如何测算ChatGPT算力需求?人工智能

服务器厂商:浪潮信息、中科曙光等;

ChatGPT:大模型训练带来高算力需求

具体来看,AI大模型对于算力资源的需求主要体现在以下三类场景:

1、模型预训练带来的算力需求

模型预训练过程是消耗算力的最主要场景。

1)模型开发过程很难一次取得成功,整个开发阶段可能需要进行多次预训练过程;

2)随着国内外厂商相继入局研发类似模型,参与者数量增加同样带来训练算力需求;

3)从基础大模型向特定场景迁移的过程,如基于ChatGPT构建医疗AI大模型,需要使用特定领域数据进行模型二次训练。

ChatGPT单月运营需要算力约4874.4PFlop/s-day,对应成本约616万美元。

3、Finetune带来的算力需求

模型调优带来迭代算力需求。从模型迭代的角度来看,ChatGPT模型并不是静态的,而是需要不断进行Finetune模型调优,以确保模型处于最佳应用状态。这一过程中,一方面是需要开发者对模型参数进行调整,确保输出内容不是有害和失真的;另一方面,需要基于用户反馈和PPO策略,对模型进行大规模或小规模的迭代训练。因此,模型调优同样会为OpenAI带来算力成本,具体算力需求和成本金额取决于模型的迭代速度。

需求场景:预训练+日常运营+Finetune

1)模型预训练:ChatGPT采用预训练语言模型,核心思想是在利用标注数据之前,先利用无标注的数据训练模型。据我们测算,训练一次ChatGPT模型(13亿参数)需要的算力约27.5PFlop/s-day;

2)日常运营:用户交互带来的数据处理需求同样也是一笔不小的算力开支,我们测算得ChatGPT单月运营需要算力约4874.4PFlop/s-day,对应成本约616万美元;

3)Finetune:ChatGPT模型需要不断进行Finetune模型调优,对模型进行大规模或小规模的迭代训练,预计每月模型调优带来的算力需求约82.5~137.5PFlop/s-day。

随着国内厂商相继布局ChatGPT类似模型,算力需求或将持续释放,供给端核心环节或将率先受益:

1)算力芯片:GPU采用了数量众多的计算单元和超长的流水线,架构更适合进行大吞吐量的AI并行计算;

2)服务器:ChatGPT模型训练涉及大量向量及张量运算,AI服务器具备运算效率优势,大模型训练有望带动AI服务器采购需求放量;

算力芯片:AI算力基石,需求有望大规模扩张

服务器:AI服务器有望持续放量

数据中心:核心城市集中算力缺口或将加剧

IDC算力服务是承接AI计算需求的直接形式。ChatGPT的模型计算主要基于微软的Azure云服务进行,本质上是借助微软自有的IDC资源,在云端完成计算过程后,再将结果返回给OpenAI。可见,IDC是承接人工智能计算任务的重要算力基础设施之一,但并不是所有企业都需要自行搭建算力设施。从国内数据中心的业务形态来看,按照机房产权归属及建设方式的角度,可分为自建机房、租赁机房、承接大客户定制化需求以及轻资产衍生模式四种。

