预防HFD喂养大鼠的肥胖和NAFLD。

◤从贻贝中提取的贻贝多糖,α-D-葡聚糖(MPA)可保护HFD喂养的大鼠的NAFLD,补充MPA可逆转HFD抑制的微生物微生态失调和SCFAs。

◤海带可溶性多糖通过降低厚壁菌门/拟杆菌门的比例,促进Verrucomirobia和丙酸盐产生菌拟杆菌和阿克曼菌,减轻高脂饮食喂养小鼠的NAFLD。

多糖通过多种机制表现出良好的抗肥胖作用,作用机制如:

◤枸杞多糖补充剂可降低厚壁菌门与拟杆菌门的比例,增加产短链脂肪酸菌,如Lacticigenium、Butyricicoccus、Lachnospiraceae_NK4A136_group数量,从而改善肥胖小鼠的肠道菌群失调。

◤桑叶多糖治疗可调节肥胖小鼠肠道菌群的组成和功能,这与增加Allobaculum、Parabacteroides、Porphyromonadaceae、Butyricimonas、Ruminococcus的水平有关。

◤黄精多糖调节HFD喂养的肥胖大鼠的肠道微生物群结构,包括降低梭菌、肠球菌、Coprobacillus、乳球菌、Sutterella的相对丰度。

◤从海带中提取的天然多糖可通过使肠道菌群正常化来缓解小鼠HFD引起的肥胖,特别是通过增加拟杆菌目和Rikenellaceae的丰度。

◤从杏鲍菇中分离出的蘑菇多糖通过增加产生SCFA的肠道细菌Anaerostipes和Clostridium的数量,在高脂饮食喂养的小鼠中表现出抗肥胖作用。

◤从苦瓜中获得的多糖通过增加有益细菌(如放线菌、Coprococcus、乳酸杆菌)和减少有害细菌(变形菌和幽门螺杆菌)来改善HFD诱导的小鼠肥胖。

◤日本刺参的硫酸多糖通过富集益生菌Akkermansia、减少携带内毒素的变形杆菌和提高SCFAs含量来预防HFD诱导的小鼠肥胖。

doi.org/10.3389/fmicb.2022.859206

高脂血症是指脂质代谢紊乱,其特征是甘油三酯(TG)、总胆固醇(TC)和低密度脂蛋白浓度升高,同时高密度脂蛋白水平降低。

◤果胶多糖(高支链RG-I,531.5kDa)显著改善了HFD引起的脂质代谢异常,TG、TC、LDL-C和游离脂肪酸水平降低。它还通过增加Roseburia、Clostridium等产生SCFA的细菌的数量来恢复肠道菌群失衡。

◤裙带菜多糖(Undariapinnatifida)修复了高脂饮食引起的肠道微生物群改变,特别是Prevotellaceae_UCG-001,发现这与脂质代谢紊乱有关。

◤龙须菜多糖调节拟杆菌、瘤胃球菌_1和乳酸杆菌的相对丰度来增强胆固醇向BAs的转化。在遗传水平上,有人认为BA代谢的调节主要涉及CYP39A1和CYP7B1。

炎症性肠病(IBD)包括溃疡性结肠炎(UC)和克罗恩病(CD),其特点是胃肠道持续炎症。IBD的症状包括腹泻、腹胀、腹痛、便血、体重减轻和不适。

◤银耳多糖(TPs)通过多途径调节肠道菌群及其代谢物,改善了DSS诱导的溃疡性结肠炎。TPs可以增加Lactobacillus的丰度,从而改善色氨酸的分解代谢。这导致黄嘌呤酸、KA和吲哚衍生物(如5-羟吲哚、5-羟吲哚-3-乙酸、5-羟吲哚乙酰酸)的增加。

TPs还可以增加Romboutsia的水平,促进DCA的产生。因此,TPs可以通过影响色氨酸代谢和胆汁酸代谢来保护小鼠免受结肠炎的侵害。

◤金针菇多糖已被证明可以通过控制结肠微生物失调、增加短链脂肪酸和抑制TLR4-NF-κB信号通路来缓解结肠炎。能促进益生菌的生长,抑制致病菌的生长,恢复肠道稳态,缓解IBD症状。

◤竹荪多糖由59.84%的葡萄糖、23.55%的甘露糖和12.95%的半乳糖组成,已被证明可以通过增加粘蛋白和紧密连接蛋白的表达,抑制有害细菌(如γ-变形菌、变形菌、拟杆菌科、拟杆菌科和肠杆菌科)并增强有益细菌(如嗜酸乳杆菌)来改善肠道菌群组成和肠道屏障功能。

◤坛紫菜多糖通过上调紧密连接蛋白,增加粘液层及其分泌,调节肠道微生物群落,富集有益细菌,如拟杆菌、Muribaculum和乳酸杆菌,从而减轻DSS诱导的结肠损伤,从而改善结肠粘膜屏障的完整性。

◤白术多糖可以缓解在DSS诱导的溃疡性结肠炎小鼠模型炎症。白术多糖可以增加Butybacterium、Lactobacillus,同时减少Actinomyces、Akkermansia、Faecalibaculum、Verrucomicrobia、Bifidobacterium等。

天然植物多糖治疗IBD的机制

doi.org/10.1016/j.ijbiomac.2023.126799

◤甘草多糖GPS上调乳杆菌科、S24–7、Turicibacteraceae、Verrucomicrobiaceae和双歧杆菌科的丰度,下调脱硫弧菌科、瘤胃球菌科、毛螺菌科、肠杆菌科、丹毒丝菌科的丰度。GPS能促进乳杆菌、拟杆菌和产SCFAs菌的生长繁殖,起到减轻炎症、升高IL-10水平、抑制TLR4活化、降低血浆LPS水平的作用,从而保护肠道免受LPS诱导的炎症。

◤何首乌多糖(TSG)的给药显著增加了厚壁菌门和拟杆菌门的相对丰度,同时也降低了幽门螺杆菌和拟杆菌门的属水平,改善了肠道菌群,起到治疗IBD的作用。

doi.org/10.3390/nu15153321

◤乳果糖通过重塑肠道菌群组成和代谢物,改善了由洛哌丁胺引起的便秘小鼠模型中的肠道水和盐代谢。具体来说,乳果糖上调了Bacteroides的丰度,并显著降低了厚壁菌门和Verrucomicrobia的水平。

此外,乳果糖减少了胆汁酸(包括CA、DCA等)、粪便中高浓度的吲哚(高浓度吲哚对细胞有毒)并增加了丙酸。

适当调节免疫反应可以降低炎症反应引起的病原体入侵的风险。

结直肠癌

灵芝多糖通过调节乳酸杆菌、双歧杆菌等有益菌的相对丰度,诱导SCFAs的产生,改善肠道屏障损伤,抑制TLR4/MyD88/NF-κB信号通路,从而降低结肠炎和致癌风险。

◤绞股蓝与灵芝多糖联合使用显著提高了SCFAs产生菌的丰度,提高了丁酸和异丁酸水平,抑制了硫酸盐还原菌的丰度。

乳腺癌

◤来自灵芝破壁孢子(分子量为3659Da)的多糖可作为乳腺癌治疗的天然佐剂,增加细胞毒性T细胞和辅助性T细胞的数量。

灵芝孢子提取物(ESG)重塑了4T1荷瘤小鼠的肠道菌群:厚壁菌门和变形菌门的相对丰度增加,放线菌、拟杆菌门和蓝藻的相对丰度降低。

◤灵芝多糖联合紫杉醇对4T1乳腺荷瘤小鼠有抗肿瘤作用。联合治疗能显著富集拟杆菌、瘤胃球菌等5个菌属,降低脱硫弧菌和Odoribacter的丰度,平衡肠道菌群,抑制肿瘤代谢。

doi.org/10.3390/foods12163083

多糖抗疲劳机制如下:

抗疲劳多糖干预后肠道菌群的变化

肠道-肌肉轴是肌肉与消化道之间的双向沟通,微生物可以通过微生物-肠道-肌肉轴作用于全身的肌肉。肠道微生物在膳食多糖的作用下,产生一些代谢产物(短链脂肪酸等),有些代谢产物会直接穿过肠道上皮细胞,通过血液循环直接或间接作用于肌肉组织和细胞,引起细胞发生生理生化反应,对疲劳产生一定的影响。

补充膳食多糖通过作用于肠道菌群及其代谢产物,间接激活AMPK/PGC-1α、PI3K/AKT、NF-κB、Nrf2/Keap1信号通路,调节能量代谢,降低炎症水平,增强线粒体功能和抗氧化能力,进一步维持肌肉质量和功能,从而缓解疲劳。

优化肠道菌群——对抗肌肉减少和骨质流失

◤从秋葵中提取的多糖,发现它对抑郁小鼠的肠道菌群有明显的恢复作用,表现为厚壁菌门比例上调,拟杆菌门和放线菌门相对比例下调。这种调节有助于强化肠黏膜屏障,维持肠道免疫系统正常功能,减少肠道炎症反应,对抗抑郁有效,抑郁症小鼠的抑郁症状有所改善。用秋葵多糖治疗的小鼠体内的SCFAs显著增加,而SCFAs作为重要的通讯介质,对抗抑郁障碍有积极的影响。

◤接受金针菇多糖(FVP)治疗的小鼠的肠道微生物组成发生显著改变,放线菌、丹毒菌和拟杆菌的丰度增加,梭菌的丰度降低,并且接受FVP治疗的小鼠的学习和记忆能力得到改善。

◤肉苁蓉多糖可以通过恢复小鼠模型中D-半乳糖诱导的衰老引起的肠道菌群稳态来抑制氧化应激和外周炎症,从而改善小鼠的认知功能。

◤从黄芪中提取的一种多糖已被证明可以通过改变糖尿病小鼠的肠道菌群来改善认知障碍。

抑郁症与肠道微生物群有何关联

阿尔茨海默病de饮食-微生物-脑轴

以下是关于一些多糖的详细介绍,包括其功效,与肠道菌群的关联等,更深入地了解多糖在人体中的重要作用。

路易波士茶是什么?

路易波士茶(Rooibos)又名Aspalathuslinearis,中文也有译作“路易博士茶”,取自原产于南非的一种豆科植物的茎叶。虽然带有一个茶字,但路易波士茶并不是传统意义上的茶叶。

路易波士茶因不含咖啡因、单宁含量低而受到南非人的喜爱,并在全球范围内进行商业化种植和销售。2014年,中国卫生和计划生育委员会批准路易波士茶作为新的食品原料,丰富了中国的食品和药物资源。

路易波士茶具有良好的抗氧化、抗过敏、解痉和降血糖作用。也可以预防心血管疾病、神经退行性疾病、各种癌症、骨质疏松症等。

路易波士茶多糖

一项研究从路易波士茶中分离得到均一酸性多糖(ALPs),水溶性多糖ALP由β-糖苷键连接,含有吡喃糖环,主要由岩藻糖、鼠李糖、阿拉伯糖和半乳糖组成。

结合RT-PCR结果推测,ALP可能通过降低Cyp2e1和Keap1的mRNA表达,增加Nrf2和HO-1的mRNA表达,激活Cyp2e1/Keap1-Nrf2-HO-1信号通路,调控下游抗氧化酶活性和炎症因子表达,减轻氧化应激损伤和炎症反应造成的损伤,从而改善急性酒精性肝损伤。

路易波士茶多糖对肠道菌群的影响

多样性

急性酒精性肝病模型对照组(MC)的物种多样性和丰富度显著降低(p≤0.05)。高剂量和低剂量ALP处理组的物种多样性和丰富度有所增加,其中高剂量组的增加更为显著。

干预后改善的菌群

ALP干预后疣微菌丰度显著升高(p≤0.01),而脱硫杆菌丰度及F/B值均降低,但差异不显著。

ALP显著改善了小鼠急性酒精性肝损伤中Alloprevotella和Alistipes丰度显著降低的情况(p≤0.05)。

“肠-肝轴”途径

地黄是玄参科地黄属植物,在我国拥有久远的药用历史,作为滋阴补肾的传统中药,也被《神农本草经》列为上品。

多糖是地黄中的主要活性成分之一。地黄多糖具有免疫调节、抗肿瘤、抗氧化、抗衰老等多种生物活性。

迄今为止,从地黄中分离纯化了20多种多糖,主要由阿拉伯糖、鼠李糖、半乳糖、葡萄糖、甘露糖、木糖、岩藻糖和半乳糖酸组成。

地黄多糖能增加DSS诱发小鼠的体质量指数和结肠长度、降低DAI评分,改善组织病理学损伤。同时,地黄多糖能阻断NF-κB信号通路,降低细胞内促炎因子表达,减轻炎症,增加紧密连接蛋白表达,维持肠道上皮屏障。

地黄多糖可能在肠道微生物作用下发酵转化为SCFAs,增加肠道中乙酸、丙酸和丁酸的含量,起到缓解IBD的作用。

拟杆菌属、乳酸杆菌属、Alistipes是导致DSS结肠炎组肠道微生物组失衡的关键细菌类型,而补充地黄多糖可以逆转这种有害变化。

五指毛桃,又叫粗叶榕(FicushirtaVahl),常被用作滋补品的草药成分,以其丰富的多糖含量和生物活性而闻名。

一项研究发现,FHVP-3对肠道微生物群产生影响:

下列菌群富集:

FHVP-3抑制了下列机会性致病菌属的丰度:

作为可发酵底物,FHVP-3还增加了短链脂肪酸的浓度,包括乙酸盐、丙酸盐和丁酸盐。FHVP-3对脂多糖(LPS)诱导的RAW264.7巨噬细胞表现出显着的抗氧化活性和显着的抗炎作用。

doi.org/10.1021/acsfoodscitech.3c00626

研究表明,大蒜多糖在调节肠道微生物群方面发挥着作用,但它们是否具有维持肠道健康的全面功能并可作为有效的益生元仍不清楚。

为了探索这一点,通过管饲法给昆明小鼠施用不同剂量的大蒜多糖(1.25-5.0g/kg体重)和菊粉(作为阳性对照),并评估它们对肠道上皮、化学和生物屏障的影响。还使用洛哌丁胺建立了便秘模型,以研究大蒜多糖对缓解便秘的潜在影响。

施用大蒜多糖显著上调昆明小鼠小肠组织中紧密连接蛋白和粘蛋白的表达。大蒜多糖提高了盲肠丁酸含量,降低了脱硫杆菌的丰度,并降低了厚壁菌门与拟杆菌门的比例(F/B)。大蒜多糖还促进了Bacteroidesacidifaciens、Clostridiumsaccharogumia的生长。

Tax4Fun功能预测表明,大蒜多糖具有预防人类疾病的潜力,可降低胰岛素抵抗、传染病和耐药性的风险。

大蒜多糖还通过增强小肠转运、软化粪便稠度、加速排便和促进兴奋性神经递质的释放,在缓解洛哌丁胺引起的便秘症状方面表现出有益作用。

多年来,槐耳(TrametesrobiniophilaMurr)一直被用于药物治疗。槐耳含有多种成分,包括多糖、蛋白质、酮和生物碱,其中蛋白聚糖和多糖是主要的生物活性成分。

槐耳提取物具有免疫调节活性,并可通过激活自噬、抑制铁死亡、抑制内质网应激等过程对细胞发挥保护作用。研究表明,槐耳水提取物可通过抑制NLRP3炎症囊泡活化,减轻肠道屏障损伤和炎症反应,并抑制DSS和氧化偶氮甲烷(AOM)联合诱导的结肠肿瘤形成。

可缓解DSS引起的肠道菌群紊乱

一项小鼠研究显示,槐耳多糖干预显著逆转了DSS引起的Muribaculaceae_unclassified、Anaerotruncus、Ruminococcaceae_unclassified丰度的下降以及Escherichia-Shigella丰度的增加(p<0.05)。

其中,Muribaculaceae_unclassified是健康人中发现的肠道微生物,参与丁酸代谢和色氨酸代谢,可产生对人体有益的短链脂肪酸。

黄芩的根通常用作药物,用于清热利湿、泻火解毒。多糖是黄芩的最重要成分之一。

一种来自黄芩的多糖通过抑制NF-κB信号传导和NLRP3炎症小体活化来改善溃疡性结肠炎。在多糖的分离和纯化过程中,研究人员还获得了另一种名为SP2-1的均质多糖。SP2-1由甘露糖、核糖、鼠李糖、葡萄糖醛酸、葡萄糖、木糖、阿拉伯糖和岩藻糖组成。

研究人员发现其对肠道菌群紊乱、肠道屏障改善以及短链脂肪酸产生影响。

在UC患者中,SP2-1显著抑制了促炎性细胞因子IL-6,IL-1β和TNF-α。

溃疡性结肠炎患者的屏障完整性被破坏,TJ蛋白的表达发生改变,SP2-1增加小鼠TJ蛋白的表达,修复肠道屏障。

SP2-1对肠道菌群的影响

SP2-1组的粪便微生物群多样性明显高于DSS组。

临床上,溃疡性结肠炎患者的双歧杆菌和乳酸杆菌的丰度降低。与模型组相比,SP2-1组的双歧杆菌、乳酸杆菌和Roseburia的水平提高。

而拟杆菌和葡萄球菌的种群受到抑制。肠道菌群中存在过量的拟杆菌和葡萄球菌对肠道免疫系统有害。

Roseburia通过调节调节性T细胞的发育和分化、增加抗炎细胞因子的分泌和抑制促炎细胞因子的产生来缓解UC。

枸杞多糖对肠道菌群的影响

癌症

一般来说,抗癌化疗药物除了会诱导癌细胞凋亡外,还会对肠道菌群产生不利影响,主要表现在肠绒毛缩短,乳酸杆菌和肠球菌丰度下降,节段丝状菌丰度增加。而枸杞多糖治疗可通过增加有益菌相对丰度来改善肠道环境和免疫功能,逆转环磷酰胺引起的有害菌(瘤胃拟杆菌科、Longibraceae、脱硫弧菌和厌氧拟杆菌科)相对丰度的增加。

厚壁菌门与拟杆菌门(F/B)比例的变化与许多疾病状态有关,它被视为菌群失调的重要指标,有助于了解肝脏和代谢疾病的发展。枸杞多糖可降低高脂饮食大鼠的F/B比,表明补充枸杞多糖有助于调节肠道菌群失调。

doi.org/10.1080/10408398.2022.2128037

神经系统

枸杞多糖可通过调节肠道菌群-肠-脑轴的神经免疫通路,对中枢神经系统产生多方面的保护作用。枸杞多糖可改善菌群失调、肠道屏障受损等问题,并通过抑制细胞凋亡、促进自噬等机制发挥神经保护效应。

肝脏

枸杞多糖能够影响NAFLD患者的肠道菌群组成、肠道屏障及肝脏炎症。

代谢(肥胖、糖尿病)

后续研究发现,LBPs可通过调节肠道菌群组成和短链脂肪酸生成来改善肥胖。

枸杞多糖可作为2型糖尿病的潜在辅助药物。

LBPs能调节肠道菌群,激活大鼠肠黏膜TLR2+上皮细胞γδT细胞,增强肠道屏障功能,改善糖尿病。此外,LBPs能明显降低血浆中促炎性细胞因子IL-1β、IL-6、IL-17A和TNF-α,而抗炎性细胞因子IL-10水平在糖尿病大鼠中有所升高。

哮喘

枸杞多糖还可以通过直接或间接地改变肠道菌群,参与炎症介质的调控,从而改善肺功能和过敏性哮喘症状。

肠道菌群测序分析显示,LBPs能够促进哮喘小鼠肠道中乳酸杆菌和双歧杆菌增加,并降低厚壁菌门和放线菌水平,通过肠道介导缓解哮喘。

岩藻糖(Fucose),参与构成肠上皮细胞(IEC)顶端表达的聚糖,并介导肠道中的许多生物过程,尤其是宿主-微生物相互作用。

岩藻多糖

岩藻多糖是一种含有岩藻糖和硫酸基团的多糖,可改善糖尿病肾病。

一项小鼠研究发现,岩藻多糖可显著改善肾小球滤过率高滤过和肾纤维化,其机制与短链脂肪酸产生菌富集、增加盲肠内乙酸浓度、提高肾脏ATP水平以及改善线粒体功能障碍有关。此外,岩藻多糖还可通过抑制MAPKs通路来改善肾脏炎症和纤维化。总之,岩藻多糖可通过改善线粒体氧化应激和抑制MAPKs通路,靶向肠道菌群-线粒体轴,改善早期糖尿病肾病。

桑叶的药用功能最早在2000多年前的汉代被发现,并记载于《神农本草经》。明代李时珍在《本草纲目》中对桑叶的药用功效有更详细的描述,包括活血化瘀、祛风、清热解毒等功能。桑叶已被列入国家卫生健康委员会公布的食药同源资源名单。

桑叶多糖(MulberryLeavesPolysaccharides,MLPs)是从桑树(MorusalbaL.)叶片中提取的一种植物多糖。它们是桑叶中主要的活性成分之一,由多种单糖组成,主要包括木糖、阿拉伯糖、果糖、半乳糖、葡萄糖、甘露糖等。

