JMP在半导体行业的应用(3)质量管理企业管理文章e

Genus8720CVD钨淀积工艺从150mm硅片转变到200mm硅片上时,受到化学分解和TiN附着层剥离的影响。提供商建议的200mm硅片淀积工艺能得到较好的薄膜均匀性,但是炉管反应生成的TiN粘附层与反应环境是化学不相容的。150mm工艺防止了TiN层的剥离,但是在200mm硅片上就会牺牲了薄膜的均匀性。众所周知,通过溅射反应生成的TiN与钨淀积环境是相兼容的,但是有必要继续使用炉管反应的TiN,虽然存在问题的,然而可以获得可接受的欧姆接触。

解决方案由于相对较紧的项目期限,所以不太可能通过使TiN附着层硬化而达到目的。因此决定寻找一个可以消除TiN层剥离暂时的钨薄膜淀积工艺,同时薄膜性质又与150mm硅片工艺匹配。

实验2包含2个因子和9个条件处理结合。工艺区域是很宽的工艺压力和H2/WF6比。这个实验得到的表面响应揭示了TiN层剥离、钨薄膜均匀性和钨薄膜应力之间的权衡关系。基于这个实验的结果,项目组决定牺牲薄膜的应力,从而获得较好的均匀性且没有TiN层剥离。

实验3只包含1个因子H2/WF6比,将其取3个值。通过这个实验被设计可沿着H2/WF6轴去寻找一个最优化的工艺。实验结果发现当H2/WF6比为5时,可以得到最好的均匀性且不会出现TiN层剥离。因而被选为暂时的钨淀积工艺。

最后,通过收集16轮工艺的数据去验证新工艺是否符合要求。

结论由于故意牺牲了薄膜的应力,所以除了应力外,所有工艺参数都符合要求。

工艺中TiN层剥离、均匀性和应力存在着权衡关系。更低的应力要求低的工艺压力,而均匀性则要求高的工艺压力。均匀性要求低的H2/WF6比,且在高的工艺压力下更好的应力也要求有低的H2/WF6比,但是消除TiN层剥离则要求高的H2/WF6比。H2/WF6比可设定为刚高于剥离开始出现的值,如此在没出现TiN层剥离,均匀性可以被相对优化,其值在4至5之间。

工艺集成电路的晶体管在硅片上形成之后,接下来进行布线连接。这道工艺是先淀积一层绝缘材料在晶体管上,作为绝缘层,然后刻出接触孔。接下来,在整个硅片上淀积金属层,通过接触孔连接晶体管。最后,一部分金属被选择地去除,留下金属条进行连接。

许多不同的金属可被用于这个金属化工艺。最近,通过化学气相沉积钨薄膜已经被优先考虑使用。这是由于CVD工艺擅长于填充足够多的金属到接触孔中,以获得较好的接触。随着集成电路的微型化的推进,接触孔的直径已经缩小到一些已经非常成熟的金属工艺如溅射和蒸发变得无能为力去填充金属到连接点的程度。因此,集成电路制造的发展,CVD钨工艺的开发是一个重要的贡献。

CVD钨工艺本身并没有问题,但是与之前的一些金属工艺相比,唯一的缺点就是CVD生成的钨薄膜不能粘附在用来隔离晶体管起绝缘作用的二氧化硅上。但是由于CVD钨薄膜能粘附于其他一些金属材料,所以在CVD钨薄膜淀积之前,在绝缘层上先淀积一层很薄的其他金属用来解决这个问题。这一层的功能是底涂层,它还有其他几个名称:粘附层,粘合层。在这项研究里将谈及到这个粘附层。在许多可能的金属里,TiN成为半导体厂商首选的粘附层金属。

然而,当CVD钨淀积反应器从150mm工艺转变到200mm工艺时,问题出现了。更大的硅片需要改进淀积工艺从而能在200mm硅片上获得可以与150mm硅片上相比较的钨薄膜。然而当工艺改进之后,TiN粘附层又不兼容于新工艺的钨反应器的工艺环境。不兼容性导致TiN层的化学分解,从而使得物理完整性退化,最后达到从硅片上剥离的程度。

考虑用如下3种方案来解决这个问题:1.改变TiN附着层的工艺,使得该层薄膜更能抵抗钨淀积工艺的侵蚀。2.利用完全不同的工艺淀积TiN薄膜,以抵抗侵蚀。3.改善CVD钨淀积工艺去消除对TiN的侵蚀,而同时还要在200mm硅片上获得与150mm硅片上可以相比较的钨薄膜。

三种方案平行式地进行。第一种方案是首选方案,但是没有成功。第二种方案次之,但是这不符合整个项目计划期限。所以在项目期限内,只剩下第三种方案成为解决这个问题的希望。这个方案不仅包括消除TiN剥离,还要维持钨薄膜参数。

数据收集分析和结果解释

项目的成功完成需要通过3个实验去找到有用的新工艺,1个验证期去证明新工艺是可用的,给出4个分别的数据收集计划。4个计划已在项目刚开始的时候已作了大概的描述,但是由于项目的延续性,只有在前一个计划得到可靠结果之后,后一个计划才能详细进行。下面,每一个计划将被分别进行详细描述。

