数学思维到底是什么?如何训练?定理算术实数代数集合论

数学思维能力对孩子来说非常重要,它涉及到逻辑推理、问题解决、抽象思维等方面。培养孩子的数学思维能力不仅有助于他们在学校取得好成绩,还能为他们的未来生活和职业发展打下坚实的基础。那么,作为家长或教育者,我们应该如何有效地培养孩子的数学思维能力呢?

不妨看看英国皇家学会会员、英国沃里克大学数学系荣退教授伊恩斯图尔特的看法。

撰文|伊恩·斯图尔特(IanStewart)、戴维·托尔(DavidTall)

译者|姜喆

数学并非由计算机凭空计算而来,而是一项人类活动,需要人脑基于千百年来的经验,自然也就伴随着人脑的一切优势和不足。你可以说这种思维过程是灵感和奇迹的源泉,也可以把它当作一种亟待纠正的错误,但我们别无选择。

人类当然可以进行逻辑思考,但这取决于如何理解问题。一种是理解形式数学证明每一步背后的逻辑。即便我们可以检查每一步的正确性,却可能还是无法明白各步如何联系到一起,看不懂证明的思路,想不通别人如何得出了这个证明。

而另一种理解是从全局角度而言的——只消一眼便能理解整个论证过程。这就需要我们把想法融入数学的整体规律,再把它们和其他领域的类似想法联系起来。这种全面的掌握可以让我们更好地理解数学这一整体,并不断进步——我们在当前阶段的正确理解很可能会为未来的学习打下良好基础。

反之,如果我们只知道“解”数学题,而不了解数学知识之间的关系,便无法灵活运用它们。

这种全局思维并非只是为了理解数学之美或者启发学生。人类经常会犯错:我们可能会搞错事实,可能做错判断,也可能出现理解偏差。在分步证明中,我们可能无法发现上一步推不出下一步。但从全局来看,如果一个错误推出了和大方向相悖的结论,这一悖论就能提醒我们存在错误。

比如,假设100个十位数的和是137568304452。我们有可能犯计算错误,得到137568804452这个结果,也可能在写下结果时错抄成1337568804452。

这两个错误可能都不会被发现。要想发现第一个错误,很可能需要一步步地重新计算,而第二个错误却能通过算术的规律轻松地找到。因为9999999999×100=999999999900,所以100个十位数的和最多也只能有12位,而我们写下的却是个十三位数。

无论是计算还是其他的人类思维过程,把全局理解和分步理解结合起来是最可能帮助我们发现错误的。学生需要同时掌握这两种思维方式,才能完全理解一门学科并有效地实践所学的知识。要分步理解非常简单,我们只需要把每一步单独拿出来,多做练习,直到充分理解。全局理解就难得多,它需要我们从大量独立信息中找到逻辑规律。

即便你找到了一个适合当前情境的规律,也可能出现和它相悖的新信息。有些时候新信息会出错,但过去的经验也经常不再适用于新的情境。越是前所未有的新信息,就越可能超脱于既存的全面理解之外,导致我们需要更新旧的理解。

1

概念的形成

在思考具体领域的数学之前,可以先了解一下人类如何学习新的思想。因为基础性问题需要我们重新思考自认为了解的思想,所以明白这个学习过程就尤为重要。每当我们发现自己并没有完全了解这些思想,或者找到尚未探明的基本问题时,我们就会感到不安。不过大可不必惊慌,绝大部分人都有过相同的经历。

所有数学家在刚出生时都很稚嫩。这虽然听起来是句空话,却暗示了很重要的一点——即便是最老练的数学家也曾一步步地学习数学概念。遇到问题或者新概念时,数学家需要在脑海中仔细思考,回忆过去是否碰到过类似的问题。这种数学探索、创造的过程可没有一点逻辑。