桑叶多糖对人体的影响

桑叶多糖具有多种生物学活性,包括降低血糖、抗氧化、免疫调节、抗肿瘤、抗菌、抗凝和调节肠道菌群等。这些活性使得MLPs在医药和食品领域具有广泛的应用前景。并且安全、有效、低毒、副作用小。

doi.org/10.1016/j.ijbiomac.2023.128669

桑叶多糖对肠道菌群的影响

桑叶多糖通过调节肠道菌群的平衡,进而对人体的健康产生积极的影响。以下是桑叶多糖影响的肠道菌群及其变化情况:

桑叶多糖能够调节短链脂肪酸和肠道菌群的相对丰度,降低真细菌与过敏性细菌的比例,从而改善肠道屏障功能。

沙棘果实在藏族食品和药物中已有数千年的传统。沙棘多糖(SP)是沙棘果实中的主要功能成分之一。

对高脂饮食诱导的肥胖小鼠:沙棘多糖治疗提高了p-AMPKα和PPARα蛋白的表达,刺激了小鼠肝脏中ACC1的磷酸化,并抑制了FAS、PPARγ和CD36的蛋白表达。

沙棘多糖上调Muribaculaceae_unclassified、双歧杆菌、Rikenellaceae_RC9_gut_group、Alistipes、Bacteroides的比例,并下调Lactobacillus、Firmicutes_unclassified、DubosiellaBilophila、Streptococcus的比例,重组了HFD诱导的肥胖小鼠的肠道微生物群。

蘑菇多糖是一类存在于蘑菇中的生物活性多糖,它们包括但不限于几丁质、甘露聚糖、半乳糖聚糖、木聚糖、葡聚糖、云芝多糖、灵芝多糖、半纤维素。这些多糖在蘑菇细胞壁中含量丰富,赋予蘑菇独特的结构和生物活性。

蘑菇多糖的功效

蘑菇多糖对人体具有多种潜在的健康益处。它们可以增强免疫系统、具有抗肿瘤活性、调节肠道菌群、抗氧化、抗糖尿病、抗衰老作用。

蘑菇多糖对肠道菌群的影响

促进益生菌生长

蘑菇多糖通过选择性地促进益生菌的生长,增强肠道健康。例如,灵芝和茯苓中的多糖被发现可以增加有益细菌的数量,这些细菌可以对抗肥胖、产生短链脂肪酸和乳酸。香菇中的多糖也显示出对嗜酸乳杆菌(Lactobacillusacidophilus)有促进作用。

抑制病原菌

蘑菇多糖能够通过增强肠道屏障功能和促进益生菌的生长来间接抑制病原菌。双孢蘑菇中的多糖已被证明可以限制大肠杆菌的生长。

增强肠道屏障功能

蘑菇多糖通过增强肠道上皮细胞的功能,提高肠道屏障的完整性,减少有害物质的渗透。云芝(Trametesversicolor)中的多糖肽PSK和PSP能够调节肠道菌群,增加有益菌双歧杆菌和乳杆菌的数量,同时减少有害菌如梭状芽孢杆菌和金黄色葡萄球菌。在降低腹泻、艰难梭菌感染、炎症性肠病等方面发挥作用。

调节免疫反应

产生短链脂肪酸

蘑菇多糖在肠道发酵过程中产生短链脂肪酸,这些物质对维持肠道健康和调节宿主代谢具有重要作用。蚝菇(Pleurotusostreatus)中的β-葡聚糖衍生物能够诱导前列腺癌细胞的凋亡,并且显示出免疫调节、巨噬细胞激活、抗肿瘤和免疫刺激活性。

多糖的多样性和复杂性使其在人体内的作用千变万化,它们能够通过与肠道菌群的互动,从调节免疫功能到改善代谢性疾病等。

然而,利用天然多糖通过肠道菌群治疗疾病仍存在一些限制和挑战。对肠道菌群和多糖之间相互作用的全面了解需要进一步研究,由于大多数研究都是在动物身上进行的,因此开展研究多糖-微生物组-疾病相互作用的临床试验并实现临床转化至关重要。

幸运的是,随着生命科学领域新兴技术的发展,我们有了更多的工具来揭示这些复杂问题。高通量测序技术、多组学技术、人工智能和大数据分析的交叉融合,为研究多糖和肠道菌群的相互作用提供了强大的技术支持,推动了这一领域的快速发展。

此外,多糖与肠道菌群之间的相互作用不仅揭示了多糖的生物活性,也突显了肠道菌群对健康的重要贡献。多糖与肠道菌群的相互作用为我们提供了一个全新的视角,了解个体的肠道菌群组成,不仅有助于我们理解自身的健康状况,更为个性化的营养和健康管理提供了科学依据。肠道菌群检测可以揭示个体对多糖等营养成分的响应差异,从而为制定个性化的饮食和治疗计划提供指导。

注:本账号内容仅作交流参考,不作为诊断及医疗依据。

主要参考文献

XueH,MeiCF,WangFY,TangXD.RelationshipamongChineseherbpolysaccharide(CHP),gutmicrobiota,andchronicdiarrheaandimpactofCHPonchronicdiarrhea.FoodSciNutr.2023Aug6;11(10):5837-5855.

XuX,WangL,ZhangK,ZhangY,FanG.Managingmetabolicdiseases:Therolesandtherapeuticprospectsofherb-derivedpolysaccharides.BiomedPharmacother.2023May;161:114538

ZhangD,LiuJ,ChengH,WangH,TanY,FengW,PengC.Interactionsbetweenpolysaccharidesandgutmicrobiota:Ametabolomicandmicrobialreview.FoodResInt.2022Oct;160:111653.

ChenR,ZhouX,DengQ,YangM,LiS,ZhangQ,SunY,ChenH.Extraction,structuralcharacterizationandbiologicalactivitiesofpolysaccharidesfrommulberryleaves:Areview.IntJBiolMacromol.2024Feb;257(Pt2):128669.

LanY,SunQ,MaZ,PengJ,ZhangM,WangC,ZhangX,YanX,ChangL,HouX,QiaoR,MulatiA,ZhouY,ZhangQ,LiuZ,LiuX.Seabuckthornpolysaccharideameliorateshigh-fatdiet-inducedobesitybygutmicrobiota-SCFAs-liveraxis.FoodFunct.2022Mar7;13(5):2925-2937.

FengY,SongY,ZhouJ,DuanY,KongT,MaH,ZhangH.RecentprogressofLyciumbarbarumpolysaccharidesonintestinalmicrobiota,microbialmetabolitesandhealth:areview.CritRevFoodSciNutr.2024;64(10):2917-2940.

CuiL,GuanX,DingW,LuoY,WangW,BuW,SongJ,TanX,SunE,NingQ,LiuG,JiaX,FengL.ScutellariabaicalensisGeorgipolysaccharideamelioratesDSS-inducedulcerativecolitisbyimprovingintestinalbarrierfunctionandmodulatinggutmicrobiota.IntJBiolMacromol.2021Jan1;166:1035-1045.

TangYF,XieWY,WuHY,GuoHX,WeiFH,RenWZ,GaoW,YuanB.HuaierPolysaccharideAlleviatesDextranSulphateSodiumSalt-InducedColitisbyInhibitingInflammationandOxidativeStress,MaintainingtheIntestinalBarrier,andModulatingGutMicrobiota.Nutrients.2024Apr30;16(9):1368.

ZhaoQ,JiangY,ZhaoQ,PatrickManziH,SuL,LiuD,HuangX,LongD,TangZ,ZhangY.Thebenefitsofediblemushroompolysaccharidesforhealthandtheirinfluenceongutmicrobiota:areview.FrontNutr.2023Jul6;10:1213010.

álvarez-MercadoAI,Plaza-DiazJ.DietaryPolysaccharidesasModulatorsoftheGutMicrobiotaEcosystem:AnUpdateonTheirImpactonHealth.Nutrients.2022Oct3;14(19):4116.

TangM,ChengL,LiuY,WuZ,ZhangX,LuoS.PlantPolysaccharidesModulateImmuneFunctionviatheGutMicrobiomeandMayHavePotentialinCOVID-19Therapy.Molecules.2022Apr26;27(9):2773.

SunCY,ZhengZL,ChenCW,LuBW,LiuD.TargetingGutMicrobiotaWithNaturalPolysaccharides:EffectiveInterventionsAgainstHigh-FatDiet-InducedMetabolicDiseases.FrontMicrobiol.2022Mar15;13:859206.

GanL,WangJ,GuoY.Polysaccharidesinfluencehumanhealthviamicrobiota-dependentand-independentpathways.FrontNutr.2022Nov9;9:1030063.

ChenJ,GaoY,ZhangY,WangM.Researchprogressinthetreatmentofinflammatoryboweldiseasewithnaturalpolysaccharidesandrelatedstructure-activityrelationships.FoodFunct.2024Jun4;15(11):5680-5702.

ChenP,HeiM,KongL,LiuY,YangY,MuH,ZhangX,ZhaoS,DuanJ.Onewater-solublepolysaccharidefromGinkgobilobaleaveswithantidepressantactivitiesviamodulationofthegutmicrobiome.FoodFunct.2019Dec11;10(12):8161-8171.

Wang,A.;Liu,Y.;Zeng,S.;Liu,Y.;Li,W.;Wu,D.;Wu,X.;Zou,L.;Chen,H.DietaryPlantPolysaccharidesforCancerPrevention:RoleofImmuneCellsandGutMicrobiota,ChallengesandPerspectives.Nutrients2023,15,3019.

Zhou,Y.;Chu,Z.;Luo,Y.;Yang,F.;Cao,F.;Luo,F.;Lin,Q.DietaryPolysaccharidesExertAnti-FatigueFunctionsviatheGut-MuscleAxis:AdvancesandProspectives.Foods2023,12,3083

Shen,Y.;Song,M.;Wu,S.;Zhao,H.;Zhang,Y.Plant-BasedDietaryFibersandPolysaccharidesasModulatorsofGutMicrobiotainIntestinalandLungInflammation:CurrentStateandChallenges.Nutrients2023,15,3321

LvH,JiaH,CaiW,CaoR,XueC,DongN.Rehmanniaglutinosapolysaccharidesattenuatescolitisviareshapinggutmicrobiotaandshort-chainfattyacidproduction.JSciFoodAgric.2023Jun;103(8):3926-3938.

腹泻是常见的健康问题,相信绝大多数人在生活中都曾遭受过腹泻的困扰。

全球对所有腹泻原因中特定类型细菌性腹泻患病率的估计包括大肠杆菌10%-25%、志贺氏菌10%、沙门氏菌3%、弯曲杆菌3%-6%。

我国是15个腹泻高发国家之一。十年纵向监测研究显示,主要病毒病原体来自A型轮状病毒和诺如病毒,主要的细菌病原体来自腹泻性大肠杆菌、非伤寒沙门氏菌。

腹泻的种类多、原因复杂,有病原体感染引起的急性腹泻,也有胃肠道疾病、神经系统疾病、食物过敏等伴随的慢性腹泻。

在腹泻期间肠道环境的短暂氧化,专性厌氧肠道菌群急剧消失,肠道菌群可能出现短暂失调。实际上,每次腹泻对肠道引起的波动不容小觑,人体内的肠道菌群相当于“历了个劫”。

DOI:10.1016/bs.pmbts.2022.08.002

实际上如果不引起重视没有及时干预,或者说身体免疫系统没有将病原体彻底清除,一些病原体残留在体内,可能引起多次腹泻,反复多次后可能逐渐形成慢性腹泻,甚至悄悄延伸到其他慢性疾病。

我们也有时候会看到这样的现象:

腹泻一般会出现以下症状:

可能还会伴随着:

腹泻可能引起脱水,如果不及时治疗,有可能危及生命。脱水对儿童、老年人和免疫系统功能低下者来说尤其危险。

成人脱水症状:

婴幼儿脱水症状:

★感染

感染可能是由于食用了被某种致病菌污染的食物,或饮用受污染的水,其中可能含有细菌、寄生虫等。

常见的感染有:细菌、病毒、真菌、寄生虫等。

★旅行者腹泻

部分地方可能很难将废水和污水与烹饪、饮用和洗澡的水分开,就比较容易出现腹泻。

★药物

许多药物都可能引起腹泻,包括抗生素、抗酸剂(含镁)、口服糖尿病药物、抗癌药物、降胆固醇药、秋水仙碱等。

★食物问题

食物过敏:对牛奶、大豆、谷物、鸡蛋、海鲜等食物过敏可能会导致慢性腹泻。

乳糖不耐受:很多人有这个问题。乳糖是存在于奶类和其他乳制品中的一种糖。有乳糖消化障碍的人在食用奶制品后会出现腹泻。

有些人小时候喝牛奶没事,长大后慢慢出现腹泻的情况了。由于人体内帮助消化代谢乳糖的酶会随着年龄的增长有所减少,乳糖不耐受症的情况也会随着年龄的增长而增多。

其他比如说果糖,天然存在于水果和蜂蜜中,有时,也作为甜味剂添加到一些饮料中。对于有果糖消化障碍的人来说,果糖可引起腹泻。

有些人可能吃含糖、辛辣、高脂肪或油炸食品,也会腹泻。食物中成分刺激胃黏膜和肠道,引起胃肠道炎症和蠕动加快,从而导致腹泻。

★慢性疾病

★手术

肠道微生物可改善围手术期和术后康复效果

★营养不良

腹泻是五岁以下儿童营养不良的主要原因。每一次腹泻都会使他们的营养不良更加严重。

对于大多数感染来说,营养不良和腹泻之间的相互作用是双向的。也就是说,营养状态改变宿主对感染的反应,营养不良会导致对肠道病原体的抵抗力下降,增加腹泻的风险;而反复腹泻则会改变营养状态。当感染频繁时,尤其是复发性腹泻病,宿主营养状况也在相应变化且逐渐恶化,导致营养不良,免疫力下降,发育矮小。

发育迟缓/营养不良不容忽视,问题很有可能在肠道

急性腹泻

持续一到两天的稀稀水样腹泻。这是最常见的类型,通常无需治疗,在几天内自行消失。

大多数急性腹泻病例都有感染性病因。

急性腹泻有没有可能发展为其他疾病?

急性感染性腹泻会导致原有的肠道微生态失调恶化,如果这种情况发生在儿童身上,从长远来看,粘膜免疫系统的发育和成熟以及肠道屏障的完整性可能会受到影响,使儿童更有可能因肠漏而患上自身免疫性疾病。(我们在后面会详细讲到)。

持续性腹泻

持续约两到四个星期的腹泻。

慢性腹泻

全球每年有17亿儿童腹泻病例,腹泻是五岁以下儿童死亡的第二大原因,每年约有52.5万儿童死亡。

慢性腹泻影响全世界3%-20%的成年人。

美国细菌性腹泻约占所有腹泻的31%。导致食源性腹泻的细菌病原体比例为:沙门氏菌15.4%,弯曲杆菌11.8%,志贺菌4.6%,产志贺毒素的大肠杆菌(STEC)约3%。

我国是15个腹泻高发国家之一。以下是一项对我国长达十年(2009-2018年)的纵向监测研究。

在患者中检测到的两种主要病毒病原体:

其次是腺病毒和星状病毒。

两种主要的细菌病原体:

其次是志贺氏菌和副溶血性弧菌。

年龄对病原体检测的影响:

以上我们了解了关于腹泻的一些基本信息,腹泻作为一种常见的消化系统症状,与肠道微生物群的平衡之间有什么关联呢?下一章节我们详细了解一下。

这里我们从两个方面来了解:

■气单胞菌属(Aeromonas)

气单胞菌属细菌更常见于海鲜、肉类,有时也存在于蔬菜中。症状往往在食用受污染食品后不久出现,可以持续几天到2周。除了腹泻,一般没有腹痛,呕吐和发烧可能存在,也可能不存在。

■蜡样芽孢杆菌(Bacilluscereus)

■弯曲菌属(Campylobacter)

弯曲菌常见于乳制品、不同肉类和家禽中。潜伏期为2至4天,之后出现症状。整个病程在5至7天之间。呕吐通常不会发生。不过,腹泻时伴有发热、腹痛。

■梭菌属(Clostridium)

艰难梭菌感染的潜伏期是可变的。艰难梭菌引起的腹泻症状通常在用抗生素后5-10天开始,但也可能在第一天或长达2个月后出现;艰难梭菌的病程也有很大差异。

艰难梭菌轻中度感染症状:

严重感染时通常会脱水,需要住院治疗。

(关于艰难梭菌感染我们在后面还会详细讲)

产气荚膜梭菌感染的潜伏期通常不超过1天,可以短至几个小时,病程大概仅持续约1天。呕吐一般较轻,通常不发烧,但腹泻时确实会出现腹痛。

■大肠杆菌(E.coli)

虽然我们说大肠杆菌自然存在于人类的肠道中,但一些菌株可能会导致严重的疾病。

不同的腹泻大肠杆菌菌株表现出不同的流行病学,并分为肠致病性大肠杆菌(EPEC,婴儿腹泻的主要原因)、肠出血性大肠杆菌,根据病理类型、定植部位、毒力机制和临床症状,可分为肠毒素性大肠杆菌(ETEC,旅行者腹泻和婴儿腹泻的主要原因)和肠侵袭性大肠杆菌。

通常不呕吐,可能发烧,也可能不发烧,但腹痛伴有腹泻。产肠毒素大肠杆菌的潜伏期为1至3天,疾病持续约3至5天。低烧伴呕吐、腹痛、腹泻。

■李斯特菌属(Listeria)

李斯特菌属细菌常见于牛奶和乳制品中。潜伏期约1天,期间无症状。这种疾病往往会持续3天左右。有些人确实会呕吐,但通常并不常见。出现发烧,腹痛可能也可能不会与腹泻同时发生。

■邻单胞菌属(Plesiomonas)

■沙门氏菌属(Salmonella)

沙门氏菌是一种革兰氏阴性兼性厌氧细菌,存在于许多不同的食品中,包括乳制品、鸡蛋、肉类、豆芽、黄瓜等。潜伏期可以是几小时到3天。这种被称为沙门氏菌病的疾病可以持续约2至7天。除了腹泻(水样腹泻),还有呕吐、发烧、腹痛、胃痉挛。粪便颜色可能出现绿色。

大多数沙门氏菌引起的腹泻患者可以完全康复。一些沙门氏菌感染者在感染结束后会出现关节疼痛,称为反应性关节炎。一些患有反应性关节炎的人在排尿时会出现眼睛刺激和疼痛。

■志贺氏菌属(Shigella)

志贺氏菌一般分四类:

志贺菌属引起志贺菌病,这是常见的细菌性痢疾类型之一。痢疾志贺氏菌产生志贺毒素,引起细菌性痢疾。宋内氏志贺氏菌毒性不如其他志贺氏菌,但容易暴发和流行。

如果由患病且不保持良好卫生的人处理,任何食品中都会发现这种病毒。用受污染的水烹制的生鲜食品或用受污水污染的水灌溉的蔬菜也可能是一个问题。

潜伏期最长可达2天。志贺菌病通常持续2至7天。表现为高烧、腹痛伴腹泻,即使肠子空了也感觉还需要排便。呕吐通常不会发生。5岁以下的儿童最容易患志贺氏菌病,但所有年龄段的人都可能患上这种疾病。志贺氏菌感染中约有5%具有广泛耐药性。

志贺氏菌等感染后伴随发烧症状,可能是一些人群的肠道屏障薄弱,致病菌就容易进入到血液,引起发烧。大多数志贺氏菌感染是自限性的。

■葡萄球菌属(Staphylococcus)

■弧菌属(Vibrio)

弧菌属细菌通常存在于牡蛎等海鲜中。较为知名的弧菌种类是霍乱弧菌,它是霍乱的病因。它通常通过受污染的水传播。弧菌感染的潜伏期非常短,最多1天左右。这种病最长可以持续5年。

■小肠结肠炎耶尔森菌(Yersiniaenterocolitica)

小肠结肠炎耶尔森菌通过未充分煮熟的猪肉传播给人类。它也可能通过受污染的水传播。潜伏期可以持续数小时到6天不等。这种疾病最短可持续1天,最长可达45天。通常症状包括发烧、呕吐、腹痛伴腹泻。

谷禾长期的肠道菌群检测实践发现,很多的健康人或者是说非腹泻人群的肠道菌群检测报告中,也可能会携带以上这些菌群,这是为什么呢?

有些致病菌可能是一过性的,最近旅行,或者吃的不干净的食物中把这些菌带进去了,但是它在健康的肠道中没有定植成功,又从粪便排出体外,因此肠道菌群检测就检出了这些菌。

致病菌也可能悄悄潜伏在身体内,正常情况下没有反应,但当有时候没睡好太累了免疫力低下的时候,或者其他病理炎症感染的时候,或者服用抗生素之后正常菌群一定程度存在失调,这些致病菌趁虚而入,定植成功,就到了它们发挥作用的时候,腹泻也就随之而来。

以上所提及的菌群与腹泻有直接联系,那么在腹泻期间,整体肠道菌群是否会受到影响呢?

