高中不等式知识点总结

在平日的学习中,是不是听到知识点,就立刻清醒了?知识点是指某个模块知识的重点、核心内容、关键部分。为了帮助大家更高效的学习,下面是小编收集整理的高中不等式知识点总结,希望能够帮助到大家。

一、知识点

1.不等式性质

比较大小方法:

(1)作差比较法

(2)作商比较法

不等式的基本性质

①对称性:a>bb>a

②传递性:a>b,b>ca>c

③可加性:a>ba+c>b+c

④可积性:a>b,c>0ac>bc;

a>b,c<0ac

⑤加法法则:a>b,c>da+c>b+d

⑥乘法法则:a>b>0,c>d>0ac>bd

⑦乘方法则:a>b>0,an>bn(n∈N)

⑧开方法则:a>b>0,

2.算术平均数与几何平均数定理:

(1)如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时等号)

(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则

重要结论

1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;

(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。

3.证明不等式的常用方法:

比较法:比较法是最基本、最重要的方法。当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。

综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。综合法的放缩经常用到均值不等式。

分析法:不等式两边的联系不够清楚,通过寻找不等式成立的充分条件,逐步将欲证的不等式转化,直到寻找到易证或已知成立的结论。

4.不等式的解法

(1)不等式的有关概念

同解不等式:两个不等式如果解集相同,那么这两个不等式叫做同解不等式。

同解变形:一个不等式变形为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形叫做同解变形。

提问:请说出我们以前解不等式中常用到的同解变形

去分母、去括号、移项、合并同类项

(2)不等式ax>b的解法

①当a>0时不等式的解集是{x|x>b/a};

②当a<0时不等式的解集是{x|x

③当a=0时,b<0,其解集是R;b0,其解集是ф。

(3)一元二次不等式与一元二次方程、二次函数之间的关系

(4)绝对值不等式

|x|0)的解集是{x|-a

oo

-a0a

|x|>a(a>0)的解集是{x|x<-a或x>a},几何表示为:

小结:解绝对值不等式的关键是-去绝对值符号(整体思想,分类讨论)转化为不含绝对值的不等式,通常有下列三种解题思路:

(1)定义法:利用绝对值的意义,通过分类讨论的方法去掉绝对值符号;

(2)公式法:|f(x)|>af(x)>a或f(x)<-a;|f(x)|

(3)平方法:|f(x)|>a(a>0)f2(x)>a2;|f(x)|0)f2(x)

(5)分式不等式的解法

(6)一元高次不等式的解法

数轴标根法

把不等式化为f(x)>0(或<0)的形式(首项系数化为正),然后分解因式,再把根按照从小到大的顺序在数轴上标出来,从右边入手画线,最后根据曲线写出不等式的解。

(7)含有绝对值的不等式

定理:|a|-|b|≤|a+b|≤|a|+|b|

|a|-|b|≤|a+b|

中当b=0或|a|>|b|且ab<0等号成立

|a+b|≤|a|+|b|

中当且仅当ab≥0等号成立

推论1:|a1+a2+a3|≤|a1|+|a2|+|a3|

推广:|a1+a2+...+an|≤|a1|+|a2|+...+|an|

推论2:|a|-|b|≤|a-b|≤|a|+|b|

二、常见题型专题总结:

专题一:利用不等式性质,判断其它不等式是否成立

1、a、b∈R,则下列命题中的真命题是(C)

A、若a>b,则|a|>|b|B、若a>b,则1/a<1/b

C、若a>b,则a3>b3D、若a>b,则a/b>1

2、已知a<0.-1

A、a>ab>ab2B、ab2>ab>a

C、ab>a>ab2D、ab>ab2>a

3、当0

A、(1a)1/b>(1a)bB、(1+a)a>(1+b)b

C、(1a)b>(1a)b/2D、(1a)a>(1b)b

4、若loga3>logb3>0,则a、b的关系是(B)

A、0a>1

C、0

5、若a>b>0,则下列不等式①1/a<1a2="">b2;③lg(a2+1)>lg(b2+1);④2a>2b中成立的是(A)

A、①②③④B、①②③C、①②D、③④

(二)比较大小

1、若0<α<β<π/4,sinα+cosα=a,sinβ+cosβ=b,则(A)

A、abC、ab<1ab="">2

2、a、b为不等的正数,n∈N,则(anb+abn)-(an-1+bn-1)的符号是(C)

A、恒正B、恒负

C、与a、b的大小有关D、与n是奇数或偶数有关

3、设1lg2x>lg(lgx)

