ChatGPT真的听懂了你的话吗?它真的能代替你工作吗?

请允许我用这样一个烂俗的开头,因为大部分人可能都低估了ChatGPT对未来生活的改变,以为不过是一个更智能的搜索引擎,只有这句话才是最恰当的表达。

当然,如果觉得太悲观,或者机器代替人类的思路太俗套,我们也可以给自己的晚年换一个喜剧的结局:

多年以后,面对不需要上班就能领到工资的银行卡,人们将会回想起2022年12月……

ChatGPT对于人类到底是悲剧还是喜剧,并不取决于技术本身,而在于我们每一个人如何对待它,但毫无疑问的是,这将是人工智能诞生以来,人类的工作第一次真正接近被大规模替代的时点——不是部分工作被替代,而是大规模被替代的开始。

没想到恐惧没有消除,反而多了几份敬意,敬意是送给ChatGPT算法的设计者,这真是一个天才的想法,而恐惧是我再次确信,不是少数专业工作者被替代,而是大量的普通白领。

不过,在介绍核心内容之前,我先简单谈一谈ChatGPT跟以前的AI有什么根本的不同。

2

决策式AI和生成式AI

决策式AI使用的是“条件概率”,一件事发生后,另一件事发生的概率,对于某些特定的场景,即使是最复杂的自动驾驶,输出的决策数量也是有限的;

而生成式AI更多使用“联合概率”,即两件事同时发生的概率,以此将各种文字或图像视频元素组合在一起,进行模仿式创作、缝合式创作。

比如说,要表达“70%相信”的意义,系统需要对“非常”、“极度”、“几乎”、“认可”、“同意”、“信任”、“信仰”这些词不同组合后的概率排序进行判断。

所以,相对决策式AI使用在有限的固定场景而言,生成式AI的应用范围宽广的多,未来的想象空间也更大,GPT需要调用上千亿个参数,海量算力的支持。

所以2022年以前,生成式AI看上去很笨,更多是辅助我们做一些内容,比如根据文字转语音,语音转文字。图像层面,大家最熟悉的是各种美颜神器,还有自动抠图、换脸等图像智能编辑、视频智能剪辑。

但2018年GPT这个革命性的算法诞生之后,经过GPT-1、GPT-2、GPT-3三代进化,生成式AI终于进入“专业化、个性化定制内容终稿”阶段,达到替代部分专业内容生产者的目标。

GPT是如何实现这一伟大的进化的呢?下面我把这个机器学习的过程,尽可能用非专业术语描述出来。

3

ChatGPT是如何学习的?

生成式AI的难度,在于对人类语言的理解,人类语言含糊、复杂、多义,还有大量象征、隐喻和联想,如何让使用0和1的机器理解呢?

ChatGPT之所以效果惊艳,在于它充分吸取了之前机器学习算法的经验,又有自己的创新之处,整个过程分为三步:

第一步:冷启动监督策略模型(SFT)

这一步的目的是让系统建立大量人类语言的理解模型,训练方法就是让AI做“填空题”和“选择题”,比如:

老王在家里烧菜,发现没盐了,他出门向小李借了一点盐,小李最可能是?

A、邻居;B、供应商;C、儿子

(这一部分的例子都是我随便举的)

这些训练题来自使用OpenAI的试用用户的真实内容,然后雇佣大量“标注工”对这些内容“出题”,并给出答案。

做了大概1.5万条题目后,机器渐渐学会了预测问题的意图,准确率也越来越高,最后形成各种语言策略(SFT)。

当然,这一步训练得到的只是初步的模型,谁也不知道系统到底理解了些什么,输出的内容也就不可靠。国内大部分机器人客服大概就到这一步,且只针对有限的数据库的内容,常常可以看到文不对题的弱智回答,说明机器并没有真正理解人类的意图。

更常见的问题,一旦离开了专业的数据,系统就会出现大量的“反人类”的表达方式,最典型的是自动翻译的很多结果。

想要让系统知道如何“有话好好说”,需要它理解人类各种情景下的表达偏好,这就是“奖励模型”——

第二阶段:训练奖励模型(RM)

接下来进入真正的人工反馈的强化学习,这一步是让模型的输出内容和人类习惯的输出内容进行比对打分,让系统学会像人类一样表达各种微妙的意思。

这一步的具体做法,先让系统自行生成几个答案,再让“标注工”对这些答案的质量进行排序,比如:

问题:情人节有人约你,你不喜欢他,怎么拒绝更委婉?