只有当思绪的齿轮彼此啮合之后,数学家才能“感觉”到问题或者概念的条理。随后便可以形成定义,进行推导,最终把必要的论据打磨成一个简洁精妙的证明。

我们以“颜色”的概念为例,做一个科学类比。颜色的科学定义大概是“单色光线照射眼睛时产生的感觉”。我们可不能这样去教孩子。(“安杰拉,告诉我你的眼睛在接收到这个棒棒糖发出的单色光后产生了什么感觉……”)首先,你可以先教他们“蓝色”的概念。你可以一边给他们展示蓝色的球、门、椅子等物体,一边告诉他们“蓝色”这个词。然后你再用相同的方法教他们“红色”“黄色”和其他颜色。

重复这种过程许多次后,为了建立不同颜色的概念,你还需要再重新来一遍。“那扇门是蓝色的,这个盒子是红色的,那朵毛茛是什么颜色的呢?”如果孩子们能回答“黄色”,那就说明他们的脑海中已经形成了“颜色”这一概念。

孩子们不断成长,不断学习新的科学知识,可能有一天他们就会见到光线透过棱镜形成的光谱,然后学习光线的波长。在经过足够的训练,成为成熟的科学家之后,他们就能够精准地说出波长对应的颜色。但对“颜色”概念的精确理解并不能帮助他们向孩子解释“蓝色”是什么。在概念形成的阶段,用波长去清楚明白地定义“蓝色”是无用的。

数学概念也是如此。读者的头脑中已经建立了大量的数学概念:解二次方程、画图像、等比数列求和等。他们也能熟练地进行算术运算。我们的目标就是以这些数学理解为基础,把这些概念完善到更复杂的层面。我们会用读者生活中的例子来介绍新概念。随着这些概念不断建立,读者的经验也就不断丰富,我们就能以此为基础更进一步。

虽然我们完全可以不借助任何外部信息,用公理化的方法从空集开始构建整个数学体系,但这对于尚未理解这一体系的人来说简直就是无字天书。专业人士看到书里的一个逻辑构造之后,可能会说:“我猜这是‘0’,那么这就是‘1’,然后是‘2’……这一堆肯定是‘整数’……这是什么?哦,我明白了,这肯定是‘加法’。”但对于外行来说,这完全就是鬼画符。要想定义新概念,就要用足够的例子来解释它是什么,能用来做什么。当然,专业人士通常都是给出例子的那一方,可能不需要什么理解上的帮助。

2

基模

孩子们接着就会学习简单的算术(“假设你有五个苹果,给了别人两个,现在还剩几个”),最终建立起基模,来回答“5减2是多少”这种问题。算术有着非常精确的性质。如果3加2等于5,那么5减2也就等于3。孩子们在理解算术的过程中就会发现这些性质,之后他们就可以用已知的事实去推导新的事实。

假设他们知道8加2等于10,那么8加5就可以理解为8加2加3,那么这个和就是10加3,结果是13。孩子们就这样慢慢地建立了整数算术这一内容丰富的基模。

如果你这时问他们“5减6得多少”,他们可能会说“不能这么减”,或者心想成年人怎么会问这种傻问题,尴尬地咯咯笑。这是因为这个问题不符合孩子们脑海中减法的基模——如果我只有5个苹果,那不可能给别人6个。而在学习过负数之后,他们就会回答“-1”。为什么会有这种变化呢?这是因为孩子们原有的“减法”基模为了处理新的概念产生了变化。

在看到了温度计刻度或是了解了银行业务之后,对于“减法”概念的理解就需要改变。在这个过程中,可能仍会心存困惑(-1个苹果是什么样的?),但这些困惑最终都会得到令人满意的解释(苹果数量和温度计读数存在本质区别)。

可是很不幸,人不可能这样学习。据说2000多年前,欧几里得对托勒密一世说:“几何学习没有捷径。”除了意识到自己的困惑,了解困惑的成因也很重要。在阅读本书的过程中,读者将会多次感到困惑。这种困惑有时源于作者的疏忽,但一般可能是因为读者需要修正个人的认知才能理解更一般的情形。