4、设a>0,a≠1,比较logat/2与loga(t+1)/2的大小。

分析:要比较大小的式子较多,为避免盲目性,可先取特殊值估测各式大小关系,然后用比较法(作差)即可。

(三)利用不等式性质判断P是Q的充分条件和必要条件

1、设x、y∈R,判断下列各题中,命题甲与命题乙的充分必要关系

⑴命题甲:x>0且y>0,命题乙:x+y>0且xy>0充要条件

⑵命题甲:x>2且y>2,命题乙:x+y>4且xy>4充分不必要条件

2、已知四个命题,其中a、b∈R

①a2

3、"a+b>2c"的一个充分条件是(C)

A、a>c或b>cB、a>c或bc且b>cD、a>c且b

(四)范围问题

1、设60

2、若二次函数y=f(x)的图象过原点,且1≤f(1)≤2,3≤f(1)≤3,求f(2)的范围。

(五)均值不等式变形问题

1、当a、b∈R时,下列不等式不正确的是(D)

A、a2+b2≥2|a||b|B、(a/2+b/2)2≥ab

C、(a/2+b/2)2≤a2/2+b2/2D、log1/2(a2+b2)≥log1/2(2|a||b|)

2、x、y∈(0,+∞),则下列不等式中等号不成立的是(A)

C、(x+y)(1/x+1/y)≥4D、(lgx/2+lgy/2)2≤lg2x/2+lg2y/2

3、已知a>0,b>0,a+b=1,则(1/a21)(1/b21)的最小值为(D)

A、6B、7C、8D、9

4、已知a>0,b>0,c>0,a+b+c=1,求证:1/a+1/b+1/c≥9

5、已知a>0,b>0,c>0,d>0,求证:

(六)求函数最值

1、若x>4,函数

5、大、-6

2、设x、y∈R,x+y=5,则3x+3y的最小值是()D

A、10B、C、D、

3、下列各式中最小值等于2的是()D

A、x/y+y/xB、C、tanα+cotαD、2x+2-x

4、已知实数a、b、c、d满足a+b=7,c+d=5,求(a+c)2+(b+d)2的最小值。

5、已知x>0,y>0,2x+y=1,求1/x+1/y的最小值。

(七)实际问题

1、98(高考)如图,为处理含有某种杂质的污水,要制造一个底宽为2cm的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出,设箱体的长度为am,高度为bm,已知流出的水中该杂质的质量分数与a、b的乘积ab成反比,现有制箱材料60m2,问当a、b各为多少米时,沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计)。

解一:设流出的水中杂质的质量分数为y,

由题意y=k/ab,其中k为比例系数(k>0)

据题设2×2b+2ab+2a=60(a>0,b>0)

由a>0,b>0可得0

令t=2+a,则a=t-2从而当且仅当t=64/t,即t=8,a=6时等号成立。∴y=k/ab≥k/18

当a=6时,b=3,

综上所述,当a=6m,b=3m时,经沉淀后流出的水中该杂质的质量分数最小。

解二:设流出的水中杂质的质量分数为y,由题意y=k/ab,其中k为比例系数(k>0)

要求y的最小值,即要求ab的最大值。

据题设2×2b+2ab+2a=60(a>0,b>0),即a+2b+ab=30

即a=6,b=3时,ab有最大值,从而y取最小值。

2、某工厂有旧墙一面长14米,现准备利用这面旧墙建造平面图形为矩形,面积为126米2的厂房,工程条件是:①建1米新墙的费用为a元;②修1米旧墙的费用为a/4元;③拆去1米旧墙用所得材料建1米新墙的费用为a/2元.经过讨论有两种方案:⑴利用旧墙的一段x(x<14)米为矩形厂房的一面边长;⑵矩形厂房的一面长为x(x≥14).问如何利用旧墙,即x为多少米时,建墙费用最省⑴⑵两种方案哪种方案最好

解:设总费用为y元,利用旧墙的一面矩形边长为x米,则另一边长为126/x米。

⑴若利用旧墙的一段x米(x<14)为矩形的一面边长,则修旧墙的费用为xa/4元,剩余的旧墙拆得的材料建新墙的费用为(14-x)a/2元,其余的建新墙的费用为(2x+2126/x-14)a元,故总费用当且仅当x=12时等号成立,∴x=12时ymin=7a(6-1)=35a。

⑵若利用旧墙的一段x米(x≥14)为矩形的一面边长,则修旧墙的费用为xa/4元,建新墙的费用为(2x+2126/x-14)a元,故总费用

设f(x)=x+126/x,x2>x1≥14,则f(x2)-f(x1)=x2+126/x2-(x1+126/x1)

=(x2x1)(1126/x1x2)>0∴f(x)=x+126/x在[14,+∞)上递增,∴f(x)≥f(14)