系统通过之前的学习,给出了三个答案:A、谢谢,今晚我有约了;B、你是个好人,但不适合我;C、太不巧了,我今天要加班。

“标注工”对这些答案的质量进行排序:C>A>B,这些排序最终形成一个对答案优劣打分的奖励模型(RM),让系统越来越能预测人类的表达方式。

如果拿小朋友学习语言来比喻,第一步就像做填空、选择类客观题,最终成果是让系统可以自动生成一些完整有意义的文本;第二步就是做主观题,只不过要求给出几个答案,批卷老师负责对几个答案进行排序,让系统知道什么样的文本更符合人类喜好。

这两步都需要大量人工标注,而这两步结合起来的第三步,要脱离“人类老师”由机器自动检查自己的学习成果,微调策略。

第三步,PPO模型

大致过程是,先用第一步的策略(SFT)随机生成一个新的文本,放到第二步的奖励模型(RM)里打分,根据分数再回头训练生成新的表达策略(SFT),再调整第二步的奖励模型(RM)的函数,反复迭代,生成最终的模型。

到了这一步,就相当于学生“自学”,自己给自己出题,再对答案,根据答案,修正并改进自己的知识体系和学习方法,最终达到毕业的要求。

不过,“毕业”不代表学习结束,GPT-3之后,OpenAI模型提供了外部API调用——就是我们现在做的,产生了真实用户提问和模型迭代之间的飞轮。

ChatGPT超出之前模型的重要原因之一,就是引入了人工标注,这么做可以让模型的思维习惯、表达方式、价值观等等,和人类进行最大程度的一致。

也许是ChatGPT的表现实在是过于惊艳了,以至于很多人在与它“对话”时都会想到一个问题:

ChatGPT是否真的理解了人类的语言?是否有了思想?如果是这样,它最终会不会发展为一个有知觉的、有自我意识的强人工智能?

4

ChatGPT算不算“懂王”?

要回答这个问题,先来看一看ChatGPT训练的两个目标:

1、理解合理、内容流畅和语法正确

2、生成内容的有用性、真实性和无害性

目标一,基本上没有问题,这也是真正让我们惊叹的地方,它似乎真的能理解我们的语言,并用人类的语言和我们交流。

目标二,粗看也没有问题,特别是那些无法通过搜索引擎直接找到的复杂要求,当你与它持续交流后,它会越来越理解你想得到的内容。

但随着使用量的增加,很多人发现,ChatGPT其实并不真正“理解”你的问题,或者说目前还没到这一步。

最典型的证据在于,如果你用一个模糊的方式问一个明显错误的问题,它常常会很认真地给你一个凭空捏造的回答,比如下面的这个唐玄宗大败赵匡胤的问题:

这个错误,我也试了一个,结果到现在都是如此:

我猜,它的训练数据可以让他判断唐玄宗干过什么,赵匡胤干过什么,却无法让它建立唐玄宗与赵匡胤的关系。

本质上说,ChatGPT只是一个“语言机器人”,它能回答你关于计算机的问题,并不是因为它“懂”这方面的知识,它懂的是所有的语言文字在特定要求下的分布概率,并能预测你要的那个概率。

所以说,它只是在无意识地模仿人类的表达方式,把搜索到的信息以适合的方式表达得以假乱真。

与其说懂,不如说是“不懂装懂”。

当然,这个能力对普通人而言,跟“懂”并没有区别,但普通人的认知水平和表达能力正是机器的“懂”的极限,大部分专业领域,它只能输出该领域中初级人员的内容,更不可能去解决创新的问题。

很多人认为,这也许就是机器人的“懂”,说“唐玄宗大败赵匡胤”并不代表不懂,小孩子也会问关公秦琼哪个更厉害的问题,毕竟ChatGPT还很“小”,每天大量的用户训练下,它也许会进步呢?

