2024安徽省中小学教师招聘考试大纲数学(小学)

二、考试范围与内容(一)学科专业知识1.数的认识

⑴整数、分数、小数和百分数的意义,数的改写和求近似数;数位和数级的顺序、名称及计数单位间的关系;比较分数、小数和百分数的大小。

⑵小数的性质、分数的基本性质,约分和通分;分数、小数和百分数之间的关系。

⑶有理数的意义、大小。

⑷平方根、算术平方根、立方根、无理数和实数的概念。

2.数的运算与性质

⑴四则运算的意义、运算法则和运算定律;口算、笔算、估算的基本方法和相应算理。

⑵积的变化规律、商不变的性质和小数的性质。

⑶比和比例的各部分名称及相互关系;比、比例的意义和基本性质;正比例和反比例的意义,解决比例的有关问题。

⑷常见的数量关系。

⑸实数的加、减、乘、除、乘方及简单的混合运算。

⑹整除、约数、倍数的定义,用定义证明整除问题。

⑺带余除法的意义、带余除法表达式。

⑻奇数、偶数的定义和性质,奇偶分析法。

⑼被2,3,5整除的数的特征。

⑽因数(约数)、倍数、质数(素数)、合数、质因数、最大公因数(最大公约数)和最小公倍数以及互质数的概念;分解质因数;最大公因数、最小公倍数及其应用。

3.常见的量

⑵用单位间的进率进行单位换算。

4.代数式与方程

⑴用字母表示数的意义,列代数式,求代数式的值。

⑵整数指数幂的意义和基本性质;整式,整式的加法、减法和乘法运算。

⑶分式的概念、基本性质和运算。

⑷二次根式的概念、性质及其加、减、乘、除运算法则。

⑸等式的性质;方程、方程的解。

⑹一元一次方程、一元二次方程、二元一次方程(组)、分式方程的概念、解法及其应用,检验方程的解是否合理。

5.不等式

⑴不等式的概念与基本性质,简单不等式的解法。

⑵一元一次不等式(组)及其简单应用。

⑶用比较法、综合法、分析法等证明简单的不等式。

6.集合

⑴集合,元素与集合间的关系,集合的表示方法。

⑵集合之间的包含和相等关系;全集与空集的含义。

⑶并集、交集和补集的含义、运算;用韦恩图表示简单集合间的关系与运算。

⑷区间及其表示方法。

7.函数

⑴映射与函数的概念;求简单函数的定义域和值域;反函数,求简单函数的反函数。

⑵常量、变量;一次函数、正比例函数、反比例函数、二次函数的概念、性质和应用。

⑶函数的奇偶性、单调性和周期性;判断简单函数的奇偶性、单调性、周期性。

⑷复合函数的概念,将复合函数分解成简单函数。

⑸分数指数幂的概念、运算及性质;对数的概念、运算及性质。

⑹初等函数的概念;幂函数、指数函数、对数函数的概念、图象和性质。

⑺角、弧度制、任意角的三角函数、三角函数线等概念,同角三角函数的基本关系,正弦、余弦函数的诱导公式;两角和与差以及二倍角的正弦、余弦和正切公式;正弦函数、余弦函数的图象和性质。