∴x=14时ymin=7a/2+2a(14+126/14-7)=35.5a

综上所述,采用方案⑴,即利用旧墙12米为矩形的一面边长,建墙费用最省。

(八)比较法证明不等式

1、已知a、b、m、n∈R+,证明:am+n+bm+n≥ambn+anbm

变:已知a、b∈R+,证明:a3/b+b3/a≥a2+b2

2、已知a、b∈R+,f(x)=2x2+1,a+b=1,证明:对任意实数p、q恒有af(p)+bf(q)≥f(ap+bq)

(九)综合法证明不等式

1、已知a、b、c为不全相等的正数,求证:

2、已知a、b、c∈R,且a+b+c=1,求证:a2+b2+c2≥1/3

3、已知a、b、c为不全相等的正数,且abc=1,求证:

4、已知a、b∈R+,a+b=1,求证:

(十)分析法证明不等式

1、已知a、b、c为不全相等的正数,求证:bc/a+ac/b+ab/c>a+b+c

2、已知函数f(x)=lg(1/x-1),x1、x2∈(0,1/2),且x1≠x2,求证:

3、设实数x,y满足y+x2=0,0

(十一)反证法、放缩法、构造法、判别式法、换元法等证明不等式

1、设f(x)=x2+ax+b,求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于1/2。

2、若x2+y2≤1,求证|x2+2xy-y2|≤.

3、已知a>b>c,求证:

4、已知a、b、c∈R+,且a+b>c求证:.

5、已知a、b、c∈R,证明:a2+ac+c2+3b(a+b+c)≥0,并指出等号何时成立。

分析:整理成关于a的二次函数f(a)=a2+(c+3b)a+3b2+3bc+c2

∵Δ=(c+3b)2-4(3b2+3bc+c2)=-3(b2+2bc+c2)≤0

∴f(a)≥0

6、已知:x2-2xy+y2+x+y+1=0,求证:1/3≤y/x≤3

7、在直角三角形ABC中,角C为直角,n≥2且n∈N,求证:cn≥an+bn

(十二)解不等式

1、解不等式:

2、解关于x的不等式:

拓展

高中数学不等式的基本性质知识点

1.不等式的定义:a-bb,a-b=0a=b,a-b0a

①其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。

②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

2.不等式的性质:

①不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:

(1)abb

(2)acac(传递性)

(3)ab+c(cR)

(4)c0时,abc

c0时,abac

运算性质有:

(1)ada+cb+d。

(2)a0,c0acbd。

(3)a0anbn(nN,n1)。

(4)a0isin;N,n1)。

应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。

②关于不等式的性质的考察,主要有以下三类问题:

(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

高中数学关于集合不等式和简易逻辑知识点

重点知识归纳、总结

(1)集合的分类

(2)集合的运算

①子集,真子集,非空子集;

②A∩B={xx∈A且x∈B}

③A∪B={xx∈A或x∈B}

④A={xx∈S且xA},其中AS.

2、不等式的解法

(1)含有绝对值的不等式的解法

①x0)-a

x>a(a>0)x>a,或x<-a.

②f(x)

f(x)>g(x)f(x)>g(x)或f(x)<-g(x).

③f(x)

④对于含有两个或两个以上的绝对值符号的绝对值不等式,利用“零点分段讨论法”去绝对值.如解不等式:x+3-2x-1<3x+2.

3、简易逻辑知识

逻辑联结词“或”、“且”、“非”是判断简单合题与复合命题的依据;真值表是由简单命题和真假判断复合命题真假的依据,理解好四种命题的关系,对判断命题的真假有很大帮助;掌握好反证法证明问题的步骤。