这是一种建设性的困惑,它标志着读者取得了进步,读者也应当欣然接受——要是困扰太久那就另当别论了。同样,在困惑得到解决后,一种理解透彻的感觉就会伴随着莫大的喜悦油然而生,就好像完成了一幅拼图。数学确实是一种挑战,但这种达成绝对和谐的感觉让挑战成为了满足我们审美需求的途径。

3

一个例子

发展新观念的过程可以用数学概念的发展史来说明。这段历史本身也是一种学习过程,只不过它牵扯了很多人。负数的引入招致了大量反对声音:“你不可能比一无所有更穷了。”但在如今的金融世界,借记和信贷的概念早就让负数融入了日常生活。

另一个例子是复数的发展。所有数学家都知道,无论是正数还是负数,其平方都一定是正数。戈特弗里德·莱布尼茨当然也不例外。如果i是-1的平方根,那么i2=-1,因此i既不是正数,也不是负数。莱布尼茨认为它具有一种非常神秘的性质:它是一个非零数,不大于零,也不小于零。人们因此对于复数产生了巨大的困惑和不信任感。这种感觉至今仍然存在于部分人心中。

复数无法轻易地融入大多数人关于“数”的基模,学生们第一次见到它往往也会感到抗拒。现代数学家需要借助一个扩展的基模来让复数的存在变得合理。

假设我们用平常的方式把实数标在一根轴上:

在图1-1中,负数位于0的左边,正数位于0的右边。那i在哪?它不能去左边,也不能去右边。那些不接受复数的人就会说:“这就说明它哪也不能去。因为数轴上没有任何地方可以标记i,所以它不是数。”

然而我们并非毫无办法。我们可以用平面上的点来表示复数。(1758年,弗朗索瓦·戴维认为把虚数画在和实轴垂直的方向上是毫无意义的。幸好其他数学家和他意见相左。)实数位于实轴上,i位于原点上方一个单位长度的地方。而从原点出发,沿实轴前进x个单位,再向上移动y个单位(如果x和y为负数,就朝相反方向移动),就得到了x+iy这个数。因为i在实轴上方一个单位的地方,而不在实轴上,所以就不能用“i不存在于实轴上的任何位置”来反对i的存在了(见图1-2)。这样扩展后的基模就能毫无困难地接纳令人不安的复数。

这种做法在数学中相当常见。当特殊情形被推广为一般情形之后,有些性质依然存在。例如,复数的加法和乘法依然满足交换律。但原基模的某些性质(比如有关实数的顺序的性质)在推广后的基模(这里指复数的基模)中就不存在了。

这种现象非常普遍,并不限于学生身上,古往今来的数学家都曾有所体验。如果你研究的领域业已成熟,概念都得到了解释,并且开发出的方法也足以解决常见问题,那么教学工作就不会很困难。学生只需要理解原理,提高熟练度即可。

但如果像是把负数引入用自然数来计数的世界,或是在解方程时遇到复数那样,需要让数学系统发生根本性的变化时,大家都会感到困惑:“这些新玩意儿是怎么回事?和我想的根本不一样啊!”

这种情况会带来巨大的迷茫。有些人能坚定地、带着创新思维接纳并掌握新知识;有些人就只能深陷焦虑,甚至对新知识产生反感、抗拒的情绪。一个最著名的例子就发生在19世纪末期,而它最终也改变了20世纪和21世纪的数学。

4

自然数学与形成数学

艾萨克·牛顿在研究重力和天体运动时,人们把科学称为“自然哲学”。牛顿的微积分建立在古希腊几何和代数之上,而后者正是现实中算术运算的推广。

这种基于“现实中发生的事件”的数学持续到了19世纪末。当时数学研究的焦点从对象和运算的性质变成了基于集合论和逻辑证明的形式数学。这种从自然数学到形式数学的历史性过渡包含了视角的彻底改变,也带来了对于数学思维的深刻洞见。它对于从中小学的几何和代数学习向高等教育阶段的形式数学学习的转变有着至关重要的作用。