我们接着看。

腹泻早期肠道菌群失调

这里将疾病的早期定义为腹泻症状没有消退的时期,通常是在疾病发作或出现在医院后的前三到五天内。

腹泻发作后,兼性厌氧菌的增殖

腹泻发作后,肠道微生物组发生了显著的分类变化,有利于快速生长的兼性厌氧菌的增殖。变形杆菌(主要是肠杆菌科/大肠杆菌)和链球菌(主要是唾液链球菌和Streptococcusgallolyticus)在早期阶段富集最为显著,在粪便微生物群中的相对丰度可能高达80%。

肠道短暂氧化,专性厌氧肠道共生菌的急剧消失

然而,腹泻细菌通常是短暂的和/或低丰度的(第一天的霍乱弧菌除外)。

并不是在所有腹泻患者中都发生菌群失调

部分感染患者的粪便微生物群与健康对照组的粪便微生物组非常相似。特别是,腹泻儿童的肠道微生物组可以分为四种肠道类型,每种类型都以一个分类单元为主:双歧杆菌、拟杆菌、链球菌或大肠杆菌。

感染性腹泻下的肠道微生物组演替

doi:10.1016/j.mib.2022.01.006

F.mortiferum过多可能是肠道失调的一般标志

除了埃希氏菌和链球菌,腹泻粪便微生物群中也发现了其他细菌过多,即使在整个肠道微生态没有失调的情况下也是如此。

在越南的研究强调,其中包括Fusobacteriummortiferum,以及人类口腔微生物群的几个菌(Granulicatella、Gemella、放线菌、Rothia、具核梭杆菌等)。

厌氧F.mortiferum通常在中国人的胃肠道定植(虽然丰度较低),但在西方人群中没有定植,最近在大肠息肉患者中注意到其增殖。

这些结果表明,F.mortiferum过多可能是肠道失调的一般标志,尤其是在亚洲人群中。

口腔细菌与腹泻肠道微生物群的紧密联系

对健康个体来说,微生物在口腔-肠道轴上的移位是频繁发生的,而腹泻所产生的生态贫瘠环境可能是这些口腔菌群临时定居的理想条件。

不同腹泻病因的菌群存在一些细微的差异

虽然整体的生态失调模式与不同的腹泻病因无关,但存在一些细微的差异。

这可能表明,病毒感染导致厌氧肠道共生菌减少的程度较低,可能是因为大多数病毒(轮状病毒、诺如病毒)感染的是小肠内壁的细胞,而不是结肠。在小鼠模型中,轮状病毒感染仅在回肠微生物群中导致拟杆菌和阿克曼菌群(均具有粘蛋白降解能力)增加,但这两个分类群在人类轮状病毒感染中过度生长的证据尚不确定。

另一方面,贾第虫引起的腹泻,始终与γ变形菌减少和普雷沃氏菌属富集有关。

这些发现表明,细菌感染和痢疾通常伴随着与健康状况进一步不同的失调状态,这可能是病原体引发的炎症和/或频繁使用抗菌药物的影响。

腹泻后恢复阶段

中期:拟杆菌↑↑,晚期:普雷沃氏菌属,产短链脂肪酸菌↑↑

通过对感染了霍乱弧菌和产肠毒素大肠杆菌的孟加拉国患者的研究,研究人员提出了肠道菌群恢复的逐步(中晚期)演替模型。大肠杆菌/链球菌的扩张最终耗尽肠道环境中的氧气,导致其种群在恢复阶段下降。

拟杆菌成为结肠生态恢复的关键物种

这随后启动了一个复杂的交叉喂食网络,以加快其他厌氧菌和产短链脂肪酸的菌(双歧杆菌、玫瑰杆菌、粪便杆菌等)的重新繁殖,从而建立一个分类学和功能多样性的群落。

患者恢复的微生物群是否恢复到感染前状态?

由于缺乏腹泻队列研究,此类数据有限。一项弯曲杆菌人类挑战研究结果表明,在比较恢复期和感染前的微生物组,显著的成分差异仍然存在,恢复期拟杆菌的丰度归因于抗菌药物的使用。

相比之下,在病毒性肠胃炎的康复过程中,拟杆菌富集期的存在并不突出,这可能是由于其不太严重的失调状态和很少使用抗菌药物。

儿童腹泻带来的长期影响

虽然腹泻大多是急性的,但反复腹泻可能会对儿童健康产生终身影响。长期以来,研究表明,腹泻和营养不良相互影响,使儿童在成年后容易发育迟缓、认知障碍和葡萄糖不耐受。

秘鲁儿童的纵向微生物组跟踪表明,腹泻频率的增加,大大降低了肠道微生物组的多样性和丰富度,而发育迟缓儿童的这种影响更为严重。发育迟缓还与微生物群恢复速度较慢有关,而长期的扰动反过来又降低了对随后肠道感染的适应能力,形成了腹泻和营养不良的恶性循环。

口腔菌群→肠道定植,可能引发炎症

非洲发育迟缓的儿童的小肠和结肠中口腔细菌过度生长,口腔细菌占优势,如唾液乳杆菌和链球菌。研究人员推测,反复腹泻增加了移位口腔细菌适应紊乱肠道环境的机会,口腔菌群稳定定植可能会引发炎症并改变微生物组的功能。

无症状携带的肠道病原体也会重塑肠道微生物组

腹泻:耐药基因水平转移,促进新的耐药性表型

肠杆菌科在腹泻早期的扩张,大大增加了它与攻击性病原体的接触,从而增加了水平基因转移的可能性。实验模型已经证实,由于结肠炎诱导的肠杆菌科细菌增多,质粒很容易从沙门氏菌转移到大肠杆菌。

越南的研究发现,共生大肠杆菌和致病性Shigellasonnei中存在相同的多药耐药质粒,这两种质粒都是从一名腹泻儿童身上分离出来的。这表明,一旦病原体进入肠道感染发生率和抗菌药物使用率高的环境,肠道的肠杆菌科可以成为促进新的多药耐药性表型出现的有效宿主。

腹泻后的肠道微生态失调是短暂且可逆的,但其负面影响在脆弱人群中会被放大。

以上是关于感染性腹泻与肠道菌群之间的关联,实际上研究表明,肠道菌群的失调与慢性腹泻之间也存在密切的联系。接下来,我们从具体疾病中一一来看它们之间的关联机制。

IBS的亚类包括:

什么人群更易出现IBS?

IBS的多种病理生理机制

如运动能力改变、屏障功能受损、免疫激活、内脏过敏和中枢神经系统异常,并可能与个人和环境风险因素有关,包括遗传易感性、压力、抗生素使用、肠道感染、心理困扰、饮食等。

doi.org/10.3390/jcm12072558

脑-肠轴的失调会改变胃肠道系统的运动、感觉、自主和分泌功能,进而改变肠道蠕动、肠道通透性、内脏敏感性和肠道微生物群组成,所有这些都与IBS的发病机制有关。

IBS中常见的肠道蠕动变化是由血清素代谢改变介导的。肠神经系统的肠嗜铬细胞释放血清素,刺激肠道蠕动并调节分泌和血管舒张功能。肠神经系统失调可导致血清素分泌增加或减少,分别表现为腹泻或便秘。

IBS的肠道菌群变化

IBS-D的特点是粪便微生物群的微生物多样性总体下降,厚壁菌门显著减少,拟杆菌门增加。

多种类型IBS的菌群变化:

低度炎症和免疫功能障碍在IBS中发挥作用

研究发现IBS患者的促炎细胞因子水平升高,部分原因可能是压力所致。

10%的IBS病例是在最近患有胃肠道疾病的情况下感染后发生的,这通常会导致粘膜和全身炎症。

IBS症状与心理、生理和神经胃肠道因素有关

肠道微生物组的改变也会导致一些炎症和免疫学变化,这些变化可能会通过增加肠道通透性来损害胃肠粘膜屏障。这反过来可能会干扰胃肠道稳态,并使脑-肠伤害感受通路失调,导致内脏过敏或胃肠道疼痛感增强。

IBS患者饮食方面要注意,豆类、含乳糖食品和人工甜味剂中存在的可发酵低聚糖、单糖、二糖和多元醇(FODMAP)由于其发酵和渗透作用,可能会加剧部分患者的症状。

IBS基于病理生理学的分类和治疗建议

四分之一的IBS-D患者实际上患有特发性胆汁酸腹泻,接下来我们来看看胆汁酸腹泻。

胆汁酸腹泻

胆汁酸腹泻(BAD)是一种常见的疾病,其起因是原发性胆汁酸流失增加,并可导致微生物群变化,同时与腹泻型肠易激综合征(IBS-D)有重叠之处。

胆汁酸腹泻患者报告的最常见症状是爆发性腹泻、难闻的气味或水样腹泻(80%)、尿急(85%)以及腹胀或肿胀(54%)。

实际上,25-33%的慢性腹泻患者患有原发性胆汁酸腹泻。继发性胆汁酸腹泻继发于终末期回肠切除或发生在克罗恩病或放射线后。

胆汁酸腹泻是怎么回事?

胆汁酸由肝脏产生并储存在胆囊中。吃脂肪食物时,胆汁酸会释放到小肠中分解脂肪,之后胆汁酸被重新吸收并送回肝脏重新利用。通常,只有很少的胆汁酸最终进入大肠。

胆汁酸的正常肝肠循环

对于BAD患者,大量胆汁酸会被冲入大肠。这会导致肠道内液体增加。液体通过肠道的运动速度加快,结果是水样大便。

与肠道菌群有什么关联?

由于电解质失衡,胆汁酸的吸收不良或过量产生会导致肠道菌群失调和腹泻。

肠道菌群负责初级胆汁酸的去结合、脱氢、7α脱氢和差向异构化,在胃肠腔产生次级胆汁酸,并介导胆汁酸合成的反馈控制。肠道菌群是胆汁酸的主要调节者,反过来又调节微生物群的组成和丰富度及其特征。

在一组胆汁酸排泄过多的IBS-D患者(BA+IBS-D)中,一种以胆汁酸转化梭菌物种富集为特征的特定肠道菌群能够增强胆汁酸总排泄量,这与粪便胆汁酸和血清7-羟-4-胆甾酮(C4)水平较高有关。

另一项最新研究显示,BAD患者粪便细菌多样性降低,其他菌群变化如下:

BAD患者的初级粪便胆汁酸比例也较高,可能是由于肠道微生物群中双歧杆菌和Leptum减少,大肠杆菌增加所致。这可能会改变胆汁酸对FXR和TGR5的亲和力,从而导致FXR活性降低,胆汁酸向结肠的输送增加。

另有研究表明,双歧杆菌丰度增加的同时,次级粪便胆汁酸减少,从而导致乙酸盐和丙酸盐水平升高。

乳糜泻(CD)是一种常见的全身性疾病,是由于人体免疫力对麸质摄入的异常反应而导致的。

注:麸质是一种存在于小麦、大麦、黑麦等谷物中的蛋白质,可溶于酒精。

乳糜泻的发病机制涉及遗传和环境因素的复杂相互作用。肠道微生物群在乳糜泻的发病机制中发挥着复杂的作用。

包括有益菌丰度降低,特别是以其抗炎和免疫调节特性而闻名的双歧杆菌。

还有乳杆菌通过多种机制,包括分泌抗炎细胞因子和改变Th1免疫反应。

某些细菌的过度生长与肠道通透性增加有关,这是乳糜泻的一个标志。具体来说:

肠道微生物群导致乳糜泻的可能发病机制

这里从环境因素的作用、微生物群本身的作用、遗传学因素、围产期因素等几个方面来说。

环境因素的作用:

一种假设是,一些肠道细菌表达模仿麦醇溶蛋白(麸质的一种成分)的表位,可以引发宿主免疫反应。这种反应导致免疫系统激活并产生攻击肠道内壁的抗体。

一些细菌,例如铜绿假单胞菌,与麸质结合可导致粘膜炎症加剧。这两个因素的结合可能会导致肠道内壁进一步受损,并加剧乳糜泻症状。

最后,病毒感染也可以触发先天免疫系统的激活。具体来说,TLR3是一种可以识别病毒感染并做出反应的受体,导致先天免疫系统激活和肠道炎症。

微生物群本身的作用:

微生物群代谢产物的作用:

肠道细菌还可以通过释放短链脂肪酸来调节,具体来说,短链脂肪酸通过促进紧密连接形成、抑制促炎细胞因子的产生以及促进调节性T细胞分化,参与维持肠上皮屏障的完整性。通过这种方式,肠道细菌及其产物的平衡可能会影响宿主对包括麸质在内的膳食抗原的耐受能力,可能导致乳糜泻的发生。

遗传学的作用:

患有乳糜泻一级亲属的婴儿的大规模前瞻性出生队列研究,在引入食物(包括麸质)之前,4-6个月大的婴儿中几种链球菌和粪球菌的丰度减少与患乳糜泻的遗传风险有关。发生乳糜泻的标准遗传风险和高遗传风险与拟杆菌和肠球菌种类增加有关。出生后4-6个月时,下列菌群丰度下降:

围产期因素的作用:

剖腹产:由于粪肠球菌增加,拟杆菌属和副拟杆菌属数量减少,导致乳糜泻的风险更高。

喂食类型:婴儿配方奶粉喂养可能是发生乳糜泻的危险因素,但结果不一致。

抗生素使用:与乳糜泻之间存在关系,这可能是剂量依赖性的。

胃肠道感染:出生后6-18个月内的胃肠道感染会因肠道通透性增强而增加患乳糜泻的风险。

肠病毒、腺病毒12型、正呼肠病毒和白色念珠菌也与乳糜泻风险增加有关。

以上所有这些机制凸显了肠道微生物组、麸质和免疫系统在乳糜泻发展过程中复杂的相互作用。

炎症性肠病(IBD)常见症状是腹痛、腹泻和体重减轻。炎症性肠病主要包括:克罗恩病(CD)和溃疡性结肠炎(UC)。

IBD类型通常通过炎症位置和胃肠道的组织病理学特征来区分。临床上:

这两种情况均源于遗传易感宿主对微生物和/或环境因素的不适当免疫反应。

炎症性肠病患者肠道菌群变化

炎症性肠病患者肠道菌群多样性较低,对大多数炎症性肠病患者的报告了厚壁菌门、拟杆菌门和变形菌门内特定细菌类群的丰度变化,具有攻击性的菌群的增多,如变形杆菌、梭杆菌属、瘤胃球菌,同时具有保护性的菌群的减少,例如Faecalibacterium、罗氏菌属、毛螺菌科、双歧杆菌属。

当粘蛋白降解细菌(如瘤胃球菌)过度生长时,粘液层开始变薄,肠壁更容易受到肠道微生物的促炎信号的影响。

当这种情况变成慢性时,肠壁中的异常炎症反应似乎成为常态,导致我们在IBD中看到的肠壁损伤以及特征性的高粪便钙卫蛋白和FIT。慢性炎症会使肠道菌群失调和肠道屏障功能障碍长期存在,形成恶性循环。

肠道中高水平的具核梭杆菌(一种来自口腔的共生细菌),与炎症性肠病的进展有关。

其他例如普拉梭菌等一些产丁酸菌也减少,丁酸盐有助于肠壁修复和调节炎症。如果肠道丁酸生成量低,肠壁可能会变得渗透性过高,并由于这种微生物介导的愈合机制的丧失而出现慢性炎症。

炎症性肠病中宿主与微生物群的相互作用

发病率:

AAD的临床病程因是否涉及艰难梭菌而异,大多数非艰难梭菌发作。艰难梭菌AAD严重程度轻微,自限性强,仅持续几天。

AAD组动物模型中变形菌门和放线菌门丰度较高。更重要的是,模型组乳杆菌的丰度明显低于对照组,而肠球菌的丰度明显高于对照组。

抗生素治疗还增加了柠檬酸杆菌(Citrobacter)、窄养单胞菌(Stenotrophomonas)和谷氨酸杆菌(Glutamicibacter)的丰度,而抗生素降低了支原体和幽门螺杆菌的丰度。

■艰难梭菌感染

艰难梭菌是一种革兰氏阳性厌氧芽孢杆菌,是一种重要的医院病原体。艰难梭菌是属于厚壁菌门的正常微生物群的一部分,正常在特定范围内。

艰难梭菌感染的临床表现各不相同,从无症状或非常轻微的腹泻到严重的伪膜性结肠炎。艰难梭菌感染的发病机制似乎与正常肠道微生物群的破坏有关,主要来自抗生素治疗,如阿莫西林、氟喹诺酮、氨苄青霉素、克林霉素和头孢菌素,这些药物可能导致肠道微生态失调。

注:健康微生物组的共生菌群通过定植抗性控制艰难梭菌等病原体的定植。在抗生素和抗肿瘤或免疫抑制药物对正常肠道菌群产生破坏性影响后,肠道易被艰难梭菌定殖,或者这种影响可能导致肠道环境中预先存在的微生物种群过度生长,从而导致CDAD。

病原体通过粪口途径和孢子传播,一旦摄入,可以在胃酸中存活并定植于结肠,释放肠毒素A和细胞毒素B,这在很大程度上是造成临床严重程度的原因。

与未发生艰难梭菌感染的患者相比,抗生素治疗后艰难梭菌感染患者的微生物群多样性较低。与对照艰难梭菌抗性小鼠相比,发现数量显著增加的初级胆汁酸和某些碳水化合物有利于艰难梭菌的生长。

对于复发性艰难梭菌感染,可以使用粪菌移植FMT治疗,目前临床上有较好的反馈,随着研究的深入和技术的成熟,成功率也越来越高,关于FMT我们在后面章节也会讲到。

有时候常常将食物过敏与食物不耐受混为一谈。虽然这两种情况可能会导致类似的症状,但它们是由不同的机制触发的。

食物过敏是由于免疫系统对特定食物物质的过度反应引起的。食物过敏的主要原因是蛋白质。

蛋白质存在于花生、坚果、鸡蛋、乳制品、鱼、小麦、大豆和虾等贝类中。

牛奶过敏是婴幼儿期常见的食物过敏,牛奶蛋白质分为两大类:酪蛋白和乳清蛋白,所有蛋白质都可能是潜在的过敏原,并且可以诱导IgE和非IgE介导的免疫反应,从而导致广泛的临床表现和不同的表型。

非IgE介导的牛奶过敏涵盖多种疾病,包括食物蛋白诱发的过敏性直肠结肠炎、食物蛋白诱发的小肠结肠炎综合征和食物蛋白诱发的肠病。

当身体遇到少量的有害食物时,它都会释放组胺,肠道内布满了具有组胺受体的细胞。当组胺与这些受体结合时,会引起消化系统的肌肉收缩,导致腹部痉挛和腹泻。

患有慢性小肠结肠炎综合征的婴儿表现出更多的慢性症状,如呕吐、慢性腹泻和生长发育不良。

一名6个月的患者,基本情况:中度营养不良,牛奶蛋白过敏,每日腹泻较多。

肠道菌群检测报告如下:

以上我们可以看到:

病原菌中:

对应的菌属中:链球菌属,志贺氏菌属,梭菌属这几类有害菌较多的菌属属于人群中较高。

针对牛奶蛋白过敏,以及出现中度营养不良和腹泻的情况,对应报告中:

消化道疾病部分的显示的,肠炎高风险,细菌性腹泻、病毒性腹泻和过敏性腹泻均提示注意。

结合前面病原菌的超标和每日腹泻症状,判断较大可能存在细菌性腹泻的可能。较大可能存在肠炎的情况,并引发肠道屏障损伤,导致乳蛋白过敏的情况。

干预建议:

牛奶过敏暂时可以使用深度水解的奶粉减少过敏。另外可以适当开始摄入米粉等辅食,补充碳水化合物。

基于肠道炎症的情况,可以考虑少量服用姜黄素,并补充益生菌。

扩展阅读:生命早期微生物接触和过敏风险:如何预防

微生物群对三大过敏性疾病发展的影响

肠道微生物群在过敏性鼻炎中的作用

放射性腹泻患者的肠道微生物群落变化比非放射性腹泻患者的肠道微生物群落变化更大,因此,肠道微生物群对于预防放射性腹泻至关重要。

腹泻患者的拟杆菌、Dialister、Veillonella和未分类细菌种类增加,梭菌XI和XVIII、Faecalibacterium、Oscillobacter、Prevotella、Parabacteroides减少。

一些证据还表明,接受放射治疗的患者艰难梭菌感染的发生率很高,这与高死亡率有关。研究表明,肠道微生物群组成可作为放射治疗引起的腹泻和疲劳发展的预测标志。

肠道微生物组对辐射诱导的胃肠道粘膜炎发病机制的影响,是通过调节氧化应激和炎症过程、肠道通透性、粘液层组成、上皮修复和抵抗有害刺激的能力,以及免疫效应分子在肠道中的表达和释放介导的。

肠道微生物组可以通过两种机制影响辐射诱导的胃肠道粘膜炎:易位和微生态失调。

辐射破坏肠道屏障和粘液层,导致细菌移位,从而激活炎症反应。生物失调,无论是由辐射还是其他因素引起,都会影响局部和全身免疫反应。

TLR具有抗辐射保护作用的另一个潜在机制是激活NF-κB信号传导,这对于保护肠道免受辐射诱导的细胞凋亡至关重要。也就是说TLR可能通过NF-κB途径影响肠道对辐射诱导的上皮损伤的反应。

由于缺乏纤维,便秘往往是生酮饮食的最大问题,但事实上,生酮饮食也会导致腹泻。酮症腹泻可能只是比平时更多的水样大便和/或更频繁地排便。

酮症腹泻的原因可能如下:

脂肪很难消化

人工甜味剂和糖醇可能会对胃造成伤害

在生酮饮食中经常摄入更多的糖醇和其他人造甜味剂。这些甜味剂虽然碳水化合物含量低且通常是安全的,但过量食用可能会导致腹胀和腹泻。因此,如果有人食用大量糖醇含量高的酮类产品,他们可能会患酮类腹泻。

破坏肠道菌群

酮症腹泻持续多久?