⑻正弦定理、余弦定理及其应用。

8.数列

⑴数列的概念、表示法。

⑵等差数列,等差数列的通项公式与前n项和公式,用等差数列的有关知识解决简单问题。

⑶等比数列,等比数列的通项公式与前n项和公式,用等比数列的有关知识解决简单问题。

9.极限

⑴数列极限、函数极限的概念、性质。

⑵极限的四则运算和两个重要极限;数列极限和函数极限的计算。

⑶函数连续的定义,判断函数的连续区间或间断点的位置。

⑷闭区间上连续函数的性质及其应用。

10.导数

⑴导数的定义及其几何意义。

⑵基本求导公式,导数的四则运算法则。

⑶复合函数求导法则,隐函数及由参数方程确定的函数求导法则。

⑷二阶导数的定义及求法。

⑸微分的定义;基本初等函数的微分公式与微分的运算法则。

⑹可导、可微与连续之间的关系。

⑺可导函数在某点取得极值的必要条件和充分条件;用导数讨论初等函数的单调性和极值,解决与最值有关的实际问题。

11.积分

⑴不定积分的定义、性质与基本积分公式。

⑵定积分的概念与几何意义、性质;牛顿-莱布尼茨公式;求简单函数的定积分。

⑶定积分在几何与物理中的简单应用。

⑷用定积分计算某些封闭平面图形的面积和旋转体的体积。

12.向量代数

⑴空间直角坐标系,空间两点间的距离公式。

⑵向量的概念、几何表示、坐标表示,两个向量相等的含义。

⑶向量线性运算的性质及其几何意义。

⑷平面向量的基本定理及其意义。

⑸用坐标表示平面向量的加法、减法与数乘运算;用坐标表示平面向量共线的条件。

⑹两个向量的数量积定义与几何意义;数量积的坐标表达式及运算。

⑺用数量积求两个向量的夹角,判断两个向量共线与垂直。

⑻用向量方法解决有关简单的问题。

13.直线和圆的方程

⑴直线的倾斜角和斜率;过两点的直线的斜率公式;直线方程的几种形式(点斜式、两点式及一般式)。

⑵两条直线平行与垂直的条件,根据直线的方程判断两条直线的位置关系;求两条直线所成的角、点到直线的距离和两平行直线间的距离。

⑶圆的标准方程和一般方程。

⑷根据给定的方程,判断直线与圆、圆与圆的位置关系;用直线和圆的方程解决一些简单的问题。

⑸解析几何的基本思想,坐标法。

14.圆锥曲线方程

⑴椭圆、双曲线及抛物线的定义、标准方程和简单几何性质。

⑵圆锥曲线的初步应用;数形结合的思想。

15.直线、平面几何图形和简单几何体

⑴直线、射线、线段、角、距离、垂线、平行线、垂直、平行、相交等概念;平面的基本性质;斜二测画法和三视图;空间两直线、两平面、直线与平面的位置关系和表示法。

⑵长方形、正方形、平行四边形、三角形、梯形、圆;长方体、正方体、圆柱和圆锥;常见图形的周长、面积、体积、容积的求法。

⑶三角形及其内角、外角、中线、高线、角平分线;等腰三角形,直角三角形,三角形的重心;全等三角形,全等三角形的性质、判定及其应用;勾股定理及其逆定理;基本尺规作图。

⑷平行四边形、矩形、菱形、正方形以及它们之间的关系;平行四边形、矩形、菱形、正方形的性质定理、判定定理和三角形的中位线定理。

⑹多面体、凸多面体、正多面体、棱柱、棱锥、球;棱柱、正棱锥、球的性质,画直棱柱、正棱锥的直观图;求柱体、锥体、球的体积;求正棱柱、正棱锥、球的表面积。

⑺轴对称、轴对称图形、中心对称、中心对称图形、图形旋转与平移的概念及其基本性质。

⑻线段的比、成比例线段、比例的基本性质;相似三角形,相似三角形的判定定理、性质定理及其应用;锐角三角函数;解直角三角形及其应用。

⑼平面直角坐标系;在同一平面直角坐标系中,图形变换前后点的坐标的变化规律。

16.命题与证明、数学归纳法

⑴命题:简单命题及其逆命题、否命题与逆否命题,四种命题的相互关系。

⑵推理与证明,简单命题的证明方法。

⑶必要条件、充分条件与充要条件。

⑷数学归纳法及其应用。

17.统计与概率

⑴统计表、象形统计图、条形统计图、折线统计图、扇形统计图、频数分布直方图和频率分布直方图;平均数、中位数、众数、数据的离散程度、频数和频数分布的意义;求平均数、中位数、众数和方差。

⑵解释统计结果并根据结果作出简单的判断或预测。

⑶随机事件发生的不确定性和频率的稳定性,概率的意义以及频率与概率的区别。

⑷古典概型及其概率计算公式;用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

⑸互斥事件、相互独立事件,用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

⑹用随机抽样、系统抽样、分层抽样等常用抽样方法从总体中抽取样本。

⑺用样本的频率分布去估计总体分布,用样本的基本数字特征估计总体的基本数字特征;用样本估计总体的思想。

(二)学科课程与教学论及其应用

1.小学数学课程知识

2.小学数学教学知识

⑴小学数学教学基本原则、教学过程、常用的数学教学模式与方法。

⑵确定小学数学教学目标的主要依据。根据提供的小学数学教材内容,结合对小学生认知规律的把握,分析课例的教学目标、教学重点、难点以及主要发展的数学学科核心素养,明确所给教材内容在小学数学学科知识体系中的地位和作用,分析教材的编排意图等。

