什么是逻辑?定义和概念高中语文基础知识总结高中语文基础知识大全

概念是思维的基本形式之一,反映客观事物的一般的、本质的特征。一个概念可有其内涵和外延。内涵是指概念所反映的事物的本质属隆的总和,也是概念的内容。外延是指一个概念所确指的对象及范围

2概念之间的关系

根据两个概念的外延有无重合或重合部分的多少,概念间的关系可分为以下几种:

A全同关系两个概念的外延完全重合,反映的是同一类事物,但内涵却不完全相同。例如:“银川市”和“宁夏回族自治区的首府”这两个概念就是全同关系

B种属关系:一个概念的外延包含在另一个概念之中,例如“中学生”与“学生”,“语文教材”和“教材”这两组概念是种属关系。

C交叉关系两个概念的外延部分重合。例如:“学生”和“共青团员”,“教师”与“先进工作者”这两组概念就是交叉关系。

D矛盾关系:两个概念有一个共同的属概念,两个概念的外延是排斥的,它们的外延加起来等于属概念的外延。例如,“壮会主义国家”和“非社会主义国家”这两个概念就是矛盾关系的概念。

E反对关系:两个概念有一个共同的属概念,两个概念的外延是排斥的它们的外延加起来小于属概念的外延。例如,“社会主义国家”和‘资本主义国家”这两个概念就是反对关系的概念。

命题

是运用概念进行判断的语言形式是断定或陈述事物清况的思维单位

2命题与判断

命题不是指判断本身。当相异判断具有相同语义的时候,它们表达相同的命题。在同一种语言中两个相异判断也可能表达相同的命题。例如,“雪是白的”这个命题也可以说成“冰的小结晶是白的”,之所以是相同命题,取决于冰的小结晶可视为雪的有效定义.

3命题与语句

推理

1定义是由已知命题得出新的命题的思维过程.往往要通过复句的语言形式来体现2语言形式:推理的语言形式为表示因果关系的复句或具有因果关系的句群。常用“因为所以~一”“由于因而”“因此~由此可见”“之所以是因为”等作为推理的关联词3种类:按推理过程的思维方向划分,可分为如下几类

A演绎推理

由普遍性的前提推出特殊性的结论和推理。演绎推理有三段论、假言推理和选言推理等形式。三段演绎法是由一个共同概念联系着的两个性质判断作前提,推出另一个性质判断作结论的推理方法

B归纳推理

由特殊的前提推出普遍性结论的推理。归纳推理有以下几种类型:完全归纳法、求同法、求异法等。综合归纳法是以大量个别知识为前提概括出一个一般性结论的推理方法。一C类比推理