酮症腹泻并不是一个永久性的问题。通常是暂时的,一般会发生在一开始改变饮食的时候,可能是在身体能够调整之前的第一到四周。

然而,如果高脂肪饮食对一个人的身体来说不容易消化,或者肠道微生物群确实发生了变化,腹泻可能是一个长期的副作用。

如果酮类腹泻持续存在,就值得重新考虑饮食计划。一种饮食计划不太可能适合所有人,其他可能考虑地中海饮食等饮食方式。

1.腹泻未发生→预防

勤洗手:可以预防感染性腹泻的传播,比如准备食物前后,如厕、换尿布、打喷嚏、咳嗽、擦鼻涕等之后都要洗手。

正确储存食物:在正确的温度下储存食物,并烹饪所有食物直至达到建议的温度。不要冒险食用过期的食物或饮料。

预防旅行者腹泻:到卫生条件不完善的地区旅行时,需要注意食品安全。吃完全煮熟的热食,吃水果要吃可以去皮的,喝原包装的瓶装水,包括刷牙也用瓶装水。避开未经高温消毒的牛奶或果汁产品。合理摄入一些益生元,降低旅行者腹泻的风险。

保持肠道菌群平衡:当我们肠道菌群在一个良好的状态时,可以提高我们的免疫力,甚至能抵抗病原菌的定植,通过均衡饮食、保持良好的作息规律、适度运动、减少压力等各个方面,维持肠道菌群平衡。

当腹泻发生时,首先要判别感染源和感染原因。

在处理优先级上,首先要解决感染问题

细菌性感染

不过需要注意的是,使用抗生素的时候尽量遵医嘱一次性吃到位,如果吃了一天感觉好了就不吃了,没有起到彻底杀菌的作用,则可能出现病情反复,那么这时候也会带来抗生素耐药性问题,即便吃了抗生素药也不一定很快好转。

因此关于抗生素用药需要谨慎,要么不用,要么用到位,尽量避免形成抗生素耐药性问题。如果有进行肠道菌群检测,也可以看到有没有抗生素耐药性问题,如果存在某种抗生素耐药,则可以避免该药物,改用其他抗生素代替。

病毒性感染

如果主要症状是腹泻+呕吐,也可能伴随出现一些腹痛、头痛、发烧、畏寒、肌肉酸痛等情况,则考虑可能是病毒性感染。一般病毒性感染具有自限性。

病毒性感染则需要避免使用抗生素。配合一些补液及益生菌,辅助治疗。

其次,考虑其他功能性问题

肠道感染也是IBS的危险因素,如果是IBS患者,饮食因素可诱发或加重IBS症状。

短期使用利福昔明可以改善IBS的腹痛、腹泻、腹胀症状。洛哌丁胺的随机双盲安慰剂对照研究证实其可以显著降低IBS排便频率。

医生可能会开出胆汁酸螯合剂来减少胆汁的循环。通常为10-14天。

有些不明原因的腹痛、腹胀、腹泻、各种不适,在进行肠道菌群健康检测后,如果发现存在失调的情况,比如说肠道菌群多样性过低,有益菌缺乏,一些其他有害菌超标,那么需要结合相应的指标去综合判别,纠正可能的诱发因素。

我们来看一个案例:一名患者50岁,主诉腹泻。

可以看到肠道菌群多样性明显缺乏,且埃希氏菌属明显超标。大肠埃希氏菌在正常情况下对人体无害,但某些菌株也可能引起感染和疾病,导致胃肠道症状,如腹泻、腹痛等。

整体肠道菌群检测结果也与该患者“腹泻”的症状吻合,可以作为临床上的参考。

在纠正诱发因素后,可以采取措施进行调理,提升免疫力,合理应用微生态制剂,也就到了接下来第三步。

一次腹泻,对于我们肠道来说,就好比打了一场仗,各大菌群忙着争夺领地、占据优势地位,肠道菌群的平衡却遭受了巨大的打击,有益菌可能被削弱,而有害菌则可能过度繁殖,甚至肠粘膜都受损。因此,腹泻后的肠道养护很重要。

我们从两个方面进行养护肠道,营养和菌群。

营养

腹泻后可以吃什么?

土豆(不带皮),含有维生素B6、维生素C、烟酸和微量矿物质碘等营养成分。不要加黄油那些会刺激肠道的添加物,可以直接吃。

生吃蔬菜可能很难消化。可以通过剥皮、去除种子和彻底煮熟吃更好。

面食,提供膳食纤维和碳水化合物。

苹果酱,比生苹果更好,因为水果的皮含有不溶性纤维。苹果酱还含有果胶,可以帮助粪便凝固。

腹泻后避免吃什么?

以上只是关于腹泻期间饮食的普适性建议,临床上病人腹泻情况复杂,可能需要根据不同类别的腹泻进行分层管理。

对于IBS患者来说,则需额外避免:

对于胆汁酸腹泻患者来说,其他干预包括:

对于炎症性肠病患者来说,一些干预措施包括:

每个人的身体状况,肠道菌群特征各不相同,并不适用于所有人。比如说有些人吃香蕉后腹泻会更严重,这个就需要避免,根据自身情况而定。

菌群

除了上述营养之外,也可以通过对肠道菌群的调理,促进有益菌生长,抑制有害菌过度生长,优化菌群组成;增强肠道屏障功能,加强抵抗病原体入侵后的定植;从根本上改善人体免疫力。

▼益生菌

普遍认为,益生菌的功能在于:

一项研究表明,益生菌大肠杆菌抑制其他大肠杆菌菌株,以及病原菌金黄色葡萄球菌和表皮葡萄球菌的生物膜形成。

小鼠研究表明,短双歧杆菌和BifidobacteriumpseudocantenulatumDSM20439可以抑制肠出血性大肠杆菌产生的志贺毒素的表达。

益生菌也可以减轻与抗生素使用有关的肠道微生物群的改变,并可能抑制抗生素耐药性细菌的生长。

▼益生元

益生元也可以对腹泻患者产生积极影响。益生元的主要靶标是乳酸杆菌和双歧杆菌。益生元的摄入会增加短链脂肪酸的产生,这对维持肠道屏障的完整性很重要。由于丁酸盐在促进正常细胞增殖和分化方面的作用,它是被认为对肠道健康最有益的短链脂肪酸。

白术挥发油通过调节肠道菌群缓解急性溃疡性结肠炎。白术挥发油可以有效缓解溃疡性结肠炎小鼠的出血性腹泻、结肠组织损伤和结肠炎症。白术挥发油抑制了潜在的有害细菌(Turicibacter、Parasuterella、Erysipelatoclosstridium)的生长,富集了潜在有益菌(Enterorhabdus、Parvibacter、Akkermansia)。综上,白术挥发油可能作为一种新型益生元缓解溃疡性结肠炎。

doi.org/10.3389/fcimb.2021.625210

▼粪菌移植(FMT)

我们知道一般腹泻用抗生素治疗可见明显好转,但也有些用了抗生素,病情没有好转,反而产生耐药性,形成慢性腹泻,反反复复,那这样的情况就可能需要用到FMT。

在腹泻患者中使用FMT的好处是基于这样一种观点,即通过FMT引入的健康微生物群可以战胜病原体,并将恢复健康肠道微生物组的组成。

此外,FMT在4周后,IBS患者的生活质量方面显著优于安慰剂(平均差[MD]=7.47,95%置信区间[CI]:2.05-12.89,p=0.04)

单臂分析显示,IBS症状改善的发生率为57.8%(45.6%-69.9%),IBS-SSS减少(MD=-74,95%CI:-101.7至-46.3)。

一项临床研究表明,FMT可能安全有效地改善慢性放射性肠炎患者的肠道症状和粘膜损伤。此外,FMT也是缓解急性放射综合症的有效疗法。

▼中药

越来越多的研究支持:中草药配方通过调节肠道菌群缓解腹泻症状。传统中药方剂,如“四君子汤、痛泻要方、补中益气汤、参苓白术汤”等,广泛用于治疗慢性腹泻。

升姜泻心汤可以有效预防人类伊立替康引起的迟发性腹泻的发生。增强肠道屏障功能并减轻小鼠结肠炎。改善胆汁酸代谢和氨基酸代谢。

肠安Ⅰ号方治疗IBS-D临床能够明显降低IBS-SSS积分,提高AR应答率,疗效优于安慰剂,临床未发现明确不良反应。

在一项为期28天的双盲、随机、对照初步研究中,香沙六君子汤(XSLJZT)对IBS患者的腹泻(定义为频繁排便)有改善,但对稀便或急便没有改善。

除了中药配方,越来越多的证据表明,中国单一草药,如生姜、人参发酵物、苍术、小檗碱、黄柏提取物还具有止泻特性,恢复不平衡的肠道微生物群。

一项荟萃分析报告称,肠溶薄荷油可改善整体IBS症状。

中草药多糖对慢性腹泻患者肠道微生物群的影响

一次看似偶然的腹泻,实际上可能是我们肠道菌群平衡打破的一声警钟。平衡的肠道菌群可以帮助我们抵抗腹泻病原菌的定植。

当腹泻发生后,我们首先应该去寻找腹泻的原因,传统的医学检查往往需要繁琐的流程和耗时的等待以及不确定的结果,而依托于高通量测序和人工智能等技术的肠道菌群检测,则极大地提高了效率和精确性,在医疗手段飞速发展的时代,“快检、便检”已经逐渐开始成为获得关键医学信息的刚需,便于临床医生能够快速判断疾病类型和严重程度,有针对性地制定治疗方案。

做肠镜——“清肠”对肠道菌群的影响及后续恢复建议

肠道菌群健康检测报告——常见问题解析

菌群多样性是如何形成的,与健康的关系,如何改善?

如何理解报告中有害菌,病原菌,致病菌?

如何解读肠道菌群检测报告中的维生素指标?

正值夏季,警惕食源性疾病,常见的食物中毒的病原菌介绍

真实案例|儿童发育迟缓肠道菌群检测的应用

什么是肠漏综合征,它如何影响健康?

肠道微生物:治疗功能性消化不良的新途径

为什么会餐后疲劳?

“肚子像气球?”“好像怀孕?”——可能是腹胀惹的祸

为什么会有口臭,如何避免?

排便困难?便秘反复?不要忽视肠道菌群

关于谷禾

杭州谷禾健康专注于利用高通量测序技术进行肠道菌群和精准健康检测,是国家高新技术企业。

经过多年的积累,已完成检测并构建了超过70万例各类人群样本数据库。自主构建了肠道菌群参考注释数据库,同时建立了基于近7万人群的肠道菌群人群分布及正常范围。在NatureCommunications,Gut,PNAS等国际顶级学术期刊发表多项研究论文。支持合作50多项目临床开放基金项目,已发表研究成果20多项。

谷禾更大的数据和人工智能平台意味着可以更可靠和准确地反应您当前的菌群和健康状况。

LiY,XiaS,JiangX,FengC,GongS,MaJ,FangZ,YinJ,YinY.GutMicrobiotaandDiarrhea:AnUpdatedReview.FrontCellInfectMicrobiol.2021Apr15;11:625210.

GBD2016DiarrhoealDiseaseCollaborators.Estimatesoftheglobal,regional,andnationalmorbidity,mortality,andaetiologiesofdiarrhoeain195countries:asystematicanalysisfortheGlobalBurdenofDiseaseStudy2016.LancetInfectDis.2018Nov;18(11):1211-1228.

ChungTheH,LeSH.Dynamicofthehumangutmicrobiomeunderinfectiousdiarrhea.CurrOpinMicrobiol.2022Apr;66:79-85.

RamamurthyT,KumariS,GhoshA.Diarrhealdiseaseandgutmicrobiome.ProgMolBiolTranslSci.2022;192(1):149-177.

MoshireeB,HeidelbaughJJ,SayukGS.ANarrativeReviewofIrritableBowelSyndromewithDiarrhea:APrimerforPrimaryCareProviders.AdvTher.2022Sep;39(9):4003-4020.

XueH,MeiCF,WangFY,etal.RelationshipamongChineseherbpolysaccharide(CHP),gutmicrobiota,andchronicdiarrheaandimpactofCHPonchronicdiarrhea[J].FoodScience&Nutrition,2023,11(10):5837-5855.

抗菌药物临床应用指导原则修订工作组.抗菌药物临床应用指导原则[M].2015:21-39

MadaPK,AlamMU.ClostridioidesdifficileInfection.2023Jan23.In:StatPearls[Internet].TreasureIsland(FL):StatPearlsPublishing;2023Jan–.PMID:28613708.

ShaikhSD,SunN,CanakisA,ParkWY,WeberHC.IrritableBowelSyndromeandtheGutMicrobiome:AComprehensiveReview.JClinMed.2023Mar28;12(7):2558.

HoltmannGJ,FordAC,TalleyNJ.Pathophysiologyofirritablebowelsyndrome[J].ThelancetGastroenterology&hepatology,2016,1(2):133-146.

FarrugiaA,ArasaradnamR.Bileaciddiarrhoea:pathophysiology,diagnosisandmanagement.FrontlineGastroenterol.2020Sep22;12(6):500-507.

PiovezaniRamosG,CamilleriM.CurrentandFutureTherapeuticOptionsforIrritableBowelSyndromewithDiarrheaandFunctionalDiarrhea.DigDisSci.2023May;68(5):1677-1690.

JayP.Sanford.桑德福抗微生物治疗指南[M].范洪伟译.北北京:中国协和医科大学出版社.2013:71-76

CamilleriM,BoeckxstaensG.Irritablebowelsyndrome:treatmentbasedonpathophysiologyandbiomarkers.Gut.2023Mar;72(3):590-599.

ChengH,ZhangD,WuJ,LiuJ,TanY,FengW,PengC.AtractylodesmacrocephalaKoidz.volatileoilrelievesacuteulcerativecolitisviaregulatinggutmicrobiotaandgutmicrobiotametabolism.FrontImmunol.2023May2;14:1127785.

WellensJ,VissersE,MatthysC,VermeireS,SabinoJ.PersonalizedDietaryRegimensforInflammatoryBowelDisease:CurrentKnowledgeandFuturePerspectives.PharmgenomicsPersMed.2023Jan12;16:15-27.

何礼贤.国家抗微生物治疗指南[M].北北京:人民卫生出版社.2012:196-210

ElhuseinAM,FadlalmolaHA.EfficacyofFecalMicrobiotaTransplantationinIrritableBowelSyndromePatients:AnUpdatedSystematicReviewandMeta-Analysis.GastroenterolNurs.2022Jan-Feb01;45(1):11-20.

AltomareA,DiRosaC,ImperiaE,EmerenzianiS,CicalaM,GuarinoMPL.DiarrheaPredominant-IrritableBowelSyndrome(IBS-D):EffectsofDifferentNutritionalPatternsonIntestinalDysbiosisandSymptoms.Nutrients.2021Apr29;13(5):1506.

SavianoA,BrigidaM,MignecoA,GunawardenaG,ZanzaC,CandelliM,FranceschiF,OjettiV.LactobacillusReuteriDSM17938(Limosilactobacillusreuteri)inDiarrheaandConstipation:TwoSidesoftheSameCoinMedicina(Kaunas).2021Jun23;57(7):643.

革兰氏阳性和阴性菌

在日常生活中,我们常常会看到药物或抗菌产品适应症会这样写到,对革兰氏阳性菌有效,对革兰氏阴性菌敏感,或者说对革兰氏阴性菌有效,对革兰氏阳性菌无效。可能很多人不是很清楚或搞不懂二者的区别。

本文主要介绍革兰氏阳性和阴性菌,它们的区别,代表性菌种以及针对用药等。

1884年,细菌学家HansChristianGram发明了革兰氏染色法来鉴别区分细菌。这种技术将细菌分成两大类,即革兰氏阳性菌(G+)和革兰氏阴性菌(G-)。区分主要是这两类细菌细胞壁成分不同,因而着色也不同所致。

这两类细菌的生理结构,疾病原因以及抗菌作用不一,因此,区分病原菌是革兰氏阳性菌,还是阴性菌,在临床确定感染和选择用药方面意义重大。

革兰氏阴性菌致病多由于患者有基础疾病或者体质比较差,肠道细菌感染引起的腹泻多是由肠道菌群中的革兰氏阴性菌所致,如大肠杆菌、沙门氏菌、志贺氏菌,布氏杆菌等,治疗这类细菌感染,一般使用三代头孢菌素以及喹诺酮类抗生素。注意大多数革兰氏阴性菌对青霉素耐药或不敏感。

大多数化脓性球菌都属于革兰氏阳性菌,它们能产生外毒素使人致病,常见的菌种有葡萄球菌、链球菌、肺炎双球菌、李斯特菌、炭疽杆菌、白喉杆菌、破伤风杆菌等。尤其在人体肠道内,革兰氏阳性致病菌致病几率更大。大多数由革兰氏阳性菌引起的感染可以用相当少量的抗生素治疗。青霉素、氯唑西林和红霉素足以覆盖90%的革兰氏阳性感染。

此外,某些广谱抗生素对革兰氏阳性菌和革兰氏阴性菌都有抗菌作用,如氨苄青霉素、庆大霉素、土霉素、磷霉素及环丙沙星等,但是作用效果可能不是最优。此外,磺胺类药物也属于广谱抑菌药物。

临床应用时,如果对细菌感染比较明确,尽量使用窄谱抗菌药物,如不太明确,可选用广谱抗菌药物。因此,临床治疗疾病时,首先要对药物的作用与用途要详细了解,然后再根据感染类型或诊断结果合理选择药物,这样才能取得最佳治疗效果。否则,药物选择不当,将会出现无效或越治越重的结果。

革兰氏阴性菌和革兰氏阳性菌之间的主要区别在于肽聚糖层的厚度和外部脂质膜的存在与否。

不同细菌的革兰氏染色

//缺乏外膜,更容易受抗生素影响

革兰氏阳性菌的细胞壁含有肽聚糖、脂质、磷糖醛酸和磷壁酸。这种结构成分不同于由肽聚糖和外膜(由脂质、蛋白质和脂多糖组成)组成的革兰氏阴性细菌细胞壁。尽管革兰氏阳性菌具有较厚的肽聚糖层,但它们比革兰氏阴性菌更容易受到某些靶向细胞壁的抗生素的影响,因为它们缺乏外膜。

//常见的致病菌

最常见的革兰氏阳性细菌包括葡萄球菌、链球菌、芽孢杆菌、梭状芽孢杆菌、李斯特菌、棒状杆菌等。这些革兰氏阳性菌的代表性物种是致病的,并可能引起多种疾病。

//可用于治疗的抗生素

青霉素是影响革兰氏阳性菌的主要抗生素之一。

红霉素是另一种用于治疗革兰氏阳性细菌感染的强效抗生素。红霉素属于一类称为大环内酯类的抗生素,与阿奇霉素和克拉霉素同属一类。它通常用于对青霉素过敏的人。

甲氧苄啶/磺胺甲恶唑,克林霉素,克林霉素,强力霉素,万古霉素也可以用于特定的革兰氏阳性菌的感染。

//层层抵抗更难杀死:细胞壁更硬,可改变外膜

革兰氏阴性菌有坚硬的保护外壳。它们的肽聚糖层比革兰氏阳性杆菌薄得多。

当它们的细胞壁受到干扰时,革兰氏阴性细菌会释放内毒素,症状更糟。同时,大多数抗生素为了接近它们的目标,必须通过外膜。例如,亲水性抗生素通过孔蛋白。革兰氏阴性菌可以通过改变它们的疏水特性或通过孔蛋白的突变来改变它们的外膜。这对这些细菌细胞产生了抵抗力。

//暗藏玄机:比革兰氏阳性菌更危险

与革兰氏阳性菌相比,革兰氏阴性菌作为疾病生物体更危险,因为存在覆盖外膜的荚膜或粘液层。通过这种方式,微生物可以隐藏表面抗原,这个抗原可以触发人体免疫反应。

革兰氏阴性菌是一组臭名昭著的细菌,可导致多种疾病,包括肺炎、脑膜炎、淋病、细菌性痢疾、霍乱、胃炎等。在重症监护病房(ICU)的患者,处于发病和死亡的高风险中,更容易遇见这类细菌,因此它们在医院具有重要的临床意义。

