数据处理工作总结

总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,让我们一起来学习写总结吧。你想知道总结怎么写吗?以下是小编收集整理的数据处理工作总结,希望能够帮助到大家。

一、数据量过大,数据中什么情况都可能存在。

如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。

二、软硬件要求高,系统资源占用率高。

对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。

三、要求很高的处理方法和技巧。

这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。

下面我们来详细介绍一下处理海量数据的经验和技巧:

1、选用优秀的数据库工具

2、编写优良的程序代码

处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。

3、对海量数据进行分区操作

对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQLServer的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。

4、建立广泛的索引

对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。

5、建立缓存机制

当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/Buffer,这对于这个级别的数据量是可行的。

6、加大虚拟内存

如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为1GB,1个P42.4G的CPU,对这么大的数据量进行聚合操作是有问题的,提示内存不足,那么采用了加大虚拟内存的方法来解决,在6块磁盘分区上分别建立了6个4096M的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为4096x6+1024=25600M,解决了数据处理中的内存不足问题。

7、分批处理

海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处理后的数据再进行合并操作,这样逐个击破,有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。

8、使用临时表和中间表

数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了,只能拆分为多个小表。如果处理过程中需要多步汇总操作,可按汇总步骤一步步来,不要一条语句完成,一口气吃掉一个胖子。

9、优化查询SQL语句

在对海量数据进行查询处理过程中,查询的SQL语句的性能对查询效率的影响是非常大的,编写高效优良的SQL脚本和存储过程是数据库工作人员的职责,也是检验数据库工作人员水平的一个标准,在对SQL语句的编写过程中,例如减少关联,少用或不用游标,设计好高效的数据库表结构等都十分必要。笔者在工作中试着对1亿行的数据使用游标,运行3个小时没有出结果,这是一定要改用程序处理了。

10、使用文本格式进行处理

对一般的数据处理可以使用数据库,如果对复杂的数据处理,必须借助程序,那么在程序操作数据库和程序操作文本之间选择,是一定要选择程序操作文本的,原因为:程序操作文本速度快;对文本进行处理不容易出错;文本的存储不受限制等。例如一般的海量的网络日志都是文本格式或者csv格式(文本格式),对它进行处理牵扯到数据清洗,是要利用程序进行处理的,而不建议导入数据库再做清洗。

11、定制强大的'清洗规则和出错处理机制

12、建立视图或者物化视图

13、避免使用32位机子(极端情况)

目前的计算机很多都是32位的,那么编写的程序对内存的需要便受限制,而很多的海量数据处理是必须大量消耗内存的,这便要求更好性能的机子,其中对位数的限制也十分重要。

14、考虑操作系统问题

海量数据处理过程中,除了对数据库,处理程序等要求比较高以外,对操作系统的要求也放到了重要的位置,一般是必须使用服务器的,而且对系统的安全性和稳定性等要求也比较高。尤其对操作系统自身的缓存机制,临时空间的处理等问题都需要综合考虑。

15、使用数据仓库和多维数据库存储

数据量加大是一定要考虑OLAP的,传统的报表可能5、6个小时出来结果,而基于Cube的查询可能只需要几分钟,因此处理海量数据的利器是OLAP多维分析,即建立数据仓库,建立多维数据集,基于多维数据集进行报表展现和数据挖掘等。

16、使用采样数据,进行数据挖掘

基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提高了处理效率和处理的成功率。一般采样时要注意数据的完整性和,防止过大的偏差。笔者曾经对1亿2千万行的表数据进行采样,抽取出400万行,经测试软件测试处理的误差为千分之五,客户可以接受。

20xx年xxx水利普查空间数据工作,严格按照《第一次全国水利普查空间数据采集与处理实施方案》要求,以质量为中心,精心组织、周密安排,经过全区普查工作人员的辛苦努力在对数据录入、外业采集及内业标绘等各项工作,达到了上级规定的具体要求,水利普查清查阶段的空间数据处理工作,现将xxx水利普查清查阶段的空间数据处理工作总结报告如下

一、数据处理情况

1、清查数据录入情况普查办数据处理工作完成如下:

一是完成清查数据录入,水利工程128处、经济社会用水调查对象39个、河湖治理清查对象22个、行业能力单位41个、灌区13个;

二是完成乡镇典型居民生活用水户调查对象100户、地下水取水井清查对象xxx眼、规模以上地下水水源地xx处;

