高考数学必考知识点

错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。易错点2忽视集合元素的三性致误

错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。

易错点3四种命题的结构不明致误

错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的

否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。

易错点4充分必要条件颠倒致误

错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

易错点5逻辑联结词理解不准致误

错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p∨q真<=>p真或q真,命题p∨q假<=>p假且q假(概括为一真即真);命题p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括为一假即假);┐p真<=>p假,┐p假<=>p真(概括为一真一假)。函数与导数

易错点6求函数定义域忽视细节致误

错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的'解集就是该函数的定义域。在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。函

数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。易错点7带有绝对值的函数单调性判断错误

错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

易错点8求函数奇偶性的常见错误

错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。

易错点9抽象函数中推理不严密致误

错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。

易错点10函数零点定理使用不当致误

错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。

易错点11混淆两类切线致误

错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。

易错点12混淆导数与单调性的关系致误

错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。

易错点13导数与极值关系不清致误

错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。

数列

易错点14用错基本公式致误

错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。易错点15an,Sn关系不清致误

再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。这里需要有侧重点。

应当说我们后面六个大题基本上是围绕着这样六个板块来进行。这六个板块肯定是我们的核心内容之一。再比如说现在我们高考当中要体现对数学思想方法的考察,数学思想方法以前考察四个方面,函数和方程思想,数形结合思想,分类讨论,等价转换,现在又增加了三个,原来这四个方面当中有两类做了改造。函数和方程思想,数形结合思想,分类讨论改成了分类讨论与整合,等价转换转为划归与转化。有限和无限思想,特殊和一般的思想。

像北京往年考了一道题,一个班里面设计一个八边形的班徽,给了等腰三角形边长为一,现在让你考虑面积多大,按照常规说法,肯定需要考虑四个三角形面积,二分之一乘上一再乘上一,再乘上四,中间还是正方形,利用余弦定理求等腰三角形底边的平方就可以了,最后再一加就是我们要的面积。这个问题并不是很麻烦,不管怎么说肯定需要计算,你至少知道三角形面积怎么求,还得考虑余弦定理,再相加还有运算问题,说不定哪个地方没有记准,可能出现这样那样的问题。

一、函数的单调性

在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.

f′(x)≥0f(x)在(a,b)上为增函数.

f′(x)≤0f(x)在(a,b)上为减函数.

1、f′(x)>0与f(x)为增函数的关系:f′(x)>0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0,所以f′(x)>0是f(x)为增函数的充分

不必要条件.

2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.

3、可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.

二、函数的极值

1、函数的极小值:

函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0f=""x="">0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.

2、函数的极大值:

函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的`左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.

极小值点,极大值点统称为极值点,极大值和极小值统称为极值.

三、函数的最值

1、在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.

2、

若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.

四、求可导函数单调区间的一般步骤和方法

1、确定函数f(x)的定义域;

2、求f′(x),令f′(x)=0,求出它在定义域内的一切实数根;

3、把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;

4、确定f′(x)在各个开区间内的符号,根据f′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.

五、求函数极值的步骤

1、确定函数的定义域;

2、求方程f′(x)=0的根;

3、用方程f′(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;

4、由f′(x)=0根的两侧导数的符号来判断f′(x)在这个根处取极值的情况.

六、求函数f(x)在[a,b]上的最大值和最小值的步骤

1、求函数在(a,b)内的极值;

2、求函数在区间端点的函数值f(a),f(b);

3、将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.

角的概念的推广.弧度制.

任意角的三角函数.单位圆中的三角函线.同角三角函数的基本关系式.正弦、余弦的诱导公式.

两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.

正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.

正弦定理.余弦定理.斜三角形解法.

考试要求

(1)理解任意角的概念、弧度的'意义能正确地进行弧度与角度的换算.

(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.

(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.

(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.

(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.

(6)会由已知三角函数值求角,并会用符号arcsinxarc-cosxarctanx表示.

(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.

(8)“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tanαcotα=1”.

解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法。

二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混。二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r

你掌握了三种常见的概率公式吗(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式。)

二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。

通项公式:它是第r+1项而不是第r项;

事件A发生k次的概率:。其中k=0,1,2,3,…,n,且0

求分布列的'解答题你能把步骤写全吗

如何对总体分布进行估计(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。)

你还记得一般正态总体如何化为标准正态总体吗(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)

一、排列组合篇

1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机事件的发生存在着规律性和随机事件概率的意义。

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8.会计算事件在n次独立重复试验中恰好发生k次的概率.