5

基于人类经验建立形式化概念

随着数学变得越来越复杂,新概念中有一些是旧知识的推广,有一些则是全新的思想。在从中学数学过渡到形式数学的过程中,你可能会觉得从零开始学习形式化的定义以及如何从基本原理进行形式化的推导才符合逻辑。但是过去50年的经验告诉我们,这种做法并不明智。

现如今我们对于人类发展数学思维的过程有了更深刻的认识,因此得以从实际研究中汲取教训,来理解为什么学生们对于概念的理解和课本想阐明的意思有细微偏差。我们提到这一点,也是为了鼓励读者仔细思考文字的准确含义,在概念之间建立紧密的数学关联。

要明智地对待学习过程。在实践中,我们不总是能够为遇到的每个概念给出精确的定义。比如,我们可能会说集合是“明确定义的一组事物”,但这其实是在回避问题,因为“组”和“集合”在此处有相同的意思。

在学习数学基础时,我们要准备好一步一步地学习新概念,而不是一上来就去消化一个严密的定义。在学习过程中,我们对于概念的理解将愈发复杂。有时,我们会用严谨的语言重新阐述之前不明确的定义(比如“黄色是波长为5500的光的颜色”)。新定义看起来会比作为基础的旧定义好得多,也更具吸引力。

那一开始就学习这个更好、更有逻辑的定义不就好了吗?其实未必如此。

这个更一般的定义不仅适用于数,还适用于集合。一个被定义的概念所具有的性质必须基于它的定义,用数学证明的方式推导出来。

第三部分将从自然数的公理和数学归纳法开始,逐步探讨一系列数系的公理化结构。接着,我们将展示如何用集合论的方法,从基本原理构建出整数、有理数和实数等数系。最终,我们将得到一系列公理,它们定义了实数系统,包括两种满足特定算术和顺序性质的运算(加法和乘法),以及“完备性公理”。

6

形式化系统和结构定理

这种从精心挑选的公理构建形式化系统的方法可以进一步推广,从而覆盖更多新的情况。和从日常生活中衍生出的系统相比,这种系统有着巨大优势。

只要一个定理可以通过形式化证明从给定的公理推导出来,它在任何满足这些公理的系统中就都成立。无论系统新旧都是如此。形式化的定理是不会过时的。

这些定理不仅适用于我们熟知的系统,还适用于满足给定公理的任何新系统。

这样就没必要一遇到新系统就重新验证自己的观念了。这是数学思维的一个重要进步。

另一个不那么明显的进步在于,形式化系统推导出的某些定理可以证明,该系统的一些性质使它可以用某种方法图形化,而该系统的另一些性质让它的一些运算可以用符号化方法完成。这样的定理被称为结构定理。比如,任何完备有序域都拥有唯一的可以用数轴上的点或者小数来表示的结构。

这就为形式化证明带来了全新的功能。我们不仅仅是花大量的篇幅来发展一套自洽的形式化证明方法,我们其实发展出了一套融合形式化、图形化和符号化运算的思维方式,把人类的创造力和形式化方法的精确性结合了起来。

7

更灵活地使用形式数学

在第四部分,我们将介绍如何在不同情境下应用这些更灵活的方法。首先我们会讨论群论,然后会讨论从有限到无限的两种扩张。一种是把元素个数的概念从有限集推广到无限集:如果两个集合的元素一一对应,就称它们具有相同的基数。基数和常规的元素个数有很多共通的性质,但它也有一些陌生的性质。

例如,我们可以从一个无限集(比如说自然数集)中拿走一个无限子集(比如说偶数集),剩下的无限子集(奇数集)和原集合有着相同的基数。因此,无限基数的减法和除法无法唯一定义。一个无限基数的倒数并不是基数。