因为数据收集采用静态设计原则,分析是易懂的。既然用于分析静态设计实验的方法已经建立好了,接下来的章节将着重用数据解释关键的部分。分页实验1实验1的设计很大程度上取决于先前的CVD钨工艺的知识。在将工艺反应器转换到200mm硅片前,一个拓展的设备改进项目已经完成,另外,对200mm硅片工艺来说,实验数据是可用的。

从信息的主体,项目组考虑如下三个事实是解决问题最重要的部分:一是在150mm工艺中没有发现TiN层剥离;二是150mm硅片工艺用于200mm硅片上钨薄膜较差的均匀性;三是在更高的工艺压力下,在200mm硅片上,利用150mm工艺可以得到可以接受的薄膜均匀性。

所有考虑到的因素都包含到这个实验设计中。这个实验工艺区域将包括低的工艺温度,高的压力,和高的背面气流。寻找一个没有剥离且均匀性可接受的工艺窗口,而应力也将进行测量。

表15.1实验1的因子和水平

钨薄膜的均匀性使用四探针电阻测量测得。在每一片硅片上,测量标准的49点。均匀性被定义成标准偏差/平均值,且表示成百分数。一个先前的测量研究表明总体测量系统误差为0.04%。

在现在的设备改进方案中,进行这种类型的实验已经变得程式化,因此在建立条件处理组合和测量响应时没有遇到问题。然而,由于缺少硅片,三个计划的中心点中只有一个被进行了(见附录B,原始数据)。

均匀性和应力的线性回归模型系数分别见表15.2和15.3所示。从三个主要影响和三个两因子的交互作用的模型开始,利用逐步回归获得线性回归模型。通过增加压力和降低背面Ar气流可以改善薄膜均匀性,而应力可以通过提高温度和压力来改善,也就是降低应力。

表15.2实验1均匀性响应的线性回归系数增加背面气流会降低均匀性,而增加压力会改善均匀性

表15.3实验1应力响应的线性回归系数增加温度和压力,都降低应力

图15.1实验1应力和均匀性的等高图在温度一定的情况下,压力控制应力,背面气流控制均匀性分页

实验2实验1的结果表明,还需要另外的实验,即增加工艺压力的范围。工艺压力范围从实验1中的4torr一直沿伸到提供商的建议工艺的80torr。

由于观察到在150mm工艺和200mm工艺之间存在很大的差别,而150mm工艺和200mm工艺的H2/WF6比分别为23和2.3,所以H2/WF6比被选择作为第2个因子,其下限定为2,以包含提供商建议的工艺,上限被定为10。

图15.2实验2应力和均匀性的等高图

表15.5和15.6分别是均匀性和应力的线性回归模型系数。工艺压力和H2/WF6比对均匀性响应有很强的相互作用。全部的模型不是符合得很好,R2adj.=0.814,但是对正常地很难对模型进行响应的均匀性来说是好的。应力也受到压力和H2/WF6比的控制,在应力方面很显著的曲率半径。所有的模型符合得很好。表15.5实验2均匀性响应的线性回归系数工艺压力和H2/WF6比之间存在较强的相互作用

表15.6实验2应力响应的线性回归系数H2/WF6比和压力控制应力,对压力有很明显的曲率半径

在实验中发现了TiN层剥离。既然这只是一个目检的响应(有或者没有),所以线性回归系数表格没有列出,但是剥离出现的条件处理组合在均匀性和应力的等高线上被圈出,如图15.2所示。H2/WF6比很明显地控制TiN层剥离,这是一个关键的发现,对那些一直认为温度和压力是主要控制因子的组员是一个意外。

等高线可以用作做在三个响应之间的权衡关系。最好的均匀性出现在高压力,而最好的应力即最低的应力出现在低压力,而两者都要求低的H2/WF6比。然而,TiN层剥离出现在低的H2/WF6比,所以这个工艺区域是不可用的。

这个等高线使得项目组深信,一个响应可能折衷而达到整个项目的要求。根据这个分析,所以决定牺牲应力而得到较好的均匀性。实验3如图15.2所示的实验2结果表明,均匀性可以与TiN层剥离进行权衡,通过设定压力为80torr,且考虑几个H2/WF6比直到TiN层剥离开始很明显。所以第3个实验是利用单独1个因子H2/WF6比,而保持压力为一个常量80torr,去寻找剥离开始出现的阀值,条件处理组合和结果见表15.7。

TiN剥离对实验3条件的响应如表15.7所示。出现TiN剥离的条件处理组合在图15.2中右边的等高线上圈出。在H2/WF6比为4~5的某个区域,TiN剥离开始出现。