THE END
1.ChatGPT的工作原理解析chatgpt模型公式ChatGPT的核心是Transformer架构,它是一种专门设计用于处理序列数据的深度神经网络结构。与传统的循环神经网络(RNN)相比,Transformer具有以下优势: 并行计算能力强:Transformer可以并行处理输入序列中的所有元素,大大提高了训练速度。 长距离依赖建模能力强:Transformer通过自注意力机制可以捕捉输入序列中任意两个元素之间的关系https://blog.csdn.net/m0_62554628/article/details/142835504
2.最近爆红的ChatGPT到底是个什么玩意儿?这些基本概念你要知道序列应ChatGPT 可用于各种有趣和有创意的应用程序。以下是您可以使用 ChatGPT 执行的一些示例。 生成文本和响应 ChatGPT 最流行的用途之一是根据提示生成文本。通过提供提示,您可以要求 ChatGPT 生成文本作为响应。例如,您可以要求 ChatGPT 根据提示生成一个故事,或者您可以要求它完成一个句子或段落。 https://3g.163.com/dy/article/HT25VD1805561IOL.html
3.怎么让ChatGPT优化代码?Worktile社区怎么让ChatGPT优化代码 要让ChatGPT优化代码,可以尝试以下方法: 1. 代码优化技巧 首先,可以采用一些常见的代码优化技巧,例如使用合适的数据结构、减少循环次数、减少重复计算等等。这些技巧可以提高代码的执行效率,从而加快程序运行速度。 2. 算法优化 另外,也可以从算法的角度进行优化。尽量选择高效的算法,避免使用时间https://worktile.com/kb/ask/539173.html
4.OpenAI是如何胜过谷歌的?ChatGPT发展简史ChatGPT由GPT-3.5模型提供支持,GPT(Generative Pre-trained Transformer,生成式预训练变换器)是一种基于互联网可用数据训练的文本生成深度学习模型。名字中之所以有一个Transformer,是因为GPT就是OpenAI在谷歌的Transformer语言模型框架的基础上构建的。 该模型使用了"利用人类反馈强化学习(RLHF)"的训练方式,包括了:人类提https://aidc.shisu.edu.cn/7f/a0/c13626a163744/page.htm
5.ChatGPT使用量的计算ChatGPT聊天将消耗token(这里称之为积分),积分的计算比较复杂,发送的文本要计算积分,回来的文本也要计算积分。 如果是上下文聊天,每次发送文本都要包括之前的聊天记录,因此,积分消耗更多。 那么,具体一段文本怎么计算token数量呢?计算比较复杂,粗略来说,一个简单的英文单词就是一个token,复杂的英文单词可能是2~4个tohttps://www.douban.com/group/topic/288590324
6.ChatGPT模型大战:讯飞星火认知大模型百度文心一言能否击败GPT数值计算 推理解题 跨语言能力 文生图 总结 个人感受 一、你有使用过这种对话式AI吗?你对这类型AI有什么看法或感受? 二、对于“讯飞星火大模型将超越chatgpt?”这个命题你的态度是什么?简要说说原因 三、你认为这类型的人工智能对于现在的社会有哪些意义? https://blog.51cto.com/u_14943402/10335157
7.GPT图解大模型是怎样构建的■初代GPT:基于 Transformer 的单向预训练语言模型,采用生成式方法进行预训练。 ■ChatGPT:从GPT-3开始,通过任务设计和微调策略的优化,尤其是基于人类反馈的强化学习,实现强大的文本生成和对话能力。 ■GPT-4:仍基于Transformer架构,使用前所未有的大规模计算参数和数据进行训练,展现出比以前的AI模型更普遍的智能,不仅https://labs.epubit.com/bookDetails?id=UB836238e7a9d3d
8.云计算:ChatGPT的“中枢神经”开发侧,ChatGPT 生长在云上, 依赖于云计算服务,多年来OpenAI共收到了上百亿的投资,这些资金帮助 OpenAI 在平台上运行和训练其模型;产品侧,OpenAI 基于Cloud Native进行应用开发,基于云计算提供的便捷高性能计算运算模型和打磨算法,并对外销售产品和 API;而投资方基于 AI Native 来提升搜索、绘画等产品,未来会在Offhttps://m.thepaper.cn/newsDetail_forward_22342649
9.“整篇论文没有我自己写的东西”:论文是AI写的,算学术不端吗赵铭在ChatGPT的帮忙下完成了硕士毕业论文,他在国内一所985大学的理工科专业就读,毕业论文的内容是关于云计算。他总结了几种使用ChatGPT的方法,比如凑字数。 ChatGPT很适合“凑字数”,只要发出指令,一句观点便能扩充至几百字。但字数一多,它也会暴露出不足,很多受访者都反映它会重复说“车轱辘话”,“它废话是https://static.nfapp.southcn.com/content/202305/31/c7740338.html
10.解惑了——ChatGPT基于知识库提问token计算方法最近一直做知识库的训练,基于公司的场景一直做课程助手、课程推荐专家的训练。 慢慢了基于知识库回答的一些原理,也慢慢给自己解惑了。 首先,token的计算 众所周知,ChatGhttps://www.jianshu.com/p/519c4c606743
11.为何ChatGPT有时“一本正经地胡说八道”李祖超:对于ChatGPT是否能成为操作系统的新雏形这个问题,我的答案是积极的。操作系统的作用根据用户指令实现资源的分配以及计算的调度,那么ChatGPT发挥的作用是充当新的人机接口,更智能地实现用户指令的解译,减少用户的操作。从更长远来看,通过赋予ChatGPT管理系统资源如硬盘、CPU、外设等能力,将ChatGPT直接作为一种操作系https://m.gmw.cn/2023-02/23/content_1303292513.htm
12.ChatGPT标注指南来了!数据是关键ChatGPT 这个超大的模型可能暂时不需要,但我们在实际工作中很多模型(尤其是推荐)是小时或分钟级别更新的。对这种情况,应该在一开始设计的时候将这部分流程考虑进去。这部分更多是设计和工程问题,比如数据怎么更新,存储在哪里,如何获取,是否需要转换,是否需要定时清理,伸缩性,可用性等多个方面。http://www.360doc.com/content/23/0309/17/1071268750_1071268750.shtml
13.2023年爆火的软件“ChatGPT”到底是个什么呢?ChatGPT的详解以及2023年2月2日,微软官方公告表示,旗下所有产品将全线整合ChatGPT,除此前宣布的搜索引擎必应、Office外,微软还将在云计算平台Azure中整合ChatGPT,Azure的OpenAI服务将允许开发者访问AI模型。 2023年2月3日消息,IT 行业的领导者们担心,大名鼎鼎的人工智能聊天机器人 ChatGPT,已经被黑客们用于策划网络攻击时使用。 http://www.quwaifu.com/News/View/22739