已经开发了许多不同种类的抗生素来杀死革兰氏阴性菌,例如头孢菌素、叶酸拮抗剂、哌拉西林-他唑巴坦、脲青霉素、内酰胺-β-内酰胺酶抑制剂、碳青霉烯类和喹诺酮类。它们是专门针对革兰氏阴性细菌而开发的,不过有时也对某些革兰氏阳性细菌有效。

革兰氏阳性菌与革兰氏阴性菌区别总结

以上是革兰氏阳性菌和阴性菌的主要区别,接下来我们针对革兰氏阳/阴性菌,从细菌特征,形状表征,细胞结构等方面,进行更详细的介绍。

革兰氏阳性菌的定义是基于它们在革兰氏染色中用酒精短暂洗涤后保留结晶紫染料的能力。革兰氏阳性菌呈紫色。

这些细菌具有非常独特的特征,可以将其与其他类型的细菌区分开来。这些包括:

在革兰氏染色过程中,革兰氏阴性细菌在用酒精清洗后将失去结晶紫染料的颜色,并吸收反染物藏红花的粉红色/红色。

几乎在地球上的每个生活区域都可能发现革兰氏阴性细菌。

尽管大多数细菌是通过革兰氏染色染料进行区分的,但显微镜下的观察揭示了更多可用于定义和表征这些细菌的特征。

根据形状的定义,革兰氏阳性菌可分为两类:

革兰氏阳性细菌形成的其他特殊形状包括:

革兰氏阴性菌细胞的显微镜观察范围从杆状到芽孢杆菌,从球菌到螺旋状,螺旋状是最常见的形状。然而,有些表现出特殊的形状,如球杆菌、四分体、栅栏、毛状体等。例如:

革兰氏阳性菌的细胞壁含有肽聚糖、脂质、磷糖醛酸和磷壁酸。这种结构成分不同于由肽聚糖和外膜(由脂质、蛋白质和脂多糖组成)组成的革兰氏阴性细菌细胞壁。因此,革兰氏阳性菌的细胞壁很厚,并吸收了革兰氏染色的结晶紫染料。因此,显微镜下的革兰氏阳性菌呈紫色。

革兰氏阳性细菌细胞壁的结构特征

革兰氏阳性细菌具有由肽聚糖组成的厚的多层细胞壁(因为它含有肽和糖的混合物)。由于肽聚糖存在于大多数细菌中,但不存在于哺乳动物细胞中,因此它是抗菌药物的良好靶标(例如细胞壁合成抑制剂,包括青霉素、头孢菌素和万古霉素)。

这些抗生素会干扰转肽酶(也称为青霉素结合蛋白或PBP的活性)在细胞壁中催化相邻聚糖链之间的交联。

细胞壁还含有磷壁酸纤维,有助于细菌附着在宿主细胞膜(例如粘膜细胞)上,释放后会引起感染性休克,类似于革兰氏阴性菌释放的内毒素(LPS)产生的感染。

细菌细胞膜还可以包含ABC外排泵这可能导致抗生素耐药性和对那些具有细胞内作用机制的药物(例如DNA促旋酶抑制剂或蛋白质合成抑制剂)的多药耐药性(MDR)。

结晶紫染料附着在革兰氏阳性菌细胞壁的厚肽聚糖层上,在光学显微镜下观察时将它们染成紫色或紫色。

肽聚糖

它也被称为胞壁质(murein),占细菌细胞壁含量的90%。

——维持形状,并保持细胞壁强度和弹性

它是一种优质聚合物,由两种相同的糖衍生物(N-乙酰氨基葡糖和N-乙酰胞壁酸)以及L-氨基酸链和蛋白质中很少发现的三种不同D-氨基酸(即D-谷氨酸、D-丙氨酸和内消旋二氨基庚二酸)组成,可保护细胞壁免受肽酶的攻击。

D-氨基酸和L-氨基酸连接到N-乙酰壁酸,L-氨基酸特别是赖氨酸可以取代中二氨基丙烯酸。

肽聚糖亚基的这种相互连接使肽聚糖具有很强的维持细菌形状和完整性的能力,并具有弹性和延展性。

肽聚糖也具有渗透性,允许分子进出细菌细胞。

——肽聚糖的生物合成

抑制细菌细胞壁肽聚糖层的合成是许多抗菌药物的分子靶点,包括β-内酰胺类抗生素(青霉素、头孢菌素、碳青霉烯类和单环内酰胺类)和糖肽类抗生素(万古霉素和其他较新的类似物)。

这些药物的两个主要分子靶标是转肽酶,也称为青霉素结合蛋白(PBP),因为它们与青霉素结合,而糖基转移酶(GT)可被万古霉素等糖肽抑制。

革兰氏阳性细胞壁生物合成

细菌细胞壁由重复的N-乙酰氨基葡萄糖(NAG)和N-乙酰胞壁酸(NAM)亚基链组成。NAM亚基附有短肽链。

肽链的组成因细菌而异,但近端的丙氨酸通常是L-Ala,而远端的两个通常是D-Ala。也与青霉素结合的细胞壁转肽酶(青霉素结合蛋白:PBPs)在肽侧链之间形成键,并从肽侧链之一排出末端D-丙氨酸。

一旦形成交联,PBP就会从壁上解离。用糖基转移酶(GT)分离酶结构域NAM和NAG残基之间的活性形成联系。一些高分子量PBP(例如PBP2)是含有转肽酶和糖基转移酶结构域的酶复合物。

磷壁酸纤维存在于革兰氏阳性菌的细胞壁中,由磷酸甘油或磷酸核糖醇的聚合物组成。它们参与细菌与黏膜细胞的附着,可诱发感染性休克,类似于革兰氏阴性菌释放的LPS(内毒素)。

磷壁酸

这是由甘油共聚物组成的加固墙。

磷壁酸是水溶性的,占细菌细胞壁总干重的50%。

它要么直接与肽聚糖共价连接,要么与细胞膜(脂磷壁酸)连接。通过6-羟基N-乙酰胞壁酸与肽聚糖直接相连。

带负电荷,延伸到肽聚糖表面,使细菌细胞壁带负电荷。

它还有助于维持细胞壁的结构。

它在革兰氏阴性菌中完全不存在。

脂质

它们在肽聚糖下方有一层薄薄的脂质,大约2-5%,其作用是锚定细菌细胞壁。

细胞壁

——细胞壁非常复杂

结合细胞外膜的主要作用,加上一层肽聚糖,其功能特性复杂,这里是对细胞壁及其功能部分的描述。

革兰氏阴性细菌的细胞壁具有一层2-7nm的肽聚糖薄层和7-8nm厚的外膜。

——周质空间较大

显微镜下,细胞膜和细胞壁之间有一个空间,称为由周质组成的周质空间。在革兰氏阴性菌和革兰氏阳性菌中均能发现,但在革兰氏阴性菌中,周质空间较大。

革兰氏阴性细菌细胞壁

在结构上,革兰氏阴性细胞壁由细胞膜外部的两层组成:一层薄薄的肽聚糖(太薄而无法吸收大量甲基紫染色)和一层外膜(革兰氏阴性细菌独有),通常含有促进小(<700Da)亲水分子(例如糖、氨基酸和维生素)扩散的孔蛋白。

许多抗生素(例如许多青霉素和头孢菌素)也可以通过孔蛋白扩散到达它们的作用部位。

然而,万古霉素(1449Da)的质量太大,无法透过孔蛋白到达其作用部位,这使其对革兰氏阴性细菌无效。因此,外膜为革兰氏阴性菌提供了对某些抗生素的固有“内在抗性”,可以通过改变孔蛋白的表达水平或改变孔蛋白的孔特性以降低抗生素的渗透性来进一步修饰。

革兰氏阴性菌的外膜还含有脂多糖(LPS)或内毒素,可被细菌排出,引起宿主强大的免疫反应。

周质空间

革兰氏阴性菌的周质空间由几种蛋白质组成,这些蛋白质有助于获取营养,例如攻击核酸和磷酸化分子的水解酶,以及积极协助将物质运输到细菌细胞中的结合蛋白。周质空间还具有合成肽聚糖和修饰可能对细胞造成伤害的有毒元素的酶。

革兰氏阴性细菌细胞壁有一层薄的肽聚糖层,位于质膜上方,约占细胞干重的5%。厚度不超过4纳米,一些细菌如大肠杆菌只有2纳米厚的肽聚糖。

外膜和脂多糖

革兰氏阴性菌还有第二层脂质双层,位于肽聚糖层的外部。这种外膜通过布劳恩脂蛋白与肽聚糖相连。外膜和肽聚糖之间的紧密连接是维持外膜作为许多有毒分子和抗生素的不渗透屏障所必需的。

外膜上的粘附位点也加强了革兰氏阴性细胞壁,这些粘附位点在允许细胞接触和膜融合方面发挥作用。物质通过这些粘附位点进入细胞。

革兰氏阴性菌结构

图源:JeffDahl,wikipedia

外膜主要由脂多糖(LPS)组成,脂多糖是由脂质和碳水化合物组成的大型复杂分子。脂多糖由3个单元组成:脂质A、核心多糖和O侧链。

脂质A由两种氨基葡萄糖糖衍生物组成,每个衍生物含有三种脂肪酸和焦磷酸盐,脂多糖的任何剩余部分都会伸出膜表面。

O侧链也称为O抗原,是从核心向外延伸的链。它由导致细菌菌株之间变异的糖组成。这些O抗原也负责细菌逃避抗体反应。

//外膜及其脂多糖的作用

——脂多糖负责保护细胞壁免受外部攻击

LPS带有负电荷,使电池表面带负电荷。因此,这稳定了膜结构。

脂质A是脂多糖的有毒成分,因此它起到内毒素的作用。

——防毒素进入,防成分丢失

外膜及其脂多糖有助于防止抗生素、胆汁盐和其他有毒元素进入并破坏细胞。

外膜由孔蛋白组成,使其具有渗透性,允许小分子(如葡萄糖)进入。维生素B12等较大的分子通过特定的载体运输穿过外膜。

外膜还有助于防止成分丢失,特别是来自周质空间。

下表描述了主要的革兰氏阳性致病菌,它们的基本形态特征以及它们在人类中引起的疾病。

已知革兰氏阴性菌是正常菌群,部分会导致严重的人类感染,从社区获得性感染到医院感染。

革兰氏阴性菌外膜的结构是其众多显着特征之一。脂多糖(LPS)存在于膜的外叶上,其脂质A部分用作内毒素。

//革兰氏阴性菌感染:严重时可危及生命

如果由于某种原因,革兰氏阴性细菌能够到达动物的循环系统,脂多糖将激活免疫系统,并触发先天免疫反应,产生细胞因子和激素调节剂。这会引起炎症,并可能导致毒性反应,从而导致发烧、呼吸急促和低血压。这就是已知革兰氏阴性细菌会导致危及生命的休克的原因。

内毒素休克的一些症状:

发烧和发冷或体温下降、发炎、皮疹、呼吸急促、心率加快、低血压、多器官衰竭等。

下表给出了一些革兰氏阴性致病细菌的例子以及它们在人类宿主中引起疾病和感染时表现出的临床特征。

如上表所述,已知革兰氏阳性细菌会引起多种感染,如果不及时和适当地治疗和管理,可能对人类造成灾难性的影响。

革兰氏阳性杆菌感染用抗生素治疗。青霉素、氯唑西林和红霉素可治疗90%以上的革兰氏阳性菌。

常见的革兰氏阳性抗菌药物及作用机制

然而,抗生素耐药性正在成为革兰氏阳性感染的一个严重问题。研究人员正在开发新的药物来帮助解决这个问题。只有在绝对需要时才应使用抗生素。需要严格遵循感染控制标准,以防止抗生素耐药性感染的发展和传播。

由于它们的外膜,这些细菌对溶菌酶和青霉素具有抗性。这是因为存在保护内膜和细胞壁的外壁。

在周质空间(两个细胞膜之间的区域)中也发现了分解或改变抗生素的酶。用于治疗革兰氏阴性菌感染的治疗方法包括羧基、氨基和脲基青霉素。为了对抗可以消化这些药物的酶,有时将它们与β-内酰胺酶抑制剂结合使用。β-内酰胺酶是一种存在于周质中的酶。

针对细菌病原体的抗菌剂被称为抗生素。这些抗生素启动针对细菌细胞的阻断或抑制机制,以诱导细菌细胞增殖和复制。

用于对抗革兰氏阴性菌的抗生素示例

抗生素耐药性是现在世界上的一个主要临床问题。

耐多药细菌在人群中变得越来越普遍,如果不进行有效治疗,这种感染可能会导致肾功能衰竭、败血症,甚至死亡。

微生物以多种方式抑制临床治疗中使用的许多抗菌剂。这些包括改变药物结合位点的方法,改变药物构象的方法,改变膜通透性的方法,可以导致耐药机制失活。

例如革兰氏阴性菌中有两层膜,外膜和内膜。脂多糖被认为是一种非常强的免疫反应诱导剂,它具有三个重要成分:脂质A、亲水性多糖、抗原O的疏水域。

疏水域在细胞膜的外部表达。它是疏水成分脂质a,它负责内毒素作用。LPS在细菌中是可变的,并且由于遗传变异,一些细菌只产生一种不被Toll样受体识别的弱抗原。然而,有大量的革兰氏阴性菌团体可能会引起这样的反应。免疫系统也被一些toll样受体4(TLR4)激活,这些受体存在于与免疫系统有关的众多细胞中,如巨噬细胞、单核细胞、中性粒细胞和树突状细胞。

由LPS和TLR4受体介导的先天免疫反应的激活导致反应增强,产生细胞因子、趋化因子和干扰素等。

免疫系统的反应取决于感染过程的严重程度以及侵袭性细菌中LPS的结构,这与菌的毒力有关。因此,虽然一些细菌(如大肠杆菌)可以诱导免疫系统,但其他细菌(如幽门螺杆菌)仅具有弱抗原性。

//对付耐药性细菌新思路:根据电荷相互作用原理设计新药

2017年,伊利诺伊大学化学教授和当前研究的合著者PaulHergenrother(ACPP负责人/MMG)在《自然》杂志上报告说,发现的一个关键是,如果向它们添加带正电荷的基团,例如胺,一些抗生素可以使用特定的膜孔穿透革兰氏阴性细菌的细胞膜。

这项工作表明,抗生素上带正电荷的胺基与细菌孔内的负电荷有良好的相互作用。这些吸引力使带有胺基的抗生素以一种更有利于能量的方式排列,因为它穿过收缩区的孔的最狭窄部分。不含胺的抗生素面临更高的能量屏障去通过孔隙。

这或许意味着未来可以设计新药(或修改旧药),以攻击和杀死对抗生素治疗具有耐药性的微生物。

革兰氏阳性细胞和革兰氏阴性细胞之间的三个区别是什么?

革兰氏阳性菌有一层厚的肽聚糖作为它们的细胞壁,而革兰氏阴性菌有一层薄薄的肽聚糖和外膜。

革兰氏阴性菌有脂多糖(LPS),而革兰氏阳性菌没有。

一些革兰氏阳性细菌含有霉菌酸,它会在细胞壁上形成一层蜡质层。

什么是革兰氏阳性感染?

由革兰氏阳性菌引起的感染,如耐甲氧西林金黄色葡萄球菌(MRSA)、耐万古霉素肠球菌(VRE)和艰难梭菌是常见的多重耐药菌感染。

革兰氏阳性菌更容易治疗吗?

革兰氏阳性细菌,即那些具有肽聚糖外层的物种,更容易被杀死——它们的厚肽聚糖层很容易吸收抗生素和清洁产物。因此,某些容易杀死革兰氏阳性菌的洗涤剂不会破坏革兰氏阴性菌。

肠道内很多革兰氏阳性菌致病吗?

是的,人体肠胃道的大多数革兰氏阳性菌都是条件致病菌。包括微球菌、肠球菌、金黄色葡萄球菌、表皮葡萄球菌、腐生葡萄球菌、肺炎链球菌、草绿色链球菌、酿脓链球菌、无乳链球菌、破伤风梭菌、肉毒杆菌、产气荚膜梭菌、产气荚膜梭菌、艰难梭菌,单核细胞增生李斯特菌等。

革兰氏阳性菌在哪里发现?

根据革兰氏阳性菌种,它们可以在人类的土壤、水生沉积物、灰尘、皮肤、口腔、肠道或生殖道中找到。

革兰氏阳性球菌危险吗?

革兰氏阳性菌可能是球菌或杆菌。这些称为常驻菌群的细菌通常不会引起疾病。革兰氏阳性杆菌引起某些感染,包括:炭疽。

革兰氏阳性菌对抗生素的抵抗力更强吗?

不是。与革兰氏阳性菌相比,革兰氏阴性菌对多种抗生素的耐药性更强。由于它们的外膜,它们对抗生素的抵抗力更强。

革兰氏阳性细菌更容易被杀死,因为它们的厚肽聚糖层很容易吸收抗生素和清洁剂。另一方面,革兰氏阴性细菌具有薄的肽聚糖层,不会吸收周围的任何异物。

革兰氏阳性菌有内毒素吗?

不会。内毒素与革兰氏阳性菌无关。这些细菌没有内毒素,因为它们没有外膜。另一方面,革兰氏阴性细菌会产生内毒素。

这些内毒素是革兰氏阴性细菌细胞外膜的一部分,只有当细胞裂解或细菌死亡时才会释放出来。内毒素是形成革兰氏阴性菌细胞壁结构的热稳定性脂多糖-蛋白质复合物。

为什么革兰氏阳性菌对抗生素更敏感?

尽管革兰氏阳性菌具有较厚的肽聚糖层,但它们比革兰氏阴性菌更容易受到某些靶向抗生素的细胞壁的影响,因为它们缺乏外膜。

大多数抗生素为了接近它们的目标,必须通过外膜。例如,亲水性抗生素通过孔蛋白。因此,革兰氏阴性菌可以通过改变它们的疏水特性或通过孔蛋白的突变来改变它们的外膜。这对这些细菌细胞产生了抵抗力。革兰氏阳性菌缺乏这一因素,因此革兰氏阴性菌对抗生素的抵抗力比它们强。

革兰氏阳性菌是否致病?

是的,大多数革兰氏阳性菌都是致病菌。致病性革兰氏阳性菌的实例包括微球菌、肠球菌、金黄色葡萄球菌、表皮葡萄球菌、腐生葡萄球菌、肺炎链球菌、草绿色链球菌、酿脓链球菌、无乳链球菌、破伤风梭菌、肉毒杆菌、产气荚膜梭菌、产气荚膜梭菌、艰难梭菌,单核细胞增生李斯特菌等。

革兰氏阳性菌引起的常见感染有哪些?

炭疽、白喉、腹泻、脑膜炎、恶心、皮肤感染、尿路感染。

哪种抗生素对革兰氏阳性菌有效?

对革兰氏阳性菌有效的抗生素是青霉素、氯唑西林和红霉素,几乎覆盖了90%的革兰氏阳性菌感染。其他还有万古霉素、甲氧苄啶/磺胺甲恶唑,克林霉素,克林霉素等。

革兰氏阴性菌引起的人类常见疾病有哪些?

革兰氏阴性菌会在医疗机构中引起感染,包括肺炎、血流感染、伤口或手术部位感染以及脑膜炎。此外还有霍乱、鼠疫、伤寒、脑膜炎和尿路感染是人类常见的细菌性疾病。

为什么革兰氏阴性菌比革兰氏阳性菌更有害?

革兰氏阴性菌细胞壁坚硬,不易对抗生素敏感,在抗生素作用下会释放内毒素。

什么会杀死革兰氏阴性菌?

这些抗生素包括头孢菌素类(头孢曲松-头孢噻肟、头孢他啶等)、氟喹诺酮类药物(环丙沙星、左氧氟沙星)、氨基糖苷类(庆大霉素、阿米卡星)等

革兰氏阴性菌的分泌系统是什么?

革兰氏阴性菌具有广泛封闭的分泌系统,可以转移微小分子、DNA、氨基酸、蛋白质。

革兰氏阴性菌从哪来?

革兰氏阴性细菌随处可见,几乎遍布地球上所有支持生命的环境。革兰氏阴性菌包括模式生物大肠杆菌,以及许多致病菌,如铜绿假单胞菌、淋病奈瑟菌、沙眼衣原体和鼠疫耶尔森菌。

如何自然去除革兰氏阴性菌?

天然抗生素。一些天然抗生素是大蒜、蜂蜜、卷心菜、葡萄柚籽提取物、生苹果醋、特级初榨椰子油、发酵食品等。

OliveiraJ,ReygaertWC.GramNegativeBacteria.2022Mar26.In:StatPearls[Internet].TreasureIsland(FL):StatPearlsPublishing;2022Jan–.PMID:30855801.

CarrollK.C.,&HobdenJ.A.,&MillerS,&MorseS.A.,&MietznerT.A.,&DetrickB,&MitchellT.G.,&McKerrowJ.H.,&SakanariJ.A.(Eds.),(2019).Jawetz,Melnick,&Adelberg’sMedicalMicrobiology,27e.McGrawHill.