THE END
1.四种命题和充要条件的具体概念否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序。https://edu.iask.sina.com.cn/jy/2RCejKOytez.html
2.(完整版)常用逻辑用语知识点总结经管文库(原现*两个命题为互逆命题或互否命题,它们的真假性没有关系.二、充分条件与必要条件 1、定义 1.如果pqhttps://bbs.pinggu.org/thread-12945398-1-1.html
3.洛克《人类理解论(Anessayconcerninghumanunderstanding在洛克那里,诸如实体、性质、语词、知识、命题、真理等概念都具有一种心理学经验的熟悉感。除了一种宏大而近乎完美的概念框架,洛克在许多具体的领域也是开拓性的:伦理学的享乐主义与基督教的观念交互涌现,尤其是前者,俨然已经是功利主义的先声;洛克对人的同一性(identity of man)和人格同一性(personal identity)的https://book.douban.com/review/5429327/
4.2024国考行政执法类行测命题变化解读公务员考试网根据上述定义,下列哪项中的数字最大?A.■◆B.◆◆C.■◇D.◆◇85.人际关系图,是用一套特定的符号来表示团体内成员之间各种关系的图形。依据前期的调查,将团体成员的关系分为“吸引”“排斥”“无关”三类。图中圆圈内的字母是团体内每一成员的代号。实线与虚线表示相互关系。其中实线表示吸引关系,虚线表示https://www.huatu.com/2023/1126/2706013.html
5.教师资格证(小学)思维导图模板在师生关系上,尊重赞赏 自我提升强调反思 在教育教学上强调帮助、引导 合作 与其他教育工作者 教师的劳动特点 复杂性和创造性 长期性和间接性 主体性和示范性 连续性和广泛性 教师的专业发展 要求 终身学习者 反思的实践者 衡于研究者 重视沟通,提升交往和合作能力 https://www.processon.com/view/5ee0eccf07912929cb392b51
6.常用逻辑用语(1)命题及其关系①理解命题的概念.——青夏教育精英从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.(1)写出f(5.2)的值及g(x)的值域;(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式https://m.1010jiajiao.com/timu_id_169864
7.[《习坎文摘》第61期]中国高考评价体系及说明湖北省沙市中学(一)情境与情境活动的定义………17 (二)情境的分类和情境活动的分层……18 (三)情境和“四层”“四冀”的关系……18 (四)情境在命题中的运用……20 后记……21 ……中国高考评价体系是深化新时代高考内容改革的基础工程、理论支撑和实践指南,对发展素质教育、推进教育公平、实现教育现代化、建设教育强国、办好http://www.hbsszx.com/PrintArticle/20487
8.课程避免在使用词项、做出判断、形成命题、进行推理时出现混淆概念或偷换概念的逻辑错误。 ●2.1概念是什么 这一节介绍有关概念的知识。通过本节的学习,要在理解概念的定义、概念的基本特征内涵和外延、概念的种类及概念间的关系等基本理论的基础上,熟练地掌握定义、划分、限制和概括等有关明确概念、运用概念的逻辑方法,https://higher.smartedu.cn/course/62354cc69906eace048d8072
9.身边不容忽视的若干土地理念问题(1997年~2019年)更重要的是,这种管理体系能够绝然分清“农调耕地”各种利用类型与原来不属于耕地范畴作为独立地类的园地、草地、水面之间的空间分布及其数量关系。如果国土资源部地籍司要弄清北京市一定时限范围内农用土地利用的实际情况,即不管其来源如何有多少土地用于种植、多少土地用于养殖、多少土地用于设施种植和养殖的话,只要把这些http://www.wyzxwk.com/Article/jingji/2020/06/420291.html
10.fakerlove/discretemathematics命题常元(proposition constants):表示具体命题及表示常命题的p,q,r,s等和t,f。 命题变元(proposition variables):以“真、假”为取值范围的变量,仍用p,q,r,s等表示。 命题公式简称公式,采用大写A,B,C等表示。 1.2.2 命题公式的定义 命题常元和命题变元是命题公式,称作原子公式或原子。 https://gitee.com/fakerlove/discrete-mathematics
11.教心学重点5.学习策略与不同类型的学习定义:学习者在学习活动中,为了达到有效的学习目的而采用的规则、方法、技巧及其调控方式的综合。 学习策略和学习方法的关系: 学习策略不等同学习方法 学习策略范围更广,学习策略涉及多种方法及其使用规则,以及如何改变不同学习方法。 (二)学习策略的分类 提出者:麦克卡(麦基奇) http://www.cqwenbo.net/wap_doc/16870853.html
12.离散数学——命题逻辑谓词逻辑集合与关系知识点命题的定义:具有确定真值的陈述句。 二、联结词(简单不做赘述) 1.否定:? 2.合取:∧ 3.析取:∨ 4.条件:→ 5.双条件:? 三、命题公式与翻译 四、真值表与等价公式 1.真值表:根据命题公式的真值可简单构建,示例:构造?P∨Q的真值表如下 https://blog.csdn.net/weixin_74727063/article/details/135305454
13.数学逻辑范文12篇(全文)著名经济学家、数学家凯恩斯 (J.M.Keynes) 给概率所下的定义是: 令前提由任一命题集h组成, 结论由任意命题集a组成.若对任一h, 以程度r证明合理信念程度a是正当的, 则我们说在a和h之间存在程度r的概率关系.用符号表示就是a/h=r. 凯恩斯认为概率逻辑就是研究这种关系的逻辑. https://www.99xueshu.com/w/ikeyfii3iyj2.html
14.吉林大学离散数学(国家级精品课)4.6树及其等价命题[25] 3.1命题定义与联结词 2102播放 26:54 [26] 3.2命题公式与解释 2039播放 34:02 [27] 3.3等价关系及其证明 1984播放 48:04 [28] 3.4完备集 1390播放 23:20 [29] 3.5蕴涵关系基本概念 1723播放 33:59 [30] 3.6演绎的基本理论 1333播放 38:52 [32] 3.8文字、子句、短语与范式 961播放 https://open.163.com/newview/movie/free?pid=CFTMQ9FG7&mid=EFTNI8CHE