那么一个无穷的数在一个系统内有倒数,在另一个系统内却没有。但仔细思考之后,我们就不应该惊讶于这些明显矛盾的事实。我们用来计数的自然数系统本来没有倒数,有理数和实数系统却有倒数。如果我们选择一些性质,推广不同的系统,那么得到不同的推广也不足为奇。

这就得到了一个重要的结论:数学是不断发展的,看起来不可能的概念可能在一个全新的形式框架下,在合适的公理下就能够成立了。

一百多年前,这种形式化的数学方法慢慢地流行了起来。而菲利克斯·克莱因写下了这样一段话:

而在同一页上他还提到:

“许多人认为教一切数学内容都可以或必须从头到尾采用推导方法,从有限的公理出发,借助逻辑推导一切。某些人想依靠欧几里得的权威来竭力维护这个方法,但它当然不符合数学的历史发展情况。实际上,数学的发展是像树一样的,它并不是有了细细的小根就一直往上长,倒是一方面根越扎越深,同时以相同的速度使枝叶向上生发。撇开比喻不说,数学也正是这样,它从对应于人类正常思维水平的某一点开始发展,根据科学本身的要求及当时普遍的兴趣的要求,有时朝着新知识方向发展,有时又通过对基本原则的研究朝着另一方向进展。”

本书也将像这样,从学生在中小学所学知识开始,在第二部分深入挖掘基本思想,在第三部分中用这些思想构建数系的形式结构,在第四部分把这些方法应用到更多形式结构上。而在第五部分,我们对于数学基础的介绍将告一段落,转而深入讨论基本逻辑原理的发展,从而支撑读者未来在数学方面的成长。

《基础数学讲义:走向真正的数学》(人民邮电出版社,2024年11月版)