AchesonDWK(2015):Patientinformation:Foodpoisoning(foodborneillness)(BeyondtheBasics).In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/1/16

ApicellaM(2015):Treatmentandpreventionofmeningococcalinfection.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/1/16

BaumSG(2016):Mycoplasmapneumoniaeinfectioninadults.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/2/16

CroweSE(2016):BacteriologyandepidemiologyofHelicobacterpyloriinfection.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/1/16.

CroweSE(2016b):TreatmentregimensforHelicobacterpylori.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/1/16.

FileTM(2016):Treatmentofcommunity-acquiredpneumoniainadultsintheoutpatientsetting.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/1/16

GhanemKG(2016):ClinicalmanifestationsanddiagnosisofNeisseriagonorrhoeaeinfectioninadultsandadolescents.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/1/16

HicksCB,ClementM(2016):Syphilis:Treatmentandmonitoring.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/2/16

KanafaniZA,KanjSS(2014):Acinetobacterinfection:Epidemiology,microbiology,pathogenesis,clinicalfeatures,anddiagnosis.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/10/16

KanafaniZA,KanjSS(2016):Acinetobacterinfection:Treatmentandprevention.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/10/16

KellyCP,LamontJT(2015):Clostridiumdifficileinadults:Treatment.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/2/16

KoulentiDetal(2009):SpectrumofpracticeinthediagnosisofnosocomialpneumoniainpatientsrequiringmechanicalventilationinEuropeanintensivecareunits.CriticalCareMed37(9):2360-2369.doi:10.1097/CCM.0b013e3181a037ac

LamontJT(2016):Clostridiumdifficileinadults:Epidemiology,microbiology,andpathophysiology.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/2/16

LiX-Z,NikaidoH(2004):Efflux-mediateddrugresistanceinbacteria.Drugs.64(2):159–204.

LowyFD(2016):Methicillin-resistantStaphylococcusaureus(MRSA)inadults:Treatmentofskinandsofttissueinfections.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/1/16

PegramPS,StoneSM(2016):Botulism.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/1/16

RileyLW(2015):Naturalhistory,microbiology,andpathogenesisoftuberculosis.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/2/16

SauvageEetal(2008):Thepenicillin-bindingproteins:structureandroleinpeptidoglycanbiosynthesis.FEMSMicrobiolRev32:234–258.DOI:10.1111/j.1574-6976.2008.00105.x

SouthwickF(2008):InfectiousDiseases.AClinicalShortCourse.McGrawHill/Lange.

SterlingTR(2016):TreatmentofpulmonarytuberculosisinHIV-uninfectedadults.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/2/16

StevensDL,BryantA(2015):GroupAstreptococcus:Virulencefactorsandpathogenicmechanisms.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/1/16

StevensDL(2016):GroupAstreptococcal(Streptococcuspyogenes)bacteremiainadults.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/1/16

SwygardHetal(2016):Treatmentofuncomplicatedgonococcalinfections.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/1/16

WankeCA(2015):PathogenicEscherichiacoli.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited7/28/16

YehS(2015):Microbiology,epidemiologyandtreatmentofHaemophilusinfluenzae.In:UpToDate,Basow,DS(Ed),Waltham,MA.Cited8/1/16

SagarAryal,Gram-PositiveVsGram-NegativeBacteria-31DifferencesWithExamples.Microbenotes.2022,January9

JawertzM.,Alderbergs.,MedicalMicrobiology28thEdition.

PrescottM.L.,Microbiology.5thEdition

LippincottMicrobiologyinreview:3rdedition

FaithMokobi,Gram-PositiveBacteria-CellWall,Examples,Diseases,Antibiotics,2021,April15

FaithMokobi,Gram-NegativeBacteria-CellWall,Examples,Diseases,Antibiotics,2021,April15

如果把不同细菌品种看作互相竞争的国家,那么细菌界的“超级大国”就属拟杆菌门和厚壁菌门了。当然它们都不是单独某一种细菌,而是一大类细菌的统称。

事实上,越来越多的数据将变形菌确定为疾病的可能微生物特征。目前主要证据涉及代谢紊乱和炎症甚至癌症。然而,最近的研究表明,在哮喘和慢性阻塞性肺病等肺部疾病中也有作用,有些疾病中变形菌不受控制扩张导致疾病易感和发生。

变形菌(proteobacteria)是细菌中最大、种类最多的一个门,它们在系统发育、生态和致病方面具有广泛的重要性。所有变形菌都是革兰氏阴性菌,外膜主要由脂多糖组成。

图源:esacademic

变形菌门主要是由核糖体RNA序列定义的,名称取自希腊神话中能够变形的神普罗透斯(这同时也是变形菌门中变形杆菌属的名字),因为该门细菌具有极为多样的形状,代谢特征等。

△形状:杆状和球菌、弯曲的、螺旋状的、环状的、丝状的和带鞘的细菌都有。

△新陈代谢:新陈代谢类型也多种多样,一系列代谢特征包括化学自养(从无机化合物的氧化中获取能量)、化学有机营养(从有机化合物的氧化中获取能量)和光养(从光中获取能量)。

△氧气利用:从严格厌氧菌和严格需氧菌到兼性厌氧菌和微需氧菌株的都有,但是大多数变形菌门的成员是兼性厌氧菌。

△运动:许多使用鞭毛移动,但有些不能移动或依赖细菌滑动,而一些细菌是不运动的。

△生态分布:变形菌门的成员具有极大的可变形态和多才多艺的生理学,这使它们在各种生态位中生存具有竞争优势。已观察到变形菌在不同生境中无处不在。

ShinNR,etal.,TrendsBiotechnol.2015

植物、海水、淡水,空气,以及人和动物的身体部位,包括肠道、口腔、皮肤、阴道。尽管存在研究间差异,但健康人口腔微生物群的变形菌相对丰度最高(17.2-36.8%),其次是皮肤(6.8-30.0%)、胃肠道(2.5-4.6%)和阴道(2.3%)。

在系统发育学上,变形菌是根据小核糖体亚单位RNA基因(16SrRNA)的测序定义的。这是一个巨大的革兰氏阴性原核生物门,原线粒体起源于此。

该门主要分为以下几大类:

最初,变形菌包括α、β、γ和δ四个亚类。ε变形菌和δ变形菌通常被认为是最古老的变形菌群,因为它们包括利用硫化合物进行能量代谢的专性厌氧菌。

α变形菌(Alpha-proteobacteria)

第一类变形菌是α-变形菌。这一类的统一特征是它们是寡营养生物,能够生活在低营养环境中,如深海沉积物、冰川或深层地下土壤。同时α-变形菌是多样化的细菌分支之一,在生活方式、地理分布和基因组大小方面表现出极大的差异。

在α-变形菌中有两个重要分类群,衣原体和立克次体,它们是专性细胞内病原体,这意味着它们的部分生命周期必须发生宿主细胞内。由于它们无法合成自己的三磷酸腺苷(ATP),因此,量需求依赖宿主于细胞。

立克次体属是人类很多严重疾病的病原体。例如,布鲁氏菌属、埃立克体属和立克次氏体。立克次氏杆菌会导致落基山斑疹热,这是一种威胁生命的脑膜炎(包裹大脑的膜发炎)。R.rickettsii感染蜱,并可以通过被感染的蜱叮咬传播给人类。此外,布鲁氏菌科(Brucellaceae)和巴尔通氏菌科(Bartonellaceae)的细菌是人类病原体。

β变形菌(Beta-proteobacteria)

与依靠最少量营养物质生存的Alpha-proteobacteria不同,Beta-proteobacteria类是富营养生物,这意味着它们需要大量的有机营养物质。

Beta-proteobacteria通常在需氧和厌氧区域之间生长(例如,在哺乳动物的肠道中)。一些属包括作为人类病原体的物种,能够引起严重的,甚至可能危及生命的疾病。例如,奈瑟球菌属包括淋病奈瑟菌(STI淋病的病原体)和脑膜炎奈瑟菌(细菌性脑膜炎的病原体)

γ变形菌(Gamma-proteobacteria)

最多样化的革兰氏阴性细菌是γ-变形菌,它包括许多人类病原体。包括几个医学和科学上重要的细菌群,例如肠杆菌科、弧菌科和假单胞菌科。

此外,许多重要的病原体属于这一类,例如:

RichardB.Frankel

△铜绿假单胞菌

一个庞大而多样的科,假单胞菌科,包括假单胞菌属。铜绿假单胞菌在该属内,它是一种病原体,可以造成身体不同部位的各种感染。铜绿假单胞菌是一种严格需氧、不发酵、高度运动的细菌。

它通常可能造成伤口和烧伤感染,也可能是慢性尿路感染的原因,并且可能是囊性纤维化患者或机械呼吸机患者呼吸道感染的重要原因。

铜绿假单胞菌感染通常难以治疗,因为该细菌对许多抗生素具有抗性,并且具有形成生物膜的非凡能力。

△肠杆菌科

肠杆菌科是属于γ-变形菌的一大类肠道细菌。它们是兼性厌氧菌,能够发酵碳水化合物。在这个家族中,微生物学家认识到两个不同的类别。

第一类,大肠杆菌,以其原型细菌种类大肠杆菌命名。大肠菌能够完全发酵乳糖(即产生酸和气体)。

第二类,非大肠杆菌,要么不能发酵乳糖,要么不能完全发酵(产生酸或气体,但两者不能同时产生)。

非大肠杆菌包括一些值得注意的人类病原体,例如沙门氏菌属,志贺氏菌,鼠疫耶尔森氏菌。

δ变形菌(Delta-proteobacteria)

δ-变形菌(Delta-proteobacteria)包括基本好氧的形成子实体的粘细菌和严格厌氧的一些种类,如脱硫球菌属(Desulfococcus)、脱硫线菌属(Desulfonema)、硫酸盐还原菌(脱硫弧菌属(Desulfovibrio)、脱硫菌属(Desulfobacter)、和硫还原菌(如除硫单胞菌属Desulfuromonas),以及具有其它生理特征的厌氧细菌,如还原三价铁的Geobacter和互营菌属(Syntrophus)。

△蛭弧菌属:

δ-变形菌还包括蛭弧菌属,Bdellovibrio侵入宿主细菌的细胞,将自身定位在周质中,即质膜和细胞壁之间的空间,以宿主的蛋白质和多糖为食。这种感染对宿主细胞是致命的。

△粘细菌:

粘细菌(“粘液细菌”)是一组主要生活在土壤中并以不溶性有机物质为食的细菌。与其他细菌相比,粘细菌具有非常大的基因组,例如9-1000万个核苷酸。

Sorangiumcellulosum拥有最大的已知(截至2008年)细菌基因组,有1300万个核苷酸。

粘细菌产生许多在生物医学和工业上有用的化学品,例如抗生素。他们将这些化学物质输出到细胞外。

ε变形菌(Epsilon-proteobacteria)

ε-变形菌(Epsilon-proteobacteria)是革兰氏阴性微需氧细菌(意味着它们在其环境中只需要少量氧气)。多数是弯曲或螺旋形的细菌,如沃林氏菌属(Wolinella)、螺杆菌属(Helicobacter)和弯曲菌属(Campylobacter)。它们都生活在动物或人的消化道中,为共生菌(沃林氏菌在牛中)或致病菌(螺杆菌在胃中或弯曲菌在十二指肠中)。

△弯曲杆菌:

弯曲杆菌可引起食物中毒,表现为严重的肠炎(小肠发炎)。这种由空肠弯曲杆菌引起的疾病在发达国家相当普遍,通常是因为食用了受污染的家禽产品。鸡通常携带空肠弯曲杆菌在胃肠道和粪便中,它们的肉在加工过程中可能会受到污染。

△螺杆菌:

螺杆菌是ε-变形菌的一个属,具有特征性的螺旋形状。它们最初被认为是弯曲杆菌属的成员,但自1989年以来,它们独立为自己的属。

螺杆菌属属于ε-变形菌,弯曲杆菌目,螺杆菌科,已经有超过35种。已经发现一些菌生活在上胃肠道的内壁,以及哺乳动物和一些鸟类的肝脏中。

幽门螺杆菌在胃的高酸性环境中存活的能力有些不同寻常。它产生脲酶和其他酶来改变其环境以降低其酸性。

幽门螺杆菌也有它存在的意义,可能抑制引起结核的细菌(结核分枝杆菌),预防哮喘,克罗恩病,食管反流,腹泻病以及食道癌。

栖息在哺乳动物肠道中的微生物编码了大量的蛋白质,这些蛋白质有助于广泛的生物功能,从调节免疫系统到参与新陈代谢。

一般编码适应肠道环境所必需的功能的微生物有很强的选择性,在不同宿主中具有大量冗余的基因库。然而,目前的研究和临床很容易忽略健康人类微生物组之间基因丰度的生理意义差异。

人体肠道通常由拟杆菌门和厚壁菌门主宰,这些门内的进化枝(尤其是拟杆菌属、普氏菌属和瘤胃球菌科)是最常用于将个体聚集成“肠型”,因为它们解释了最多的分类变异。Bacteroidetes与Firmicutes的比率也被推定为疾病或健康的潜在生物标志物。

有人提出,人类肠道微生物组中可能存在少量“肠型”,每一种都具有不同的分类组成。因此,虽然拟杆菌门和厚壁菌门可能对宿主之间的分类变异贡献最大,但变形菌门的丰度可能会捕获更多的功能变异。

与先前确定的肠型标记分类群相比,变形菌门的水平和可能的Euryarchaeota更好地解释了肠道微生物基因功能的人与人之间的差异。

在肠型研究中遗漏了这些不太丰富的门,可能是因为肠型是通过倾向于对高丰度分类群进行更多加权的方法鉴定的,并且肠型是从分类学而非功能数据中鉴定的。这对解释人类肠道微生物群的分类数据具有重要意义。

例如,变形菌门的过度生长与代谢综合征和炎症性肠病有关。通过TLR5敲除小鼠测试的肠道炎症关联到变形菌门(超过拟杆菌门和厚壁菌门),并且一些变形杆菌可以在这种背景下诱发结肠炎,可能导致反馈循环。因此,可变基因家族对解释人类肠道微生物群的分类数据具有重要意义。

备注:肠道受体蛋白TLR5参与积极地塑造新生小鼠肠道微生物群落的长期组成,敲除的Toll样受体(TLR5),是免疫系统识别鞭毛细菌(比如变形菌和梭状芽孢杆菌)的关键受体,缺乏它则机体可能不会在感知到细菌鞭毛时对细菌产生免疫应答。

在肠道菌群失调期间观察到的最一致和最强大的生态模式是属于变形菌门的兼性厌氧细菌的扩张。

变形菌的菌群失调是上皮功能障碍的微生物特征

在肠道稳态期间(左),微生物群衍生的丁酸盐的β氧化导致上皮缺氧,从而维持大肠腔内的厌氧状态。反过来,腔内厌氧症导致肠道微生物群内专性厌氧菌占主导地位。

备注:丁酸(Butyrateacid,BA),俗称酪酸,是构成脂肪的一种脂肪酸,含有4个碳原子又称短链脂肪酸。人体的丁酸部分来自于食物中丁酸的吸收,主要的来自结肠厌氧菌的发酵产生。人体结肠产生的短链脂肪酸丁酸占比大部分)。

在肠道菌群失调期间(右),表面结肠细胞通过无氧糖酵解获得能量,从而导致上皮氧合增加,这种上皮功能障碍破坏了管腔中的厌氧菌,从而通过有氧呼吸推动兼性厌氧变形菌的扩张。

健康结肠的厌氧菌导致肠道微生物群的组成以专性厌氧菌为主,而菌群失调通常与兼性厌氧变形菌的丰度持续增加有关,这表明厌氧菌的破坏。

结肠上皮是缺氧的,但肠道炎症或抗生素治疗会增加结肠中的上皮氧合,从而破坏厌氧作用,通过有氧呼吸驱动兼性厌氧变形菌的菌群失调。

肠沙门氏菌(S.enterica)是一种食源性病原体,属于肠杆菌科,变形菌门,可引起小鼠结肠炎。在肠道沙门菌S.enterica诱导的结肠炎期间,肠腔内的氧气可用性增加,这表明结肠中病原体的氧气呼吸依赖性大量繁殖以及随之而来的专性厌氧梭状芽胞杆菌的丰度下降。

同样,结肠隐窝增生由鼠肠道病原体柠檬酸杆菌(肠杆菌科,变形菌门)引发,可提高肠腔内的氧气利用率,从而通过有氧呼吸推动变形菌病原体扩张。

这些观察结果表明,变形菌的菌群失调是上皮功能障碍的潜在诊断微生物特征,建议将变形菌负荷作为生态失调和疾病的潜在诊断标准,所以在谷禾即将更新的肠道菌群检测报告中,我们会加入变形菌门丰度和参考范围这一指标。

大肠中专性厌氧菌的优势可能是宿主环境的氧气限制严重的结果,这反过来又对用于营养物质的分解代谢途径产生重要影响。

避免被上消化道中的宿主酶降解的复合碳水化合物,可以被大肠中的专性厌氧细菌水解并发酵成更小的化合物。专性厌氧菌最终将许多发酵产物转化为短链脂肪酸,其中乙酸盐、丙酸盐和丁酸盐是最丰富的产物。宿主吸收了大约95-99%的微生物产生的短链脂肪酸,它到达血流以影响免疫发育。因此,大肠中专性厌氧菌的优势确保了维持肠道稳态的代谢物的产生。

同样,在患有严重肠道炎症的人类中,包括炎症性肠病、结直肠癌或坏死性小肠结肠炎的患者中观察到变形杆菌的丰度增加。此外,在包括肠易激综合征和代谢综合征在内的低水平肠道炎症条件下观察到大量变形菌。

肠道炎症增加了替代电子受体的可用性,这些电子受体通过厌氧呼吸支持兼性厌氧细菌的生长。肠道炎症过程中产生的活性氧可以将内源性硫化合物氧化为连四硫酸盐,这是一种电子受体,通过连四硫酸盐呼吸作用在鼠结肠中驱动类似肠沙门氏菌和Yersiniaenterocolitica(一种属于肠杆菌科,变形菌门的病原体)的管腔扩张。

一氧化氮由宿主酶产生化学诱导的结肠炎或由遗传易感性引发的结肠炎期间的诱导型一氧化氮合酶(iNOS)。一氧化氮在肠腔内分解成硝酸盐,从而通过硝酸盐呼吸支持生长,从而增加小鼠结肠中共生大肠杆菌的丰度。类似,宿主衍生的硝酸盐的呼吸有助于在S.enterica诱导的小鼠结肠炎期间腔内病原体扩张。

有趣的是,即使在没有明显肠道炎症的情况下,例如在抗生素治疗期间,呼吸电子受体也有助于细菌群落从专性厌氧菌转变为兼性厌氧菌。为了支持这一观点,用链霉素治疗小鼠可将盲肠中的氧化还原电位提高到接近需氧培养液的水平。链霉素治疗通过硝酸盐呼吸和氧气呼吸的结合增加结肠中共生大肠杆菌或致病性肠杆菌的生长。

其他类似研究的结论也表明,氧气,单独或与其他呼吸电子受体结合,是广泛的胃肠道失衡中肠道菌群失调的常见驱动因素。因此,为了开发新的预防或治疗策略,必须了解在肠道菌群失调期间呼吸电子受体的可用性如何升高。

基于这些观察,有人提出变形菌的扩增是肠道菌群失调的微生物特征,而氧气、用药,遗传易感,肠炎驱动了变形菌的扩张,反过来加剧疾病的进展。

宿主遗传因素和外在环境因素,如饮食和生活环境,不断影响肠道微生物群的分类和功能组成。鉴于具有高度稳定性的平衡肠道微生物群与宿主的免疫系统具有共生相互作用,能够抑制变形杆菌失控的扩张,肠道中变形杆菌的大量繁殖可以反映肠道微生物群落结构的不稳定;这种不稳定的结构可以在非疾病状态下观察到(例如,新生儿期和胃绕道手术后和疾病状态例如,代谢紊乱和肠道炎症)。

在新生儿胃肠道的初始定植期间,兼性厌氧变形菌使肠道生态位有利于专性厌氧菌的定植;后者很快被专性厌氧的厚壁菌门和拟杆菌门所取代,它们在健康成年人的肠道微生物群中占主导地位。胃绕道手术导致的胃肠道重排可以改变pH、胆汁流量和肠道激素,所有这些因素都会影响变形杆菌的丰度。

新生儿肠道中的变形菌

具体来说,由于新生儿肠道中的氧气丰富,生命第一周的微生物群经常以兼性厌氧菌为主,主要是变形菌属(例如,埃希氏菌属、克雷伯氏菌属和肠杆菌属)。这些兼性厌氧菌通过消耗氧气、改变pH值、降低氧化还原电位并产生二氧化碳和营养物质,使栖息地适合严格的厌氧菌定殖。

因此,可以推测变形杆菌在为新生儿肠道准备好接受严格厌氧菌的连续定植方面发挥了作用,这些厌氧菌在健康成人的肠道中含量丰富。

最近对母体胎盘微生物组的一项研究描述了共生细菌群落的存在,其中大肠杆菌的丰度最高。尽管关于胎盘微生物群的活力和起源存在争议,但在母体胎盘中发现的这些有趣的细菌群落与来自母体羊水和新生儿胎粪的细菌群落重叠。