从特殊性前提推出特殊性结论的一种推理,也就是从一个对象的属性推出另一对象也可能具有这种属性。

THE END
1.四种命题和充要条件的具体概念否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序。https://edu.iask.sina.com.cn/jy/2RCejKOytez.html
2.(完整版)常用逻辑用语知识点总结经管文库(原现*两个命题为互逆命题或互否命题,它们的真假性没有关系.二、充分条件与必要条件 1、定义 1.如果pqhttps://bbs.pinggu.org/thread-12945398-1-1.html
3.洛克《人类理解论(Anessayconcerninghumanunderstanding在洛克那里,诸如实体、性质、语词、知识、命题、真理等概念都具有一种心理学经验的熟悉感。除了一种宏大而近乎完美的概念框架,洛克在许多具体的领域也是开拓性的:伦理学的享乐主义与基督教的观念交互涌现,尤其是前者,俨然已经是功利主义的先声;洛克对人的同一性(identity of man)和人格同一性(personal identity)的https://book.douban.com/review/5429327/
4.2024国考行政执法类行测命题变化解读公务员考试网根据上述定义,下列哪项中的数字最大?A.■◆B.◆◆C.■◇D.◆◇85.人际关系图,是用一套特定的符号来表示团体内成员之间各种关系的图形。依据前期的调查,将团体成员的关系分为“吸引”“排斥”“无关”三类。图中圆圈内的字母是团体内每一成员的代号。实线与虚线表示相互关系。其中实线表示吸引关系,虚线表示https://www.huatu.com/2023/1126/2706013.html
5.教师资格证(小学)思维导图模板在师生关系上,尊重赞赏 自我提升强调反思 在教育教学上强调帮助、引导 合作 与其他教育工作者 教师的劳动特点 复杂性和创造性 长期性和间接性 主体性和示范性 连续性和广泛性 教师的专业发展 要求 终身学习者 反思的实践者 衡于研究者 重视沟通,提升交往和合作能力 https://www.processon.com/view/5ee0eccf07912929cb392b51
6.常用逻辑用语(1)命题及其关系①理解命题的概念.——青夏教育精英从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.(1)写出f(5.2)的值及g(x)的值域;(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式https://m.1010jiajiao.com/timu_id_169864
7.[《习坎文摘》第61期]中国高考评价体系及说明湖北省沙市中学(一)情境与情境活动的定义………17 (二)情境的分类和情境活动的分层……18 (三)情境和“四层”“四冀”的关系……18 (四)情境在命题中的运用……20 后记……21 ……中国高考评价体系是深化新时代高考内容改革的基础工程、理论支撑和实践指南,对发展素质教育、推进教育公平、实现教育现代化、建设教育强国、办好http://www.hbsszx.com/PrintArticle/20487
8.课程避免在使用词项、做出判断、形成命题、进行推理时出现混淆概念或偷换概念的逻辑错误。 ●2.1概念是什么 这一节介绍有关概念的知识。通过本节的学习,要在理解概念的定义、概念的基本特征内涵和外延、概念的种类及概念间的关系等基本理论的基础上,熟练地掌握定义、划分、限制和概括等有关明确概念、运用概念的逻辑方法,https://higher.smartedu.cn/course/62354cc69906eace048d8072
9.身边不容忽视的若干土地理念问题(1997年~2019年)更重要的是,这种管理体系能够绝然分清“农调耕地”各种利用类型与原来不属于耕地范畴作为独立地类的园地、草地、水面之间的空间分布及其数量关系。如果国土资源部地籍司要弄清北京市一定时限范围内农用土地利用的实际情况,即不管其来源如何有多少土地用于种植、多少土地用于养殖、多少土地用于设施种植和养殖的话,只要把这些http://www.wyzxwk.com/Article/jingji/2020/06/420291.html
10.fakerlove/discretemathematics命题常元(proposition constants):表示具体命题及表示常命题的p,q,r,s等和t,f。 命题变元(proposition variables):以“真、假”为取值范围的变量,仍用p,q,r,s等表示。 命题公式简称公式,采用大写A,B,C等表示。 1.2.2 命题公式的定义 命题常元和命题变元是命题公式,称作原子公式或原子。 https://gitee.com/fakerlove/discrete-mathematics
11.教心学重点5.学习策略与不同类型的学习定义:学习者在学习活动中,为了达到有效的学习目的而采用的规则、方法、技巧及其调控方式的综合。 学习策略和学习方法的关系: 学习策略不等同学习方法 学习策略范围更广,学习策略涉及多种方法及其使用规则,以及如何改变不同学习方法。 (二)学习策略的分类 提出者:麦克卡(麦基奇) http://www.cqwenbo.net/wap_doc/16870853.html
12.离散数学——命题逻辑谓词逻辑集合与关系知识点命题的定义:具有确定真值的陈述句。 二、联结词(简单不做赘述) 1.否定:? 2.合取:∧ 3.析取:∨ 4.条件:→ 5.双条件:? 三、命题公式与翻译 四、真值表与等价公式 1.真值表:根据命题公式的真值可简单构建,示例:构造?P∨Q的真值表如下 https://blog.csdn.net/weixin_74727063/article/details/135305454
13.数学逻辑范文12篇(全文)著名经济学家、数学家凯恩斯 (J.M.Keynes) 给概率所下的定义是: 令前提由任一命题集h组成, 结论由任意命题集a组成.若对任一h, 以程度r证明合理信念程度a是正当的, 则我们说在a和h之间存在程度r的概率关系.用符号表示就是a/h=r. 凯恩斯认为概率逻辑就是研究这种关系的逻辑. https://www.99xueshu.com/w/ikeyfii3iyj2.html
14.吉林大学离散数学(国家级精品课)4.6树及其等价命题[25] 3.1命题定义与联结词 2102播放 26:54 [26] 3.2命题公式与解释 2039播放 34:02 [27] 3.3等价关系及其证明 1984播放 48:04 [28] 3.4完备集 1390播放 23:20 [29] 3.5蕴涵关系基本概念 1723播放 33:59 [30] 3.6演绎的基本理论 1333播放 38:52 [32] 3.8文字、子句、短语与范式 961播放 https://open.163.com/newview/movie/free?pid=CFTMQ9FG7&mid=EFTNI8CHE