二、立体几何篇

知识整合

1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2.判定两个平面平行的方法:

(1)根据定义--证明两平面没有公共点;

(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;

(3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质:

(1)由定义知:“两平行平面没有公共点”。

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那

么它们的交线平行“。

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

(5)夹在两个平行平面间的平行线段相等。

(6)经过平面外一点只有一个平面和已知平面平行。

以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。

解答题分步骤解答可多得分

1.合理安排,保持清醒。数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。

2.通览全卷,摸透题情。刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。

三、数列问题篇

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3.培养学生善于分析题意,富于联想,以适应新的'背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.

四、导数应用篇

专题综述

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

1.导数的常规问题:

(1)刻画函数(比初等方法精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。

1.导数概念的理解。

2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3.要能正确求导,必须做到以下两点:

(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

五、解析几何(圆锥曲线)

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

1、几何问题代数化。

2、用代数规则对代数化后的问题进行处理。

在(a,b)内可导函数f(x),f(x)在(a,b)任意子区间内都不恒等于0.

f(x)f(x)在(a,b)上为增函数.

f(x)f(x)在(a,b)上为减函数.

函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f(a)=0,而且在点x=a附近的左侧f(x)0,右侧f(x)0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.

函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f(b)=0,而且在点x=b附近的左侧f(x)0,右侧f(x)0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.

2、若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.

2、求f(x),令f(x)=0,求出它在定义域内的一切实数根;

3、把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的'顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;

4、确定f(x)在各个开区间内的符号,根据f(x)的符号判定函数f(x)在每个相应小开区间内的增减性.

2、求方程f(x)=0的根;

3、用方程f(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;

4、由f(x)=0根的两侧导数的符号来判断f(x)在这个根处取极值的情况.

特别提醒:

1、f(x)0与f(x)为增函数的关系:f(x)0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-,+)上单调递增,但f(x)0,所以f(x)0是f(x)为增函数的充分不必要条件.

2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.

一.例题讲解:

【例1】已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满足关系

A)M=NPB)MN=PC)MNPD)NPM

分析一:从判断元素的共性与区别入手。

解答一:对于集合M:{x|x=,m∈Z};对于集合N:{x|x=,n∈Z}

对于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。

分析二:简单列举集合中的元素。

解答二:M={…,,…},N={…,,,,…},P={…,,,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。

=∈N,∈N,∴MN,又=M,∴MN,

=P,∴NP又∈N,∴PN,故P=N,所以选B。

点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。

变式:设集合,,则(B)

A.M=NB.MNC.NMD.

解:

当时,2k+1是奇数,k+2是整数,选B

【例2】定义集合A*B={x|x∈A且xB},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为

A)1B)2C)3D)4

分析:确定集合A*B子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。

解答:∵A*B={x|x∈A且xB},∴A*B={1,7},有两个元素,故A*B的子集共有22个。选D。

变式1:已知非空集合M{1,2,3,4,5},且若a∈M,则6a∈M,那么集合M的个数为

A)5个B)6个C)7个D)8个

变式2:已知{a,b}A{a,b,c,d,e},求集合A.

解:由已知,集合中必须含有元素a,b.

集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

评析本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有个.

【例3】已知集合A={x|x2+px+q=0},B={x|x24x+r=0},且A∩B={1},A∪B={2,1,3},求实数p,q,r的值。

解答:∵A∩B={1}∴1∈B∴124×1+r=0,r=3.

∴B={x|x24x+r=0}={1,3},∵A∪B={2,1,3},2B,∴2∈A

∵A∩B={1}∴1∈A∴方程x2+px+q=0的两根为-2和1,

∴∴

变式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求实数b,c,m的值.

解:∵A∩B={2}∴1∈B∴22+m2+6=0,m=-5

∴B={x|x2-5x+6=0}={2,3}∵A∪B=B∴

又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B满足:A∪B={x|x>-2},且A∩B={x|1

分析:先化简集合A,然后由A∪B和A∩B分别确定数轴上哪些元素属于B,哪些元素不属于B。

解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。

综合以上各式有B={x|-1≤x≤5}

变式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=,求a,b。(答案:a=-2,b=0)

点评:在解有关不等式解集一类集合问题,应注意用数形结合的.方法,作出数轴来解之。

变式2:设M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有满足条件的a的集合。

解答:M={-1,3},∵M∩N=N,∴NM

①当时,ax-1=0无解,∴a=0②

综①②得:所求集合为{-1,0,}

【例5】已知集合,函数y=log2(ax2-2x+2)的定义域为Q,若P∩Q≠,求实数a的取值范围。

分析:先将原问题转化为不等式ax2-2x+2>0在有解,再利用参数分离求解。

解答:(1)若,在内有有解

令当时,

所以a>-4,所以a的取值范围是

变式:若关于x的方程有实根,求实数a的取值范围。

解答:

点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。一.知识归纳:

1.集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(aA和aA,二者必居其一)、互异性(若aA,bA,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)集合的表示方法:常用的有列举法、描述法和图文法

3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N*

2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则AB(或AB);

2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)

3)交集:A∩B={x|x∈A且x∈B}

4)并集:A∪B={x|x∈A或x∈B}

5)补集:CUA={x|xA但x∈U}

注意:①A,若A≠,则A;

②若,,则;

③若且,则A=B(等集)

3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、的区别;(2)与的区别;(3)与的区别。

4.有关子集的几个等价关系

①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

5.交、并集运算的性质

①A∩A=A,A∩=,A∩B=B∩A;②A∪A=A,A∪=A,A∪B=B∪A;

③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

THE END
1.数学与逻辑探究变量之间的关系数理逻辑的艺术首先,让我们从最简单的情况开始。假设有两个变量A和B,它们之间存在直接比例关系,即当A增加时,B也随之增加;当A减少时,B也会相应减少。这一关系可以通过直线方程表达: y = k * x + b 其中x代表变量A,y代表变量B,k为比率常数,b为偏移项。当k等于1且b等于0时,我们得到一个斜率为1的直线,即两者完全对应https://www.ybtkezrpj.cn/ai-qing-fen-zu/204678.html
2.数学学习中的记忆技巧抛物线平行线勾股定理画面构建:脑海中浮现出一幅画面:一个直角三角形,两条直角边 a 和 b 像是两根柱子,斜边 c 是一根横梁。a 和 b 的长度分别为 3 和 4,c 的长度为 5。你可以看到 a 和 b 的平方和(9 + 16 = 25)正好等于 c 的平方(25)。 金句提示:“联想是记忆的桥梁,它让抽象的公式变得生动形象。” 案例2:三角https://www.163.com/dy/article/JI81SUAP0516TH10.html
3.离散数学知识点总结命题逻辑2.假设后件B为假,若在此假设下能推出前件A也为假,则A=>B也成立 基础重言蕴含式 重言蕴含是关系符,不是运算符。 重演蕴含式具有自反性,传递性,反对称性 如果A=>B且A=>C,则A=>B∧C 如果A=>B且C=>B,则A∨C=>B 设AB是任意两个命题公式,A?B的充要条件是A=>B且B=>A https://blog.csdn.net/qq_39736597/article/details/113872507
4.表达式(┐A∨B)∧(C∨D)的逆波兰表示为D、A┐B∨∧CD∨ 查看答案 单选题文法G:S→xSx|y所识别的语言是___。 A、 xyx B、 (xyx)* C、xnyxn(n≥0) D、 x*yx* 查看答案 单选题下列___优化方法不是针对循环优化进行的。 A、 强度削弱 B、 删除归纳变量 C、 删除多余运算 D、 代码https://so.kaoshibao.com/detail/509867095.html
5.寒假作业(理化)教育教学5. 绝缘细线上端固定,下端挂一轻质小球a,a的表面镀有铝膜。在a的近旁有一绝缘金属球b,开始时,a、b都不带电,如图所示。现使b带正电,则(? ?) A.b将吸引a,吸住后不放开 B.b先吸引a,接触后又把a排斥开 C.a、b之间不发生相互作用 D.b立即把a排斥开 http://www.tasyzx.cn/show.php?filename=294
6.山东协和学院A.额骨 B.顶骨 C.枕骨 D.蝶骨 E.筛骨 2.颅中窝的交通( ) A.筛孔 B.内耳门 C.颈静脉孔 D.卵圆孔 E.舌下神经管 3.骨的伸长是由哪种结构决定的( ) A.关节软骨 B.骨膜 C.骺软骨 D.骨髓 E.都不对 4.踝关节不能作( ) A.跖屈运动 B.背屈运动 C.内收运动 D.外展运动 E.旋转运动 https://www.sdxiehe.edu.cn/m/view.php?id=6207
7.完全平方公式a+b,ab,ab,a方b方(ab)方,(a+b)方之间的关系答案解析 查看更多优质解析 解答一 举报 (a-b)2=a2+b2-2ab(a+b)2=a2+b2+2aba2-b2=(a-b)(a+b) 解析看不懂?免费查看同类题视频解析查看解答 更多答案(2) 相似问题 a+b=6 ab=4 ,则 a-b=?用完全平方公式 a^2 - ab + - b^2是不是完全平方公式,原因是 已知a+bhttps://qb.zuoyebang.com/xfe-question/question/bdbf90ac5ac4d3e2fb12d19a3af06fb6.html