THE END
1.芯片薄膜沉积概念薄膜沉积工艺技术介绍薄膜沉积是在半导体的主要衬底材料上镀一层膜。这层膜可以有各种各样的材料,比如绝缘化合物二氧化硅,半导体多晶硅、金属铜等。从半导体芯片制作工艺流程来说,位于前道工艺中。 随着 2024-11-01 11:08:07 半导体设备行业跟踪报告:ALD技术进行薄膜沉积工艺优势 https://www.elecfans.com/zt/1283829/
2.芯片制造工艺里的刻蚀种类湿法刻蚀在半导体工艺中有着广泛应用:抛光、清洗、腐蚀。湿法蚀刻是一种化学过程,涉及使用液体蚀刻剂从Wafer上选择性去除材料。这些蚀刻剂通常由多种化学物质(例如酸、碱或溶剂)组成,这些化学物质与材料发生反应,形成可溶解的产物,这些产物很容易被洗掉。蚀刻过程由材料-蚀刻剂界面https://mp.weixin.qq.com/s?__biz=MzI1OTExNzkzNw==&mid=2650476445&idx=2&sn=86786b1bb9aad0fb35818a54b04d7987&chksm=f3c6018b7ba78f9354237a3e8e630fcaea560ea2b2455f1be364e01ada7f98278e12ac5f5daa&scene=27
3.半导体工艺过程专业术语(中英文简称及全称)及定义RMSRecipe Management System配 方管理系统 <淘宝>树池围栏,工艺精湛,价格实在! <淘宝>树池围栏源自优材,精工艺、重品质,专注造就高精品质!上<淘宝>更多优惠等你来!广告 半导体中的STI是什么意思 shallow trench isolation浅沟道隔离特点:能实现高密度的隔离,适合于深亚微米器件和DRAM等高密度 2018年半导体封测行业深https://wenda.so.com/q/1391667090062023
4.半导体行业术语.docx半导体行业术语.docx,半导体行业术语 1 Active Area 主动区〔工作区〕 主动晶体管〔ACTIVE TRANSISTOR〕被制造的区域即所谓的主动区〔ACTIVE AREA〕。在标准之 MOS 制造过程中 ACTIVE AREA 是由一层氮化硅光罩即等接氮化硅蚀刻之后的局部场区氧化所形成的,而由于利用到局部https://max.book118.com/html/2024/0625/5104314324011232.shtm
5.半导体行业术语普天2022Recipe在字典的解释是医生的处方,厨师的食谱。在IC制程中,则指制程的程序。IC 制造中各个步骤都有不同的要求:如温度要多少?某气体流量多少?反应室的压力多少?等等甚多的参数都是Recipe内容的一部份。 FAB是特指半导体行业中加工车间,因为它不同于普通的加工车间,而是环境质量要求极高的生产环境 https://www.cnblogs.com/zhaotiantian/p/16842814.html
6.电子半导体行业数字化转型解决方案材料管理系统Recipe (BOM/工艺)的标准化治理 Recipe (BOM/工艺)的多版本管控 BOM、工艺取替代的规划 LOT/片号/Bin等多属性信息贯穿整体价值链 方案咨询 电子半导体行业解决方案应用架构 基于客户协同、供应商协同、研发管理、供应链管理、制造运营等平台,助力企业研产供销端到端的内外协同与管理提升;基于财务管理、项目管理、人力https://www.kingdee.com/solutions/electronics.html
7.聊聊晶圆厂中的常见口语(1)recipe半导体应用场景:你可以设置下这个recipe。 21,Parameter:参数 应用场景:检查下这个parameter。 22,Spec:规格,标准 应用场景:刻蚀结果超出Spec了 23,Deadline:最后期限 应用场景:这个项目的deadline是什么时候? 24,Release:释放 应用场景:把这个工序release出来。 https://blog.csdn.net/weixin_45614159/article/details/142681757
8.一文尽览R2R(APC)设备高阶过程控制什么是R2R工艺过程控制? 在半导体工艺制程中,制程质量不仅受制程配方(Recipe)的影响,还与产品前段制程质量、制程机台当时状态有关。晶圆在生产线上的流动性加工可能会引入工艺偏差,同时,设备自身特性的变化——如设备老化或外界环境因素——也可能导致制程偏移。因此,利用R2R过程控制技术,实时动态地调节这些偏差,减少或https://laoyaoba.com/n/914012
9.半导体行业专业英语名词解释.docx文档介绍:该【半导体行业专业英语名词解释 】是由【世界末末日】上传分享,文档一共【85】页,该文档可以免费在线阅读,需要了解更多关于【半导体行业专业英语名词解释 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您https://m.taodocs.com/p-1075434342.html
10.一文带你走进半导体Fab的真实生活对我来说,fab里面的生产相关的工程师工作(PE和EE类)除了内容枯燥,整天想着怎么解决issue,调recipe之外,最讨厌了的莫过于写报告和开会,也就是PPT汇报。貌似大部分fab都受台湾影响(台湾同胞做事严谨,所以半导体制造业才能做到如此顶尖,此处不带贬义 ),什么小事都要写汇报,搞的严肃的很,表面上很有意义,其实大部分情https://www.eet-china.com/mp/a340014.html
11.NPRTop stories in the U.S. and world news, politics, health, science, business, music, arts and culture. Nonprofit journalism with a mission. This is NPR.https://npr.org/