编辑导语:漏斗分析当下已经被广泛应用,有效的漏斗分析可以帮助分析用户行为,找到用户流失的原因。那么具体而言,漏斗分析有哪些常见模型?漏斗分析又有哪些流程步骤?本文作者就此做了总结,并对一个漏斗分析案例进行了拆解,一起来看一下。
作为数据分析中最重要的一个分析思维,漏斗分析在业务流程拆解和问题环节定位上具有非常重要的作用。当我们无法确定问题发生在哪个环节时,一般会通过将业务流程进行拆解,比较各个环节之间的转化率/流失率,通过这种漏斗分析的方法来定位问题原因,今天我们就来一起学习它。
一、什么是漏斗分析?
什么是漏斗分析?
我们知道,业务设计都是有流程的,而从业务流程起点开始到最后目标完成的每个环节都会存在着用户流失,因此我们需要一种分析方法来衡量业务流程每一步的转化效率和用户流失情况,而漏斗分析方法就是这样的一种分析方法。
漏斗分析是基于业务流程的一种数据分析模型,也就是说一定是存在着业务的前因后果、前后关联关系的,它能够科学反映用户行为状态以及从起点到终点各阶段用户转化情况,进而可以定位用户流失的环节和原因。漏斗分析模型已经广泛应用于网站用户行为分析和APP用户行为分析中,在流量监控、产品目标转化等日常数据运营与数据分析工作中应用地很广泛。
漏斗分析最常用的是转化率和流失率两个互补型指标,流失率=1-转化率。
用一个简单的例子来说明,假如有100人访问某电商网站,有30人点击注册,有10人注册成功。这个过程共有三步,第一步到第二步的转化率为30%,流失率为70%,第二步到第三步转化率为33%,流失率67%;整个过程的转化率为10%,流失率为90%。该模型就是经典的漏斗分析模型。
二、常见的漏斗模型
而在实际业务中,每个业务都有自己特有的漏斗,但是进行分类总结,常见的业务漏斗模型主要有以下几种。
1.AARRR模型
大名鼎鼎的AARRR模型,做用户增长和生命周期最常用的漏斗模型,从用户增长各阶段入手,包括Acquisition用户获取、Activation用户激活、Retention用户留存、Revenue用户产生收入、Refer自传播等用户的生命阶段。进行漏斗分析,判断用户流失大致处于哪个阶段,进而对问题阶段的用户进行细分,精细化运营,完成用户向成熟用户和付费用户的引导,实现用户增长。
2.电商漏斗模型
电商领域最常见的商品购买漏斗,用户从进入平台,到完成支付的完整路径,是一个经典的业务漏斗模型,计算每一个环节的转化有助于我们分析是人(是否是商品的定位用户?)货(商品是否有热销?)场(产品功能、体验如何)哪个因素的问题?
3.功能漏斗模型
其他的非电商领域的产品,比如一些工具类的产品的漏斗就各有不同了,举个列子,我们以KEEP为例。
4.AIDMA模型
该理论认为,消费者从接触到信息到最后达成购买,会经历这5个阶段:注意→兴趣→欲望→记忆→行动(购买),消费者们从不知情者变为被动了解者再变为主动了解者,最后由被动购买者变为主动购买者的过程,从商品角度看可以看到市场从不了解、了解、接受的过程,在品牌营销领域应用得很广泛。
三、漏斗分析的步骤
上面介绍了各种业务场景下常见的漏斗,那么具体在实现过程和步骤是怎样的呢?会带来什么样的价值呢?
1.快速定位问题环节
当我们聚焦用户全流程最有效的转化路径时(产品设计初期我们都会有理想的转化路径),漏斗数据的展示可以真实地反映用户真实的行为路径:
2.多维度切分分析问题原因
3.监控漏斗转化趋势进行优化
五、漏斗分析案例
最后用一个实际的案例来说明漏斗分析的实际应用。
某电商平台,按“进入注册页-开始注册-提交验证码-注册成功”的路径设置了一个四步转化漏斗,通过数据分析发现,第二步到第三步的转化率较低,很多用户在该环节流失,进而导致最后注册成功的用户数大幅减少,定位到问题环节是在“开始注册”-“提交验证码”环节。
但是问题现状是如此,到底是什么原因导致了用户在这个环节大量流失?我们做了一些假设:
以上假设就是从不同的维度去拆分这个问题,然后看在各个维度下用户的转化漏斗如何?
分析发现,Chrome浏览器的用户注册数和注册转化率较其他浏览器低很多,对比每一步转化,发现第一步到第二步的转化率和其他并无明显差异,而第二步到第三步的转化率非常低,大部分用户没有提交验证码,而是直接离开了页面。
这奇怪的转化漏点马上引起了重视,测试发现Chrome浏览器在获取验证码上确实存在bug,影响了用户注册,研发针对此问题进行解决后,该浏览器下的注册转化率明显提升。
以上的案例就大致展示了漏斗分析的常规用法。从整体漏斗分析原因,定位问题发生环节,从各个可能的细分维度分析转化漏斗,尝试解释为什么会发生这个问题,进而推进问题环节优化,从定位问题,到分析问题再到解决问题,完成漏斗分析的整个过程。
本文由@数据分析星球原创发布于人人都是产品经理,未经许可,禁止转载。