THE END
1.算术真与悖论(精)(豆瓣)图书算术真与悖论(精) 介绍、书评、论坛及推荐https://book.douban.com/isbn/978-7-03-051962-7/
2.微博5.中国应该放弃18亿亩耕地红线,没有粮食,可以向美国购买; 6.钓鱼岛应该给日本; 7.汪精卫不是汉奸,投降是正确的选择,卖国不是错误; 8.廉租房不应该有厕所; 9.应该通过提高学费,消灭贫困生; 10.下岗职工,利国利民,提高了经济效率; 11.没有必要追求领土完整,领土少一块,与我何干。 https://m.weibo.cn/status/IhvAwbNA8
3.《悖论简史》罗素的集合AcFun弹幕视频网也许弗雷格可以解决这个悖论。罗素的来信到达弗雷格手里时,后者的《算术的基本规律》才刚刚付梓。在罗素受到反复的针扎般的折磨时,弗雷格在仅仅一次刺痛之后就明白了其中的道理。他很快意识到他的第五定律必定是一个矛盾。(这个公理允许通过主张“两个集合相等,当且仅当对于所有可能的自变量,它们对应的函数值都一致”来https://www.acfun.cn/a/ac40543445
4.算术命题之真的哲学辨析——以康德和佛雷格数学哲学思想为例事实上,当把目光转向人类思想发展史的时候,发现一直以来,人类都在不断地追问理性的基础,而对算术命题之真的探索就属于这个范围。 康德明确区分了分析和综合的概念,并认为包含算术与几何在内的数学命题都是综合的,算术命题之真建立在主体对纯粹直观运用的基础之上。自此之后,很多数学家或者哲学家都表达了对这个问题的https://d.wanfangdata.com.cn/thesis/D02018210
5.算术命题之真的哲学辨析在算术方面,弗雷格表现出了与康德完全不同的数学哲学思想。在《算术基础》中,他试图为数寻找某种基于逻辑的定义,并以此说明算术命题是先天的并且是逻辑的,算术命题之真建立在定义及逻辑证明的基础之上。遗憾的是,罗素悖论的出现阻碍了他的计划。而从另一个角度来看,弗雷格期望完全用逻辑来解释算术,这也是试图在建立https://wap.cnki.net/lunwen-1020763711.nh.html
6.眼中有文笔下有智——《多元视角下的数学文化》摘录笔记1.在这个公式里,“五朵金花”中:0、1来自算术,i来自代数,来自几何,e来自分析,它们妙不可言地同时盛开,两个最著名的超越数e和结伴而行,实数与虚数溶于一炉。将其称之为“数学中最美的公式”,可谓当之无愧。(86页) 2.9 莫比乌斯带与克莱因瓶 https://www.jianshu.com/p/a42f057f86f7
7.科学网—Zmn0593梁灿文:罗素悖论与无穷争议新解简述:第一章详细介绍了罗素悖论与当代解悖方案,总结研究过程中的误区和困难。第二章通过分析指出罗素悖论与无穷假设的密切联系,据此提出用潜无穷假设消解悖论的方法并解释了相关语义逻辑问题。第三章则着重探讨实无穷假设的存在必要性与无穷计数原理的可靠性,指出实无穷是为习惯和需求编造的无意义符号,而无穷计数原理的https://blog.sciencenet.cn/blog-755313-1295464.html
8.《玩不够的数学:算术与几何的妙趣》:第一章平面上的几何艺术人们往往从悖论中获得思维的乐趣,而几何学的悖论就是不可能图形。如今我们已创造出数千种这样的二维图像,不断挑战我们的眼睛和思维。三角形、披萨饼、七巧板也蕴藏着无穷的变化和巧妙的发现。 不可能!你确信吗? 人们从透视错觉得来灵感,创造了神秘的“不可能图形”。人类的视觉系统让我们觉得这样的图形很奇怪。然而https://m.blog.csdn.net/GarfieldEr007/article/details/50760501
9.课程无限猴子定理与芝诺悖论 ● 7.2.1 真会狡辩 闫统江 ● 7.3 希尔伯特旅馆 ● 7.3.1 这个旅馆真牛 闫统江 第八章 概率破玄机,统计解迷离 ● 8.1 三门问题 ● 8.1.1 光凭经验不行 许晓婕 ● 8.2 几个悖论 ● 8.2.1 究竟对不对? 许晓婕 绪章绪论 数学,在比人类文明历史起源更为久远至https://higher.smartedu.cn/course/6260b12af29a9e60d0f25a59
10.悖论和类型论堆放在桌上的是他即将完成的新作《算术的基本规律》的手稿。他手中拿着的是英国青年数学家罗素给他的一封信。信上揭示了出现于集合论基础部分中的一个悖论。集合论是弗雷格的《算术的基本规律》一书的基础。如果果真集合论出了毛病,当然《规律》的立论也会成问题。此时,面对罗素诘难的弗雷格,真是束手无策、进退https://worldscience.cn/c/1986-04-25/642326.shtml
11.罗素悖论阻碍了集合论和整个数学的发展。罗素悖论阻碍了集合论和整个数学的发展。 A. 正确 B. 错误 题目标签:阻碍集合论罗素如何将EXCEL生成现金流量,都考虑它所发生的时刻 及其时间价值,来发展经济效果评价的方法称为动态指标,比拟真 实地反映查看完整题目与答案 知识点:算术运算符:+、—、*、/、%%:参与运算的量均为整型。/:当除号左右两边https://www.shuashuati.com/ti/fc0d43a1abb54e02a1ab779cf15dc052.html?fm=bd3d289f95e519345f4641f6850ac6affa
12.脑与数学最新章节斯坦尼斯拉斯·迪昂著我们会看到,当大脑面临进化过程中没有遇到过的任务,比如两位数的乘法,它会调动一个庞大的脑区网络结构,虽然这些脑区的原始功能与两位数乘法无关,但是将它们结合起来就能够达到目标。除了与老鼠和鸽子一样的近似累加器,人脑中很可能不包含其他任何负责数字和数学任务的“算术单元”。然而,人脑通过运用其他替代回路弥补https://m.zhangyue.com/readbook/12743770/4.html?showDownload=1