——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求
——中国科学院办院方针
院况简介
院领导集体
机构设置
创新单元
科技奖励
科技期刊
科技专项
中国科学院院级科技专项体系包括战略性先导科技专项、重点部署科研专项、科技人才专项、科技合作专项、科技平台专项5类一级专项,实行分类定位、分级管理。
文化副刊
中国科学院学部
中国科学院院部
语音播报
在神经系统中,有一种内在机制维持其正常功能,这称为稳态可塑性。进一步可理解为,当神经元的兴奋性处于持续改变状态时,神经元会主动启动程序化的分子和细胞反应,对突触功能进行调节以对抗神经活性的持续性改变,从而使突触传递和神经兴奋性维持在相对稳定的水平,维持正常的神经功能。
然而,神经系统的稳态可塑性这一机制到底是如何启动的,至今仍是个谜。
可塑性是指神经系统因内在或外在因素影响转变为另一个构造态或功能态。它是大脑认知功能的基础,人类正常学习、记忆和认知等都是大脑可塑性的体现。
对于神经系统来说,维持自身稳态性和可塑性至关重要。已有研究表明,神经系统的稳态可塑性参与调控多种重要的生理过程,如视、听觉皮层发育;稳态可塑性也受到睡眠/觉醒周期等生理过程的调控等。
然而,稳态可塑性有时也会失常,使精神、记忆或认知出现异常。
除此之外,研究还发现,神经稳态可塑性可能是精神药物的重要药理学机制。氯胺酮和锂盐是两种典型的精神药物,用于快速抗抑郁的氯胺酮可以诱导突触放大,用于控制躁狂的心境稳定剂锂盐则诱导突触缩小。
围绕突触缩放范式探究启动机制
神经稳态可塑性的作用非常显著,但促使神经元主动起始调节的分子机制研究迟迟未取得重要进展。
在稳态可塑性研究中,突触缩放是最常用的实验模型。所谓突触缩放,是指在神经活性水平全局性的持续性降低或升高的条件下,神经元之间相互连接的特化结构,即突触,会分别发生代偿性的功能增强或抑制,以对抗这一持续性的变化,维持原先的突触传递水平。周子凯合作团队也采用了这一范式。
研究人员首先使用河豚毒素阻断体外培养的原代皮层神经元的动作电位,剥夺神经活性;然后通过技术改进,纯化了神经元培养基中极其微量的蛋白质,其中含有神经元分泌的驱动突触放大的信号分子。经过分析,得到首个突触放大条件下的神经元蛋白质分泌组。比较发现,分泌组中的NGPF2急剧且短暂升高。
“通过神经电生理记录、谷氨酸能AMPA受体膜定位及树突棘形态学分析发现,内源性和重组表达的NGPF2蛋白都可显著促进突触传递、树突棘成熟等突触放大效应。”周子凯说。
在下游的分子机制层面,进一步研究发现,在上述神经失活条件下,NGPF2是由FMRP1调控的蛋白翻译机制快速合成并大量分泌到外周,进而激活受体酪氨酸激酶ALK(渐变性淋巴瘤激酶),引起下游LIMK-cofilin介导的细胞骨架重组,以支撑突触传递的增强及树突棘成熟,最终表现为神经活性剥夺所引起的代偿性突触功能增强,即突触放大。
“后续,我们会围绕以持续性神经失活为主要病理过程的神经系统疾病,研究将重组NGPF2蛋白作为治疗这类疾病的生物技术药物。”周子凯说。