但我对此并不乐观,其原因在于,ChatGPT效果最大的还是最初1.5万条有监督的语言模型任务(SFT)——人类老师对它的语言习惯影响很大。

你跟ChatGPT聊久了之后,就会发现,它说话的方式有一种说不出来的假模假式,就好像领导拿大话在忽悠你,所以,除了擅长知识性的问题之外,试用者最津津乐道乐道的是让ChatGPT写年终总结、政治口号、思想汇报、老胡体、打油诗、领导关怀、客户回应等等充满了形式感、套话空话一堆的内容。

还有,ChatGPT经常会犯错,比如做计算题,犯的错误还不太一样,并且是真人常犯的错误——它真的很像人类。

这里就有一个很严重的问题,如果你问了一个专业上的错误的问题,很可能得到看上去很有用的错误答案,而且因为ChatGPT太会不懂装懂了,很容易让人信以为真——就像那些朋友圈阴谋论一样。

说白了,它的模型就是个没有什么专业特长的普通人,除非下一代模型有质的变化,否则它在这个方面的可进步空间有限。

但ChatGPT的可怕之处,正是这个“普通”二字。

5

即将进入的恐怖谷

大家应该都听说过“恐怖谷效应”,随着机器人或人工智能的拟人程度增加,人类对其好感度出现“上升(有点相似)——下降(高度相似)——上升(完全相似)”的过程,而谷底正是人工智能与人类第一次高度相似的时候。

我看到有分析认为生成式AI已经成功跨过了恐怖谷,进入“逼真性”阶段,理由是随着生成内容与人类相似程度的提升,人类对生成式AI的好感正在增加。并热衷于使用,比如ChatGPT是人类历史上最快突破1亿用户的App。

但我的看法刚好相反,它正处于恐怖谷前的“人形机器人”阶段,使用者只是习惯性地把它当成更智能的搜索引擎一类的工具,很快就要意识到ChatGPT的恐怖之处。

ChatGPT未来让人害怕的地方恰恰在于,它不像专家,更像是你身边的普通人——如果像专家,它可以替代的工作反而非常有限。

从原理上说,ChatGPT大规模替代人类工作的担心并非杞人忧天。

其次,ChatGPT与搜索不同,它输出的基本上是最后的工作成果,而不是搜索那样出现一堆内容,让人类去选择,所以它更像“员工”,而不是员工的工作工具。

最后,ChatGPT与决策AI不同,它并不寻求像专家那样找到复杂问题的最优解,而是针对大部分人日常工作的非专家级内容,输出相对合理有用的内容。因此,它可能替代人类的工作范围大大超过想象,不像产线工人、打字员、驾驶员那样,仅限于几个特定的职业。

更何况,工具和员工在一定程度上也是利益对立的,比如和ChatGPT类似的AIGC绘画,目前游戏行业已经开始应用,以前画张原画用三天,现在一天弄完,以前要什么素材要去素材网找,现在要啥直接生成,改改就可以用——尤其那些外包公司,工作效率提高好几倍。

AIGC的工具性质更强,需要人去创作,但由于工作效率大大提升,原来需要招三个设计师,现在一个就行了,这仍然是对人的替代。

有预测,2025年,生成式AI产生的数据将占到所有数据的10%,30%的大型组织出站消息将由生成式AI生成;50%的药物发现与研发将使用生成式AI。

我们不用担心AI拥有意识,但我们确实需要考虑AI大规模替代人类工作的可能性。

6

会提问题的人将是最后的赢家

必须承认,人类的大部分工作之所以容易被ChatGPT取代,是因为这些工作需要产生大量文本或其他形式的内容,这些内容本身难度并不高——ChatGPT广泛并普通的刚刚好。