⑶根据提供的小学数学教学资源合理设计教案或教学片段。

⑷对提供的教案或教学片段进行分析、评价、改进等。

三、考试形式和试卷结构

1.考试形式:闭卷、笔试。

3.主要题型:选择题、填空题和解答题等。其中选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算题、作图题、证明题、论述题、案例评析题和教学片段设计等。解答题应写出文字说明、演算步骤或推理过程;论述题、案例评析题等应明确表明观点、逻辑清晰、证据恰当、有理有据;教学片段设计应科学规范,利于教学有效实施。

4.内容比例:数学学科知识约占70﹪(其中以小学数学教学内容为主),小学数学学科教学知识约占30﹪。

THE END
1.四种命题和充要条件的具体概念否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序。https://edu.iask.sina.com.cn/jy/2RCejKOytez.html
2.什么是命题数学数学命题是一类重要的命题,一般来讲是指数学中的判断。 数学命题的定义: 数学中的定义、公理、公式、性质、法则、定理都是数学命题。这些都是用推理方法判断命题真假的依据。 一般地,在数学中,我们把在一定范围内可以用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。 http://m.lhlso.com/xw_2565753/
3.小学数学命题(精选十篇)小学数学命题 篇1 一、联系现实———应用化 生活是知识的源泉, 把数学问题生活化, 把生活经验数学化, 体现了“数学源于生活, 寓于生活, 用于生活, 高于生活”的思想。学生生活的背景是命题的源泉, 数学命题离不开生活。我们可以从学生熟悉的生活现象中收集素材编制题目进行命题。通过试卷解答, 让学生感到数学就在https://www.360wenmi.com/f/cnkey9m7gyy2.html
4.小学语文命题改革12篇(全文)学生是学习的主体, 在小学语文教学中应该积极地去开发学生的创新和想象能力, 让学生大胆地去表达自身的想法。小学语文是一个人在教育阶段受到的关于语文方面的基础教学, 这个时期的学生是处于蓬勃发展的阶段的, 其思维是活跃的, 而小学教学就应该去保护这种活跃性。在小学考试的命题中应该鼓励学生的这种自主表达, 让https://www.99xueshu.com/w/ikeykafw1pyq.html
5.数学概念教学1——《小学数学教学与创新能力培养》读书笔记3数学知识本身具有严密的逻辑性,彼此之间形成联系紧密、纵横交错的知识网络。数学概念作为揭示现实世界的数量关系和空间形式的本质属性的思维形式,是构成数学体系的基础,是人们进行数学思维的基本元素。没有数学概念就无法构成数学知识体系,没有数学概念就无法进行数学思维。概念是抽象思维的起点,是人们进行判断(命题)和推理https://www.jianshu.com/p/fdc4e6365272
6.概念教学为了加强概念教学,教师必须认真钻研教材,掌握小学数学概念的系统,摸清概念发展的脉络。概念是逐步发展的,而且诸概念之间是互相联系的。不同的概念具体要求会有所不同,即使同一概念在不同的学习阶段要求也有差别。 有许多概念的含义是逐步发展的,一般先用描述方法给出,以后再下定义。例如,对分数意义理解的三次飞跃。第https://www.fwsir.com/jy/html/jy_20080807214030_167593.html
7.薛问天:学懂数学,任何数学概念都有决定其确切含义的定义。评Zmn-0867薛问天: 学懂数学,任何数学概念都有决定其确切含义的定义。评李鸿仪先生的《0866》 【编者按。下面是薛问天先生的文章,是对李鸿仪先生《Zmn-0866》的评论。现在发布如下,供网友们共享。请大家关注并积极评论。另外本《专栏》重申,这里纯属学术讨论,所有发布的各种意见仅代表作者本人,不代表本《专栏》编辑部的https://blog.sciencenet.cn/blog-755313-1348770.html
8.2014年《中小学数学》小学版目录首页江苏省宝应 荀步章 小学数学教师常见口语“错误”例谈 江苏省启东 顾冬梅 命题要注重科学性 江苏省南通 张霞 “面积的含义”中的几点困惑及应对 安徽省桐城 陈芳 王存彬 “小”细节成就“大”课堂——“分数的再认识”教学片断与思考 安徽省淮南 孙华文 突出考查重点 抓住问题本质 https://zxxsx.cnu.edu.cn/ggl/qkml/141802.htm