2、普查静态数据采集、录入情况

二、空间数据标绘情况

1、内业标绘情况对可以在电子工作底图上直接辨识的清查对象,参照《第一次全国水利普查空间数据采集与处理技术规定》,通过选取工作底图中的相应分类要素,完成该对象在电子工作底图上的位置、形态特征,若分类要素未表达该对象或表达的位置、形态与遥感影像存在较大差异,则结合已掌握的实际信息,以遥感影像为参考,做必要的调整。完成空间数据采集100%、标绘100%。

THE END
1.数据清洗的重要性与技巧:提升大数据分析的准确性和效率提升模型性能:在机器学习和数据分析领域,模型的性能在很大程度上依赖于输入数据的质量。数据清洗包括特征选择和特征工程,这些步骤可以帮助模型更好地识别数据中的模式,从而提高模型的预测能力。 节省时间和资源:在数据分析的早期阶段进行数据清洗可以避免在后续阶段进行昂贵的修正。自动化数据清洗流程可以进一步节省时间和资https://blog.csdn.net/Shaidou_Data/article/details/144110971
2.数据清洗总结数据清洗总结 转发数据清洗 数据清洗流程 1 缺失值清洗 1.1 确定缺失值范围 对每个字段都计算其缺失值比例,然后按照缺失比例和字段重要性,分别制定策略,可用下图表示: image.png 1.2 去除不需要的字段 直接删掉,但是务必做好每一步的备份 1.3 填充缺失值(重要,复杂)https://www.jianshu.com/p/4eb95d04a62f
3.总结了pandas实现数据清洗的7种方式以下文章来源于python数据分析之禅,作者小dull鸟 python数据分析之禅. 点击领取pandas高清速查表,后台回复“速查表”获取 最近在做“对比excel,学习pandas系列”,前面发了一篇 很受读者喜爱,今天给大家介绍一下excel和pandas实现数据清洗的种方式 1.处理数据中的空值 https://mp.weixin.qq.com/s?__biz=MjM5NjIwOTQyMA==&mid=2651838178&idx=1&sn=ddda4f225aa4bbd9c38bda50cefc2eb6&chksm=bd17c0818a6049975b3ace3661850a7a73a8f5fdc7d6daafd1653eaaa8181acd071bfa2c3a0e&scene=27
4.感悟与反思┃“数据清洗工作”的总结与反思——席义博虽然数据清洗过程中报错不断,但大家的热情不减,那段时间每天晚上和大家一起处理数据,听大家反馈的问题,然后一起讨论解决,是我每天最期待的事儿,也是我度过最开心的时光,在实践与交流中,我相信大家一定都有各自的收获! 这次数据清洗的任务,其实带动了很大一批同学对于编程的兴趣与冲动,这是个很好的开端,是凝聚大家庭http://www.sxmu.edu.cn/bdcd/info/1097/1393.htm
5.大语言模型系列—预训练数据集及其清洗框架梳理中英文训练数据集。 整理文本清洗框架。 总结现有框架的优点、问题和初步解决方案。 二、预训练数据集 大规模的高质量语料是训练大语言模型的关键“养料”。这些语料提供了世界性的知识体系,能够提升语言模型的理解能力和生成质量,同时也能够支持多样化的应用场景。事实上,高质量的文本对于大语言模型的训练和能力表现https://www.51cto.com/article/778437.html
6.数据清洗随笔分类星涅爱别离数据清洗 随笔分类 -数据清洗 总结与梳理(含之前所涉及的代码和数据) 摘要:一些特别弄混的事: 总体的总结: 数据处理的步骤: 常用的函数 注意点阅读全文 posted @2020-02-06 21:36星涅爱别离阅读(143)评论(0)推荐(0)编辑 数据清洗之数据预处理 重复值 缺失值 异常值 数据离散化https://www.cnblogs.com/xingnie/category/1641806.html
7.玩转逻辑回归之金融评分卡模型消费金融风控联盟总结一下特征分箱的优势: 特征分箱可以有效处理特征中的缺失值和异常值。 特征分箱后,数据和模型会更稳定。 特征分箱可以简化逻辑回归模型,降低模型过拟合的风险,提高模型的泛化能力。 将所有特征统一变换为类别型变量。 分箱后变量才可以使用标准的评分卡格式,即对不同的分段进行评分。 https://www.shangyexinzhi.com/article/5177142.html
8.如何进行数据预处理和清洗?总结 数据预处理和清洗是机器学习和数据分析中非常重要的步骤。通过识别和纠正缺失值、异常值、重复值和错误数据等问题,可以提高数据质量并减 少后续分析的误差和偏差。数据预处理和清洗的流程包括数据收集和选择、数据清洗、数据转换、数据集成和数据规约。在进行数据预处理和清洗时,需要根据实际情况采取不同的处理方法https://www.cda.cn/bigdata/202680.html