不过,正如任何一项技术都有两面性,既可能让懒得思考的人抄答案,也可以让求知若渴者加速进步。写本文时,看到了ChatGPT与Bing搜索结合后的功能介绍,它可以让你的工作不但不会被AI取代,反而创造了全新的工作方式。

比如说,你打算写一份新产品推广的方案,你在问它如何写时,可以详细地描述这个产品的特点和你的目标、推广预算。

你还可以就这些内容进一步提问,它会给你更多你想要的东西,更重要的是,它甚至还能提供几个你没有想到的延伸问题,看看你是否需要回答。

可以想象,你将边使用“ChatGPT与Bing搜索”,边完成你的这项工作,与单纯靠ChatGPT输出的方案不同,它是真有可能产生真正创新性的内容的。

如果说,工业革命拉大了财富差距,互联网拉大了资讯获取能力的差距,人工智能则直接拉大了学习能力的差距。

THE END
1.ChatGPT的工作原理解析chatgpt模型公式ChatGPT的核心是Transformer架构,它是一种专门设计用于处理序列数据的深度神经网络结构。与传统的循环神经网络(RNN)相比,Transformer具有以下优势: 并行计算能力强:Transformer可以并行处理输入序列中的所有元素,大大提高了训练速度。 长距离依赖建模能力强:Transformer通过自注意力机制可以捕捉输入序列中任意两个元素之间的关系https://blog.csdn.net/m0_62554628/article/details/142835504
2.最近爆红的ChatGPT到底是个什么玩意儿?这些基本概念你要知道序列应ChatGPT 可用于各种有趣和有创意的应用程序。以下是您可以使用 ChatGPT 执行的一些示例。 生成文本和响应 ChatGPT 最流行的用途之一是根据提示生成文本。通过提供提示,您可以要求 ChatGPT 生成文本作为响应。例如,您可以要求 ChatGPT 根据提示生成一个故事,或者您可以要求它完成一个句子或段落。 https://3g.163.com/dy/article/HT25VD1805561IOL.html
3.怎么让ChatGPT优化代码?Worktile社区怎么让ChatGPT优化代码 要让ChatGPT优化代码,可以尝试以下方法: 1. 代码优化技巧 首先,可以采用一些常见的代码优化技巧,例如使用合适的数据结构、减少循环次数、减少重复计算等等。这些技巧可以提高代码的执行效率,从而加快程序运行速度。 2. 算法优化 另外,也可以从算法的角度进行优化。尽量选择高效的算法,避免使用时间https://worktile.com/kb/ask/539173.html
4.OpenAI是如何胜过谷歌的?ChatGPT发展简史ChatGPT由GPT-3.5模型提供支持,GPT(Generative Pre-trained Transformer,生成式预训练变换器)是一种基于互联网可用数据训练的文本生成深度学习模型。名字中之所以有一个Transformer,是因为GPT就是OpenAI在谷歌的Transformer语言模型框架的基础上构建的。 该模型使用了"利用人类反馈强化学习(RLHF)"的训练方式,包括了:人类提https://aidc.shisu.edu.cn/7f/a0/c13626a163744/page.htm
5.ChatGPT使用量的计算ChatGPT聊天将消耗token(这里称之为积分),积分的计算比较复杂,发送的文本要计算积分,回来的文本也要计算积分。 如果是上下文聊天,每次发送文本都要包括之前的聊天记录,因此,积分消耗更多。 那么,具体一段文本怎么计算token数量呢?计算比较复杂,粗略来说,一个简单的英文单词就是一个token,复杂的英文单词可能是2~4个tohttps://www.douban.com/group/topic/288590324
6.ChatGPT模型大战:讯飞星火认知大模型百度文心一言能否击败GPT数值计算 推理解题 跨语言能力 文生图 总结 个人感受 一、你有使用过这种对话式AI吗?你对这类型AI有什么看法或感受? 二、对于“讯飞星火大模型将超越chatgpt?”这个命题你的态度是什么?简要说说原因 三、你认为这类型的人工智能对于现在的社会有哪些意义? https://blog.51cto.com/u_14943402/10335157