因此,新生儿肠道中的变形菌可能通过胎儿在子宫内吞咽羊水从母体胎盘传播。有趣的是,妊娠后期孕妇肠道中变形菌的比例增加。这意味着母亲微生物群中的这种特定细菌群转移到了新生儿身上。

最重要的是,新生儿肠道中变形菌的丰度受喂养类型的影响,这些细菌在配方奶喂养的婴儿中的频率更高,但在母乳喂养的婴儿中很少见。

人乳寡糖和分泌型IgA的产生参与在最初的肠道定植过程中选择性抑制变形菌。因此,越来越多的人认为,及时减少变形菌的丰度是初始微生物定植的正常部分,而这种定植模式的紊乱与新生儿疾病的风险增加有关。

肠道中微生物群和宿主细胞之间的相互作用对于免疫系统的形成和调节至关重要,由于肠腔内有大量外源性抗原,免疫系统必须严格调节其反应以维持与共生菌的共生关系。共生体传递一种信号,诱导宿主免疫的耐受性反应。因此,宿主可以区分有益的本土微生物和有害病原体,并建立健康的微生物群。

变形杆菌的主要分类及其与IBD的关系

MukhopadhyaI,etal.,NatRevGastroenterolHepatol.2012

为了防止对共生细菌的炎症反应,肠道内的免疫细胞,如单核吞噬细胞(巨噬细胞和树突状细胞)和CD4+T细胞,对微生物刺激反应迟钝或表现出共生反应。

同时,黏膜免疫系统负责清除病原体,这一过程需要积极的促炎信号级联反应。因此,不适当的免疫反应会破坏肠道稳态,引发生态失调,并导致局部和全身炎症和代谢功能障碍。

这种慢性进行性肠道炎症的状态在临床上被诊断为炎症性肠病(IBD),其中包括溃疡性结肠炎(UC)和克罗恩病(CD)。IBD的确切病因仍然无法获得,但新出现的证据表明,肠道微生物群成为了这种疾病的主要嫌疑。

例如,使用易发炎症的小鼠模型,即鞭毛蛋白受体TLR5缺陷小鼠(T5KO),发现,进展为结肠炎的小鼠表现出明确的微生物群特征,其特征是变形菌的水平增加,尤其是大肠杆菌属。并且一些作者已将其确定为微生物群不稳定性的潜在标志物,因此易诱发疾病发作。

与变形杆菌属大量繁殖的同时,结肠炎Tlr5-/-小鼠表现出杂乱无章的结肠粘液层,与非结肠炎Tlr5-/-同胞相比,感染性病原体的清除延迟。

这些结果表明,短暂不稳定的肠道微生物群,尤其是以变形菌为主的群落,会使遗传易感的小鼠易患慢性结肠炎。

先天免疫反应失调推动变形杆菌生长的假设这反过来又会促进肠道炎症,这一点得到了其他小鼠模型研究的支持,这些小鼠模型具有影响适应性免疫的突变,白细胞介素(IL)-10是对本地微生物群产生免疫耐受所需的主要免疫调节细胞因子。

IL-10缺陷小鼠由于对肠道菌群不耐受而表现出自发性结肠炎。随着结肠炎症的发生和发展,在定植常规微生物群或缺乏特定病原体的微生物群的IL-10-/-小鼠中,变形杆菌和大肠杆菌比野生型小鼠多。

在另一项对IL-10缺陷小鼠的研究中,富含饱和乳脂的饮食扰乱了肠道微生物群,导致亚硫酸盐还原Delta-proteobacteriumBilophilawadsworthia大量繁殖。这种病原菌在IL-10-/-小鼠中诱导促炎性黏膜免疫反应并促进自发性结肠炎的发生率和严重程度;它还在喂食高乳脂饮食的野生型小鼠中促进葡聚糖硫酸钠(DSS)诱导的结肠炎。

谷禾健康肠道菌群检测大数据也显示,在炎症性肠病,结直肠癌等患者的肠道菌群检测报告中,85%以上的患者显示变形菌门超标或多项变形菌门病原菌超标或占比丰度偏高。

在最近的一项研究中重现了,结肠炎中变形杆菌的显着扩增,该研究比较了患有活动性结肠炎的TRUC小鼠的肠道微生物组与因庆大霉素、甲硝唑或抗肿瘤坏死因子(TNF)-α治疗而缓解的小鼠的肠道微生物组。

值得注意的是,从TRUC小鼠的粪便中分离出的两种肠杆菌科细菌(肺炎克雷伯菌和奇异变形杆菌)即使在没有任何遗传免疫缺陷的受体小鼠中也足以引发结肠炎。

然而,这两种微生物的致结肠潜力并未在无菌TRUC小鼠中复制,这表明结肠炎的发病机制需要其他共生成员。口服伤寒杆菌,另一种富含TRUC小鼠的变形菌,也会在非结肠炎TRUC小鼠中引发结肠炎,这些小鼠具有大量的促炎细胞因子(例如,TNF-α)。

在UC患者中,与炎症的中度和轻度阶段相比,在严重阶段观察到的变形杆菌水平显着升高。

最有趣的生物体,通过一个孤立的病例报告与IBD有关,该病例报告一名感染这种细菌的小男孩在放射成像上出现回肠增厚,这是克罗恩病的典型表现。

血清学研究表明,与健康对照相比,克罗恩病患者的大肠杆菌抗体数量增加。具体地说,已发现37-55%的克罗恩病患者、2-11%的溃疡性结肠炎患者和<5%对照组患者的百分比。

饮食被认为是塑造肠道微生物结构的最关键的环境因素之一。

△肥胖:丰富的变形菌为特征

累积证据表明,人类和啮齿动物的健康和肥胖个体的肠道微生物群的分类和功能组成存在差异。

此外,肥胖表型通过粪便移植的传播能力表明肠道微生物群落的改变,作为主要触发因素,是因果关系而不是结果。

肠道微生物群的分类组成失衡,称为生态失调,在代谢紊乱中得到充分证明,并被视为厚壁菌门相对于拟杆菌门的相对丰度增加(F:B比率)。尽管一致的研究结果普遍支持这一概念,但代谢紊乱期间的生态失调通常包括变形菌的患病率增加。

例如,一项对儿童肠道微生物群的研究发现,与低脂肪、高纤维饮食儿童相比,食用高热量、高脂肪、低纤维饮食的欧洲儿童中的变形杆菌数量更多。

这种差异揭示了肠道微生物群落对非洲儿童饮食的适应性,这可以提高他们从难消化的多糖中获取能量的能力。此外,一些导致有害代谢影响的因素,例如食用无热量的人造甜味剂和乳化剂(通常用作加工食品中的添加剂),也会损害血糖控制并诱发变形杆菌繁殖。

为支持代谢紊乱与变形菌属的扩张之间的关系,变形杆菌属的致肥胖潜力已在无菌小鼠的单关联研究中被确定。

在对一名病态肥胖志愿者进行的减肥试验中,肠杆菌科的相对丰度逐渐减少,假设肠杆菌在代谢恶化中具有致病作用。用从肥胖的人类肠道中分离出来的阴沟肠杆菌B29对无菌小鼠进行单菌定植足以诱导肥胖和胰岛素抵抗。

这一发现支持了这样一个假设,即以丰富的变形菌为特征的不稳定的肠道微生物群落可能代表代谢紊乱的主动特征,而不是被动后果。

△营养不良儿童:变形菌成为优势菌

营养不良会导致其他健康问题,例如消瘦和夸希奥科病。在发展中国家,营养不良是威胁5岁以下儿童生命的疾病。

营养不良的主要病因是在孕期或产后头3年由于大量营养素缺乏和微量营养素缺乏导致的慢性能量负平衡。

然而,最近的研究表明,孟加拉国和马拉维营养不良儿童的肠道微生物群落结构和基因含量与营养良好的儿童不同。在这些研究中,在营养不良的儿童中普遍观察到变形菌的优势和肠道微生物群的低多样性,并被认为是肠道微生物群成熟的障碍。

此外,最近的一项研究揭示了肠杆菌科细菌与营养不良下的肠道黏膜免疫球蛋白A(IgA)反应之间存在机制上的相互关系,这会引发肠病并中断黏膜免疫的发展和健康微生物群的组装。

鉴于生态失调驱动的选择压力似乎干扰了微生物群的稳定性,变形菌随后借此机会增加了它们的适应性。微生物群落在异常代谢条件下的不稳定性已被解释为对定植的抵抗力受损。

这一发现表明,生态失调的特点是传播能力减弱和对定植的抵抗力。鉴于kwashiorkor儿童的肠道微生物不成熟且富含肠道病原体营养不良被认为与对殖民化的抵抗力有缺陷有关。

总的来说,这一间接证据导致了这样一种观点,即肠道变形菌的扩张反映了宿主的能量不平衡和不稳定的微生物群。有趣的是,在非疾病状态下,如新生儿期和胃绕道手术后也观察到肠道微生物群落的不稳定结构和高丰度的变形菌。

这些信号受体可分为三个家族:

尽管至关重要的是,只有TLR家族参与识别肠细胞表面的细菌配体。

存在于变形菌细胞表面的主要MAMP是脂多糖(LPS)和鞭毛蛋白,它们分别被TLR4和TLR5识别。其他参与细菌识别的TLR包括检测细菌脂蛋白的TLR2和检测未甲基化CpGDNA的细胞内受体TLR9。

LPS的产生和鞭毛组装是在原核生物中观察到的两个最动态的过程,这些结构组成的巨大差异反映在不同变形菌家族成员中观察到的先天免疫反应的强度和方向上。例如,弯曲杆菌和螺杆菌属LPS与大肠杆菌LPS的不同之处在于具有更长的酰基链和增加的链连接和脂质A磷酸基团的修饰。

在许多病原生物体(例如百日咳杆菌和幽门螺杆菌)中观察到脂质A锚中的一个或两个磷酸基团丢失,并且已被证明可提供对抗菌肽的抗性。

这些功能变体的存在已被证明会影响LPS反应性,并使个体更容易受到革兰氏阴性菌的感染。证据还表明,这些遗传变异的存在可能会影响基础免疫状态。

因此,有理由推测,在TLR4基因变异的携带者中,在营养不良事件之前或期间发生的免疫反应改变,可能足以驱动IBD发生不可挽回的免疫反应改变。TLR9中的遗传变异也与IBD易感性增加有关。证据不如TLR4那样令人信服,尽管这一警告可能反映了TLR9处理来自所有细菌的配体而TLR4反映革兰氏阴性菌易感性的事实。

变形菌门是肠道菌群中四个主要门(厚壁菌门、拟杆菌门、变形菌门和放线菌门)中最不稳定变化最快的门。变形菌门作为一线反应者,对环境因素(如饮食)反应敏感。

总的来说,迄今为止的许多研究都支持这样一个概念,即肠道中大量变形菌反映了生态失调或不稳定的肠道微生物群落结构。除了外源性肠致病性变形杆菌外,健康的哺乳动物肠道还含有数种属于该门的共生细菌,作为其天然肠道菌群。

这些细菌在比例较小时似乎是良性的,而在某些肠道环境下,它们会变成可引发炎症反应甚至代谢障碍。

在健康肠道中,免疫系统严格调节其反应以维持与共生菌的共生关系。这种可能性表明存在正反馈循环。环境或宿主因素(例如低纤维饮食和急性或慢性炎症)破坏体内平衡,具有选择性并导致肠道内大量变形菌的生态失调。由于宿主无法保持共生的变形菌而导致变形菌的不受控制的扩张,在一小部分和微生物群落对定植的抵抗力降低的情况下,可以进一步促进炎症或外源性病原体的入侵。

RizzattiG,LopetusoLR,GibiinoG,BindaC,GasbarriniA.Proteobacteria:ACommonFactorinHumanDiseases.BiomedResInt.2017;2017:9351507.doi:10.1155/2017/9351507.Epub2017Nov2.PMID:29230419;PMCID:PMC5688358.

MukhopadhyaI,HansenR,El-OmarEM,HoldGL.IBD-whatroledoProteobacteriaplayNatRevGastroenterolHepatol.2012Feb21;9(4):219-30.doi:10.1038/nrgastro.2012.14.PMID:22349170.

LitvakY,ByndlossMX,TsolisRM,BumlerAJ.DysbioticProteobacteriaexpansion:amicrobialsignatureofepithelialdysfunction.CurrOpinMicrobiol.2017Oct;39:1-6.doi:10.1016/j.mib.2017.07.003.Epub2017Aug4.PMID:28783509.

ShinNR,WhonTW,BaeJW.Proteobacteria:microbialsignatureofdysbiosisingutmicrobiota.TrendsBiotechnol.2015Sep;33(9):496-503.doi:10.1016/j.tibtech.2015.06.011.Epub2015Jul22.PMID:26210164.

Rigottier-GoisL.Dysbiosisininflammatoryboweldiseases:theoxygenhypothesis.ISMEJ.2013Jul;7(7):1256-61.doi:10.1038/ismej.2013.80.Epub2013May16.PMID:23677008;PMCID:PMC3695303.

民以食为天,食以安为先。

随着夏季来临,我们最近检测的报告中发现以上食源性致病菌的检出率和超标率也在逐步上升。

尽管许多人可能没有意识到,近年来,食源性疾病的发病率逐年升高,食源性病原体正在引起大量疾病,对人类健康和经济产生重大影响,已成为全球范围内的重大公共卫生问题。

食源性疾病是一个全球性问题,影响所有年龄和背景的人,尤其是5岁以下的人和的65岁老人以及生活条件差的人。我国细菌性食源性疾病每年发病人数可达9411.7万人次,根据美国疾病控制与预防中心(CDC)的估计,美国每年也有4800万例疾病、128000例住院治疗和3000例死亡是由食源性细菌引起的。澳大利亚,每年约有五分之一的人患有这些疾病,住院人数超过30,000人。

致病菌广泛存在于各种食品中,食源性致病菌是食源性疾病的首要病因,由其引起的食源性疾病长期以来一直是食品安全的主要威胁,尤其在发展中国家,形势更严峻。它们会导致200多种疾病——从腹泻到癌症。在我国,每年因副溶血性弧菌导致急性腹泻665.5万人,导致急性胃肠炎病例估计为728.1万人。

最常见的致病细菌包括:蜡样芽胞杆菌,空肠弯曲杆菌,肉毒梭菌,产气荚膜梭菌,坂崎肠杆菌,埃希氏菌,李斯特菌,沙门氏菌属,志贺氏菌属,Staphylococccus黄色葡萄球菌,弧菌属等。

定义

食物中毒:指食用了被有毒有害物质污染的食品或者食用了含有有毒有害物质的食品后出现的急性,亚急性以及其它食源性疾病。

目前一些-国家和国际组织以及很少使用食物中毒的概念,经常使用的是“食源性疾病”,食物中毒仅是食源性疾病的一部分,是一大类最常见最典型的食源性疾病

食源性疾病:世界卫生组织认为,凡是通过摄食进入人体的致病因素,是人体患感染性的或中毒性的疾病,都称之为食源性疾病。

我国《食品安全法》定义食源性疾病:指食品中致病因素进入人体引起的感染性,中毒性疾病以及其它疾病。

食物中毒的症状

细菌性

食物中毒的症状因人而异,有些人的病情会比其他人更严重。但是,一些常见的症状是:

不太常见的症状也包括:

保持水分和休息通常是治疗食物中毒的唯一方法,因为身体可以自然地清除污染物。但是,在某些情况下,需用抗生素来帮助身体抵抗感染,特别是在单核细胞增生李斯特菌中毒的情况下以及当易感受伤害的人受到影响时。

病毒性

与细菌不同,病毒不会在食物上生长和繁殖。相反,病毒细胞存在于食物中,当被食用时,它们开始接管人体细胞并感染它们。

常见的食源性疾病病毒类型是:

诺如病毒是导致大多数与食品污染有关的疾病的罪魁祸首。

介绍三种菌:葡萄球菌、沙门氏菌、弯曲杆菌

01

葡萄球菌

Staph

葡萄球菌是一群革兰氏阳性球菌,因常堆聚成葡萄串状,故名。多数为非致病菌,少数可导致疾病。可以生活在人的皮肤、口腔或鼻子里。

葡萄球菌有30多种,但最常见的是金黄色葡萄球菌。

大多数时候,葡萄球菌不会造成问题。但如果它扩散到你的身体深处,你可能会患上严重的,甚至危及生命的感染。

广义上讲,葡萄球菌感染有两种类型:皮肤感染和侵入性感染。皮肤感染要常见得多,而且大多数情况下,没有那么严重,但如果不及时治疗,它们会发展成侵入性感染,甚至危及生命。

葡萄球菌引起的皮肤感染例子

毛囊炎在毛囊炎中,毛囊(发丝生长的皮肤小口袋)发炎并经常被感染。留着胡须男人常在脸上和脖子上得毛囊炎。

麦粒肿麦粒肿是一个小的凸块,其从睫毛的基部或眼睑下成长,胀疼和压痛明显,肿块中央通常可见脓液。

疖子疖子是皮下形成的红色、肿胀、疼痛的肿块。开始于受感染的毛囊,增大并充满脓液细菌、白细胞和死皮。常发生在面部、颈部、腋窝、臀部或大腿内侧。

皮肤脓肿皮肤脓肿是皮下被厚膜包围的脓包。当身体试图通过隔离来保护自己免受感染时,脓肿就形成了。用外科手术刀在脓肿壁上开一个洞,把脓液排掉是治疗脓肿的唯一方法。

蜂窝组织炎蜂窝组织炎是一种皮肤深层的感染,包括真皮层和皮下组织,毛囊、皮脂腺、汗腺皆被破坏,后期有肉芽肿形成。蜂窝织炎可发生在身体的任何部位,但最常见的影响小腿。

脓疱脓疱这种常见且高度传染性的葡萄球菌感染开始时是小水泡,通常在脸上、手上或脚上,最终发展成蜂蜜色的结壳。脓疱病通常影响儿童,但任何人都可能患上。

葡萄球菌烫伤样皮肤综合征(SSSS)

这种情况是由葡萄球菌感染产生的毒素引起的,导致身体大面积皮肤脱皮。皮肤可能会被烧伤或烫伤。多发于婴儿和幼儿。

侵入性葡萄球菌感染发生在细菌进入血液时。

葡萄球菌侵入性感染例子

脓毒症是一种由感染引起的全身炎症反应综合征。这是葡萄球菌最危险的后果之一,可以扩散到你的全身,影响内脏器官的功能。

化脓性关节炎这种感染目标是关节,通常是膝盖,臀部,肩膀,手指关节,或脚趾关节。

中毒性休克综合症当葡萄球菌进入血液并产生毒素时,这种罕见但严重的情况就会发生。

心内膜炎当细菌影响心脏尤其是心脏瓣膜时,心内膜炎就会发生。如果不迅速治疗,感染会损害或破坏心瓣膜。

骨髓炎体内的骨头被感染时,这种不常见但严重的情况就会发生。

化脓性肌炎是一种罕见的骨骼肌细菌感染,骨骼肌是人们用来运动的肌肉。

肺炎是一种常见的感染,它会导致炎症和肺部气囊中的液体积累,使呼吸变得非常困难。

食物中毒与葡萄球菌有关的食物中毒是由于食用了被这种细菌产生的毒素污染的食物而引起的。这不是真正的细菌感染,不应该用抗生素治疗。

耐药感染:耐甲氧西林金黄色葡萄球菌

耐甲氧西林金黄色葡萄球菌(MRSA)是一种对常用抗生素产生耐药性的葡萄球菌感染。

抗生素的过度使用和误用是MRSA产生的原因。在个人层面上,只在必要的情况下(不是针对流感或感冒等病毒感染)和医生给你开的处方时服用抗生素,可以帮助预防和控制抗生素耐药性的传播。

此外,即使症状有所改善,也一定要完成所有的抗生素疗程,以防止抗药性超级细菌(如MRSA)的发展。

葡萄球菌感染的症状取决于感染的类型。

皮肤感染通常会导致发红、肿胀、发热和疼痛——但所有这些症状都可能从轻微到严重。例如,脓疱疮可能会痛也可能不痛,而疖子基本上是会痛。一些由葡萄球菌引起的皮肤感染,如蜂窝织炎或伤口感染,除了感染部位发红和疼痛外,还可能引起发烧。