7.GPT图解大模型是怎样构建的■初代GPT:基于 Transformer 的单向预训练语言模型,采用生成式方法进行预训练。 ■ChatGPT:从GPT-3开始,通过任务设计和微调策略的优化,尤其是基于人类反馈的强化学习,实现强大的文本生成和对话能力。 ■GPT-4:仍基于Transformer架构,使用前所未有的大规模计算参数和数据进行训练,展现出比以前的AI模型更普遍的智能,不仅https://labs.epubit.com/bookDetails?id=UB836238e7a9d3d
8.云计算:ChatGPT的“中枢神经”开发侧,ChatGPT 生长在云上, 依赖于云计算服务,多年来OpenAI共收到了上百亿的投资,这些资金帮助 OpenAI 在平台上运行和训练其模型;产品侧,OpenAI 基于Cloud Native进行应用开发,基于云计算提供的便捷高性能计算运算模型和打磨算法,并对外销售产品和 API;而投资方基于 AI Native 来提升搜索、绘画等产品,未来会在Offhttps://m.thepaper.cn/newsDetail_forward_22342649
9.“整篇论文没有我自己写的东西”:论文是AI写的,算学术不端吗赵铭在ChatGPT的帮忙下完成了硕士毕业论文,他在国内一所985大学的理工科专业就读,毕业论文的内容是关于云计算。他总结了几种使用ChatGPT的方法,比如凑字数。 ChatGPT很适合“凑字数”,只要发出指令,一句观点便能扩充至几百字。但字数一多,它也会暴露出不足,很多受访者都反映它会重复说“车轱辘话”,“它废话是https://static.nfapp.southcn.com/content/202305/31/c7740338.html
10.解惑了——ChatGPT基于知识库提问token计算方法最近一直做知识库的训练,基于公司的场景一直做课程助手、课程推荐专家的训练。 慢慢了基于知识库回答的一些原理,也慢慢给自己解惑了。 首先,token的计算 众所周知,ChatGhttps://www.jianshu.com/p/519c4c606743
11.为何ChatGPT有时“一本正经地胡说八道”李祖超:对于ChatGPT是否能成为操作系统的新雏形这个问题,我的答案是积极的。操作系统的作用根据用户指令实现资源的分配以及计算的调度,那么ChatGPT发挥的作用是充当新的人机接口,更智能地实现用户指令的解译,减少用户的操作。从更长远来看,通过赋予ChatGPT管理系统资源如硬盘、CPU、外设等能力,将ChatGPT直接作为一种操作系https://m.gmw.cn/2023-02/23/content_1303292513.htm
12.ChatGPT标注指南来了!数据是关键ChatGPT 这个超大的模型可能暂时不需要,但我们在实际工作中很多模型(尤其是推荐)是小时或分钟级别更新的。对这种情况,应该在一开始设计的时候将这部分流程考虑进去。这部分更多是设计和工程问题,比如数据怎么更新,存储在哪里,如何获取,是否需要转换,是否需要定时清理,伸缩性,可用性等多个方面。http://www.360doc.com/content/23/0309/17/1071268750_1071268750.shtml
13.2023年爆火的软件“ChatGPT”到底是个什么呢?ChatGPT的详解以及2023年2月2日,微软官方公告表示,旗下所有产品将全线整合ChatGPT,除此前宣布的搜索引擎必应、Office外,微软还将在云计算平台Azure中整合ChatGPT,Azure的OpenAI服务将允许开发者访问AI模型。 2023年2月3日消息,IT 行业的领导者们担心,大名鼎鼎的人工智能聊天机器人 ChatGPT,已经被黑客们用于策划网络攻击时使用。 http://www.quwaifu.com/News/View/22739