侵入性葡萄球菌感染,如败血症(也称为败血症)、心内膜炎和肺炎,通常会导致严重的疾病,包括发烧、呼吸急促或短促、疲劳,有时还会意识不清。

当呼吸或心脏功能受到某种疾病的影响时,应该尽快就医。

通过伤口感染

健康的人也可能携带葡萄球菌,但他们并不知道,但当皮肤破损时,细菌就会进入伤口,导致感染。

通过医疗设备感染

葡萄球菌也可以通过导尿管、静脉导管或其他植入的医疗设备进入人体。这种细菌还可能存在于未适当清洁的纹身针或注射毒品的针上,尤其是共用或重复使用的针头。

通过皮肤接触感染

一些皮肤上的葡萄球菌感染具有传染性,可以通过皮肤接触传染给别人。

葡萄球菌也可以生存在物体或表面,如床单,毛巾或更衣室里的其他物品。感染葡萄球菌的另一种方式是接触被污染的物品。集体生活相对更容易感染。

某些疾病的患者更易感染,例如:糖尿病,艾滋病,癌症,肾功能衰竭等患者。

为了诊断葡萄球菌感染,医生可能会取一个皮肤或组织样本,或者喉咙或鼻拭子进行实验室测试,以确定感染的原因。

在某些情况下,如果怀疑有更深层次或内部感染,医生可能会要求做某些影像学检查。例如,超声心动图可以帮助医生确定感染是否影响心脏。

抗生素是大多数葡萄球菌感染的主要治疗方法。抗生素的选择部分取决于感染的严重程度和感染的葡萄球菌类型。一些轻微的皮肤感染不需要药物治疗就会自行痊愈。

除了抗生素,有时还需要手术来引流伤口、脓肿。

侵入性葡萄球菌感染通常需要住院进行静脉抗生素治疗以对抗感染,并进行其他支持治疗以帮助痊愈。

葡萄球菌感染的前景取决于感染的类型和它在体内传播程度。任何潜在的疾病都可能影响康复速度。

大多数浅表皮肤感染很容易治疗。但是如果发展成严重的感染并演变成败血症,预后会更差。一些研究,比如2016年发表在《美国医学杂志》上的一项研究表明,血液中葡萄球菌感染的死亡率在20%到40%之间。

葡萄球菌无处不在。你不可能完全避免与其接触,但可以降低感染的风险。

一些简单的措施可以帮助防止葡萄球菌的传播,包括:

保持清洁。保持手和身体清洁是预防葡萄球菌感染最重要的方法。经常洗手,每次至少20秒。

清洁伤口。彻底清洗伤口,以冲掉污垢和细菌。

覆盖伤口。任何皮肤伤口都用绷带包扎,一直到完全愈合。

避免共用私人物品。不要与可能感染葡萄球菌的人共用毛巾、床单、衣服等物品。

用热水洗衣服。如果你或家里有人感染了葡萄球菌,用热水清洗衣服、毛巾和被褥,用烘干机烘干衣服,确保衣服完全干燥后再取出。

注意饮食卫生。在准备食物或吃之前要洗手。确保食物温度。热的食物的温度应在60℃以上,冷的食物的温度应在4℃以下。

使用干净的剃须刀刮胡子。如果在平时刮胡子的地方感染了葡萄球菌,在感染清除之前不要刮胡子。如果一定要刮胡子,请使用干净的一次性剃须刀。不要和别人共用剃须刀。

02

沙门氏菌

Salmonella

沙门氏菌革兰氏阴性,无芽孢的杆菌,是一种常见的食源性致病菌。这种细菌的感染称为沙门氏菌病。

沙门氏菌感染非常普遍。食用受污染的食品,包括生禽,鸡蛋,牛肉以及某些污染的水果和蔬菜,或者通过处理宠物(尤其是某些鸟类和爬行动物)都有可能感染沙门氏菌。

大多数感染沙门氏菌的人无需治疗即可完全康复,但在某些情况下,疾病可能严重到需要住院治疗。

沙门氏菌有很多类型,已经了多达2500种,但已知只有不到100种会引起人类感染。这些大多数引起胃肠道疾病,但是其他类型如伤寒沙门氏菌和副伤寒沙门氏菌,会引起致命的疾病。

沙门氏菌会引起轻度至重度的胃肠道疾病,称为肠胃炎,也就是通常所说的胃流感。症状通常在接触细菌后六小时到六天之间出现(有些人可能需要几周才能出现症状)。常见症状包括:

腹泻、腹部绞痛、发热、头痛、恶心、呕吐、食欲不振等。

遇到以下症状,请立即就医:

恶心和呕吐;

持续性腹泻持续超过三天;

便血;发烧高于38度;

持续呕吐且无法控制液体;

尿量减少以及口干、喉咙干燥(这是脱水的迹象)

头晕;严重腹痛

沙门氏菌生活在人类和其他动物的肠道中,可以通过粪便排出体外。当人们接触或吃了被粪便污染的东西时,就可能会被感染。人感染沙门氏菌的常见方式包括:

1.吃被动物粪便污染的食物或饮用水,例如:

未煮熟的牛肉,家禽或鱼(煮熟会破坏沙门氏菌)

生鸡蛋或包含未煮鸡蛋的产品

生乳制品或未经巴氏消毒的乳制品,例如牛奶

生蔬菜或水果

2.吃由没有正确洗手的食品工人处理的食品

3.抚摸或处理动物的排泄物,尤其是已知携带沙门氏菌的动物,例如蜥蜴,乌龟或幼鸟

当然,任何人都可能感染沙门氏菌,但感染风险较高的人包括:

5岁以下的儿童

非母乳喂养的婴儿

65岁以上的成年人

免疫系统较弱的个体(例如,HIV,癌症患者以及服用皮质类固醇的患者)

服用抗酸剂的人(胃酸可以杀死许多类型的沙门氏菌;抗酸剂会降低胃的酸度,使更多的细菌蓬勃发展)

服用抗生素的人(这些抗生素可能减少“有益”细菌的数量,更容易受到感染)

患有炎症性肠病(例如克罗恩氏病或溃疡性结肠炎)的人会损害肠道内膜,使沙门氏菌更容易繁殖

宠物主人(尤其是那些养鸟类和爬行动物的主人)

由于沙门氏菌的症状与许多疾病的症状相似,因此医生需要依靠实验室测试来诊断感染。首先最常用的测试是检查人的粪便样本,也有采集人的血液样本。

在大多数情况下,沙门氏菌感染是一种短暂的疾病,可导致几天的胃痉挛和腹泻。症状通常持续约四至七天,也可能会持续长达数周。

对沙门氏菌的治疗取决于症状,年龄和总体健康状况。多数沙门氏菌病例在未经任何治疗的情况下一周内会好转。

美国国立糖尿病与消化及肾脏疾病研究所(NIDDK)指出,食物中毒(由沙门氏菌或其他传染性生物引起)的主要问题是呕吐和腹泻引起的脱水。

以下是在家中治疗可采取的一些技巧。

1.补充水,例如:

水、稀释果汁、运动饮料(可帮助补充丢失的电解质)、清汤、电解质水或类似的电解质替代饮料(但在服用或服用前请先咨询医生)

2.吃咸饼干或椒盐脆饼,以帮助替代电解质(钠是电解质)

3.不要自行服用止泻药(除非医生开出)。这些药物可能会延长沙门氏菌感染引起的腹泻。

如果担心可能存在严重脱水的危险,或发烧、严重腹痛等,建议去医院接受静脉输液治疗并进行监测。

在某些严重的情况下,沙门氏菌可导致死亡,尤其是如果没有及时开始治疗的情况。

预防沙门氏菌感染

大多数沙门氏菌感染是由受污染的食物引起的。降低患沙门氏菌风险的最佳方法是遵循良好的食品安全措施,并采取措施防止食物中毒。

本文末有CDC建议的四项食品安全规则,可参考。

03

弯曲杆菌

Campylobacter

弯曲杆菌曲杆菌属细菌是革兰氏阴性螺旋,杆状或弯曲细菌,是引起肠道感染的细菌,是引起全世界腹泻病最常见的细菌原因之一。其可以急性肠炎,肠外感染,严重会导致并发症,包括格林-巴利综合征。

在过去的十年中,全球弯曲菌病的发病率有所上升。

KaakoushNO,etal.,ClinMicrobiolRev.2015

症状包括:

腹泻,经常流血,恶心和呕吐,腹部绞痛和疼痛,发热,疲劳等。

以4岁以下和15~39岁的人群最易感。

对于免疫系统较弱的人,弯曲杆菌可能会扩散到血液中并造成威胁生命的感染。

在极少数情况下,弯曲杆菌可能会引起诸如抽搐,脑膜炎(脑和脊髓周围膜发炎),关节炎和格林巴利综合征(GBS)等并发症。在美国,据报道每千个弯曲杆菌病中有1个会导致GBS。

注:格林巴利综合征是一种攻击人体神经的病,以周围神经和神经根的脱髓鞘病变及小血管炎性细胞浸润为病理特点的自身免疫性周围神经病,临床表现为急性对称性弛缓性肢体瘫痪。

国际旅行是弯曲菌感染的重要危险因素。

个别的弯曲杆菌病病例通常与生食或未煮熟的家禽有关,或者是由于这些食物的交叉污染所致,例如,食用与弯曲杆菌污染的肉在同一块(未经清洗的)切菜板上切碎的蔬菜。

弯曲杆菌的爆发通常源于未经巴氏消毒的乳制品,受污染的水,家禽和产品。

免疫缺陷也是感染弯曲杆菌的危险因素。

弯曲杆菌还可以感染宠物,通过动物粪便对水源的污染或人和动物的接触传播,可以使蔬菜、水果、各类熟食品、牛奶等受到空肠弯曲菌的污染,从而引起腹泻或者中毒。

在谷禾肠道菌群检测报告中,就有这样的特殊案例,来自宠物的肠道菌群。

报告显示,其样本菌群构成非常单一,实际测序深度很高,达到10万,但仅检出167种菌,绝大部分是大肠杆菌。

下面的表是根据人的菌群结果评估的,可以看到构成多样性非常低。

下面是主要菌门和属还有种的构成,种部分列出了注释有菌名称的丰度大于0.1%以上的菌。

下图是菌属构成表:

报告显示,菌属构成中弯曲杆菌占比较高。

除此之外,其他的病原和机会致病菌主要检出了大肠杆菌,占比77%,属于严重超标,空肠弯曲杆菌,产气夹膜菌和痢疾志贺氏菌都有超标:

注:空肠弯曲菌(上图中红色箭头指向菌Campylobacterjejuni),有内毒素能侵袭小肠和大肠黏膜引起急性肠炎。

经过与送检者沟通后,我们了解的情况如下:

主人反映该宠物猫有腹泻,其有长期腹泻情况,因此送检了其本人和养的宠物猫的粪便样本做肠道菌群检测,了解菌群构成,找出腹泻原因,以便后续治疗。

大多数弯曲杆菌感染是自限性的,也就是说大多数弯曲杆菌病无需任何其他治疗即可痊愈,适当的水合作用对于避免腹泻和呕吐引起的脱水至关重要。

为缓解腹泻,建议每天喝8到10杯水,每次肠蠕动后至少喝一杯。

全天多吃几顿小餐而不是三顿大餐也可能会有帮助,特别是盐和高钾食物。

弯曲杆菌感染的抗生素治疗仅在严重的情况下以及在有严重疾病高风险的人(例如因疾病或药物而免疫系统较弱的人)中才需要。

有些感染了弯曲杆菌的人没有任何症状。那些出现症状的人通常会持续2至5天,有时甚至长达10天。

空肠弯曲杆菌和大肠弯曲菌C.coli感染,急性水样或血性腹泻,发热,消瘦,痉挛等,平均6天。

家禽,特别是新鲜和冷冻的鸡肉,是弯曲杆菌属的主要储藏库。其他驯养的动物(例如牛和猪)和环境资源(例如受污染的水)在将这些生物体直接传播给人类方面也起着至关重要的作用。

食物链的所有阶段所采取的控制措施为基础,从农场的农业生产,到从商业处理、加工都需要有严格标准的流程。

做好污水处理系统,保障健康。

遵循食品安全措施:

清洁经常洗手和切割砧板和台面等表面,并在流水下冲洗水果和蔬菜。

分开生肉,禽肉和海鲜用单独的切菜板,并将这些物品与其他食品分开,避免交叉污染

烹饪确保将食物煮熟,杀死细菌。

低温冰箱温度在4℃或以下,不要把易腐烂的食物放在冰箱外超过两个小时。把冷冻的食物放在冰箱或微波炉里解冻,因为把食物放在柜台上解冻会让细菌迅速繁殖。

最后还要牢记,在上厕所、更换尿布后、接触动物后要彻底洗手。

主要参考资料:

MorkRL,HoganPG,MeunksCE,etal.Longitudinal,Strain-SpecificStaphylococcusAureusIntroductionandTransmissionEventsinHouseholdsofChildrenWithCommunity-AssociatedMeticillin-ResistantSAureusSkinandSoftTissueInfection:AProspectiveCohortStudy.TheLancetInfectiousDiseases.November26,2019

Staphinfections.MayoClinic.May6,2020

MRSAandtheWorkplace.TheCentersforDiseaseControlandPrevention.August17,2015

SalmonellaSymptoms.CentersforDiseaseControlandPrevention.December12,2019

Salmonella.CentersforDiseaseControlandPrevention.November24,2020.

SalmonellaInfection.MayoClinic.October11,2019.

FitzgeraldC.Campylobacter.ClinLabMed.2015Jun;35(2):289-98.doi:10.1016/j.cll.2015.03.001.PMID:26004643.

KaakoushNO,Castao-RodríguezN,MitchellHM,ManSM.GlobalEpidemiologyofCampylobacterInfection.ClinMicrobiolRev.2015Jul;28(3):687-720.doi:10.1128/CMR.00006-15.PMID:26062576;PMCID:PMC4462680.

Campylobacteriosis;NationalInstituteofAllergyandInfectiousDiseases.

THE END
1.营养膳食学课件.ppt设计者仅对作品中独创性部分享有著作权。 关键 词: 营养 膳食 课件 温州文客信息科技有限公司所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。 关于本文 本文标题:营养膳食学课件.ppt 链接地址:https://www.wenke99.com/p-15225064.htmlhttps://www.wenke99.com/p-15225064.html
2.终于等到你,营养师人手必备之《营养与医疗膳食学》2.0版本来啦!《营养与医疗膳食学》第2版于2022年6月出版,以更高颜值、更高清的食物图片及配套病例食谱等让人更加期待! 对于广大医务工作者,尤其是临床营养从业者,是一本兼具专业和实用意义的学习教材及工作实践手册。 第一时间分享! 书籍出版啦! 最先https://mp.weixin.qq.com/s?__biz=MzA5OTc1MzMwMg==&mid=2651460105&idx=1&sn=d54177de372aa552031e83fadaa1027f&chksm=8b033e30bc74b726a58f8c7ffe269b9d48f83dd48cd444221e500a120a24b1ebcc01d782f2c4&scene=27
3.食品卫生与营养学专业主要学什么课程食品卫生与营养学专业主要课程有:《营养学基础》、《临床营养学》、《食品卫生学》、《食品工艺学》、《食品毒理学》、《烹调学》、《生理学》、《生物化学》、《流行病学》 部分高校按以下专业方向培养:食品质量与安全。 二、开设食品卫生与营养学的院校推荐: https://www.gaokao.cn/gk-mb/20/270
4.营养与医疗膳食学(第2版/创新教材)《营养与医疗膳食学(第2版/创新教材)》作者:人民卫生出版社,出版社:2022年6月 第2版,ISBN:128.00。1.本书紧紧围绕\https://m.kongfz.com/item/58245039
5.《营养与医疗膳食学(第2版)胡雯人民卫生新华书店正版图书当当北方图书城旗舰店在线销售正版《营养与医疗膳食学(第2版) 胡雯 人民卫生 【新华书店正版图书书籍】》。最新《营养与医疗膳食学(第2版) 胡雯 人民卫生 【新华书店正版图书书籍】》简介、书评、试读、价格、图片等相关信息,尽在DangDang.com,网购《营养与医疗膳食学http://product.dangdang.com/11710448667.html
6.《营养与医疗膳食学第2二版胡雯人民卫生出版社教材预防医学专业石家庄诺展科技图书店 登录查看更多图片 > 营养与医疗膳食学 第2二版 胡雯 人民卫生出版社 教材预防医 无 编 京东价 ¥ 促销 展开促销 配送至 --请选择-- 支持 加入购物车 https://item.jd.com/10100113332684.html
7.2018级降管理专业人才培养方案健康管理学★ 管理学基础● 社会学基础● 营养与膳食★ 药理学 中药学 健康保险学★ 人际沟通● 卫生法学 能够维护生命尊严及生命伦理 能够进行医疗护理帮助 能够应用工作程序,实施个体化服务 灾难性病伤管理 能够正确区分医嘱的准确性 能够观察和分析服务对象病情 能够观察药物作用及不良反应 能够阅读实验室及辅助检查https://jwc.wfhlxy.com/info/1023/1356.htm
8.医学营养治疗(精选十篇)4.1针对患者对糖尿病营养知识的需求, 打印了《糖尿病营养治疗原则》《糖尿病人食谱推荐》《常用食物的血糖生成指数》《控制血糖的六大食招》等宣传单, 免费为患者发放, 深受患者及家属的欢迎。让患者了解常见食物的血糖生成指数, 低血糖指数的膳食能减少高胰岛素血症, 保护胰岛功能, 减少药物使用, 降低TG, LDL-C,https://www.360wenmi.com/f/cnkey3h0xx20.html
9.均衡营养,合理膳食——国际医疗部与营养科助力大学生饮食管理原来这一天,学校组织了一场别开生面的营养科普活动,我院临床营养科陈馥副主任及国际医疗部吴泽婷副护士长、洪丹绵医生受邀参加本次活动,为在场的教职工和学生们提供营养咨询。现场除了答题闯关抽奖游戏外,师生们在科学减重,运动营养,慢病预防和管理,消化系统问题处理,食物热量计算与烹饪技巧等方面向我院专家老师请教https://www.stuh.com.cn/index.php/home/view?id=10688
10.《中国心血管降与疾病报告2022》要点解读中国居民膳食营养状况总体改善。2015—2017年中国居民营养与健康状况监测数据显示:中国居民平均每标准人日能量摄入量为2007.4kcal,供给充足,碳水化合物、蛋白质和脂肪三大营养素供能充足。 中国居民总能量摄入呈下降趋势,其中蛋白质摄入量变化不大,而碳水化合物供能比呈明显下降趋势,脂肪供能比却呈上升趋势,自2012年起超过https://www.medsci.cn/article/show_article.do?id=83e2e862651f
11.课程公共卫生监测与疾病爆发调查 ●11.3公共卫生监测与疾病爆发调查-3 公共卫生监测与疾病爆发调查 ●11.4公共卫生监测与疾病爆发调查-4 公共卫生监测与疾病爆发调查 ●11.5公共卫生监测与疾病爆发调查-5 公共卫生监测与疾病爆发调查 第十二章合理营养指导 合理营养指导 ●12.1营养及营养素 合理营养指导 ●12.2膳食营养素参考https://higher.smartedu.cn/course/62354d2e9906eace048f4045
12.2019中国军梦少年军校夏令营新兵招募学校膳食标准,保证每位小特工饮食的营养与卫生 住宿服务 全覆盖式监控管理、24小时热水、配备空调、全封闭式营区、男女分区管理 交通服务 政府备案旅游大巴,驾龄十年以上经验丰富的司机全程护送 医疗服务 每日测量体温、检查营员身体状况,基地配备医务室及医疗保障人员;附近三公里内有三甲级医院 https://www.meipian.cn/22wbdmfm
13.医博士医学继续教育答案外科患者营养支持的规范化实施A:营养状况受损评分B:疾病的严重程度评分C:年龄评分D:性别评分E:患者年龄≥70岁者加1分2. 口服营养补充属于应用特殊医疗用途食品(FSMP)中的哪一个(20分)(C)A:婴幼儿配方食品B:婴幼儿辅助食品C:特殊医学用途食品D:其他特殊膳食用途食品E:孕妇奶粉3. 营养因素对患者临床结局(包括感染有关并发症,住院日等)发生https://www.360docs.net/doc/47153828.html
14.全国卫健委降管理师考试试题及答案,备考必备A.SF-12 B.SF-36 C.膳食营养分析量表 D.WHOQOL-100 E.WHOQOL-BREF 16.以下不适宜进行健康干预的危险因素是 A.吸烟B.饮酒C.疾病家族史D.年龄E.运动不足 17.中医学对于同一种疾病,因发病时间、地区、患者机体反应性不同,或疾病处于不同阶段,采取不同的治法,体现的中医思想是 https://www.yltwx.com/ljzt/685.html
15.肿瘤与营养,中国肿瘤营养治疗指南平衡膳食 肿瘤患者首先需要做到平衡膳食 ,即通过食物摄入能够满足身体营养需求的多种营养素。其中尤其应保证足够的能量和蛋白质摄入 ,以利于维持体重稳定。 保持适宜的、相对稳定的体重 肿瘤患者体重丢失大于 5%提示存在营养不良风险 ,并会对身体功能及临床结局造成影响 ,因此保持适宜的、相对稳定的体重对于肿瘤患者很重要https://m.globecancer.com/azzx/show.php?itemid=13390
16.南瓜降治疗膳食:营养科从辅助到核心的转型之路此外,营养学理论与各个科室的临床实践孤立发展,难以紧密结合。这些挑战不仅限制了营养科的发展,也使得医生和患者未充分认识到营养在治疗中的实际效果。 治疗膳食的引入成为营养科发展的一个重要驱动力。(治疗膳食又名:医疗膳食、医学定制营养膳食;与药品类肠外营养产品、药品类肠内营养产品、特殊医学用途食品,同属医疗https://www.toutiao.com/article/7443642000408085018/