序论:速发表网结合其深厚的文秘经验,特别为您筛选了11篇人工智能研究综述范文。如果您需要更多原创资料,欢迎随时与我们的客服老师联系,希望您能从中汲取灵感和知识!
引言
回顾人工智能的产生与发展过程,可以将其分为:初期形成阶段,综合发展阶段和应用阶段。
1.初期形成阶段
2.综合发展阶段
1.77年,费根鲍姆在第五届国际人工智能联合会议上正式提出了“知识工程”这一概念。而后其对应的专家系统得到发展,许多智能系统纷纷被推出,并应用到了人类生活的方方面面。20世纪80年代以来,专家系统逐步向多技术、多方法的综合集成与多学科、多领域的综合应用型发展。大型专家系统开发采用了多种人工智能语言、多种知识表示方法、多种推理机制和多种控制策略相结合的方式,并开始运用各种专家系统外壳、专家系统开发工具和专家系统开发环境等等。在专家系统的发展过程中,人工智能得到了较为系统和全面的综合发展,并能够在一些具体的任务中接近甚至超过人类专家的水平。
3.应用阶段
二、人工智能核心技术
人工智能由于其涉及的领域较多,内容复杂,因此在不同的应用场景涉及到许多核心技术,这其中如专家系统、机器学习、模式识别、人工神经网络等是最重要也是发展较为完善的几个核心技术。
1.专家系统
专家系统是一类具有专门知识和经验的计算机智能程序系统,通过对人类专家的问题求解能力建模,采用人工智能中的知识表示和知识推理技术来模拟通常由专家才能解决的复杂问题,达到具有与专家同等解决问题能力的水平。对专家系统的研究,是人工智能中开展得较为全面、系统且已经取得广泛应用的技术。许多成熟而先进的专家系统已经被应用在如医疗诊断、地质勘测、文化教育等方面。
2.机器学习
机器学习是一个让计算机在非精确编程下进行活动的科学,也就是机器自己获取知识。起初,机器学习被大量应用在图像识别等学习任务中,后来,机器学习不再限于识别字符、图像中的某个目标,而是将其应用到机器人、基因数据的分析甚至是金融市场的预测中。在机器学习的发展过程中,先后诞生了如凸优化、核方法、支持向量机、Boosting算法等等一系列经典的机器学习方法和理论。机器学习也是人工智能研究中最为重要的核心方向。
3.模式识别
4.人工神经网络
人工神经网络是在研究人脑的结构中得到启发,试图用大量的处理单元模仿人脑神经系统工程结构和工作机理。而近年来发展的深度卷积神经网络(Convolutionalneuralnetworks,CNNs)具有更复杂的网络结构,与经典的机器学习算法相比在大数据的训练下有着更强的特征学习和表达能力。含有多个隐含层的神经网络能够对输入原始数据有更抽象喝更本质的表述,从而有利于解决特征可视化以及分类问题。另外,通过实现“逐层初始化”这一方法,实现对输入数据的分级表达,可以有效降低神经网络的训练难度。目前的神经网络在图像识别任务中取得了十分明显的进展,基于CNN的图像识别技术也一直是学术界与工业界一致追捧的热点。
三、机器人情感获得
1.智能C器人现状
目前智能机器人的研究还主要基于智能控制技术,通过预先定义好的机器人行动规则,编程实现复杂的自动控制,完成机器人的移动过程。而人类进行动作、行为的学习主要是通过模仿及与环境的交互。从这个意义上说,目前智能机器人还不具有类脑的多模态感知及基于感知信息的类脑自主决策能力。在运动机制方面,目前几乎所有的智能机器人都不具备类人的外周神经系统,其灵活性和自适应性与人类运动系统还具有较大差距。
2.机器人情感获得的可能性
人脑是在与外界永不停息的交互中,在高度发达的神经系统的处理下获得情感。智能机器人在不断的机器学习和大数据处理中,中枢处理系统不断地自我更新、升级,便具备了获得情感的可能性及几率。不断地更新、升级的过程类似于生物的进化历程,也就是说,智能机器人有充分的可能性获得与人类同等丰富的情感世界。
3.机器人获得情感的利弊
机器人获得情感在理论可行的情况下,伴之而来的利弊则众说纷纭。一方面,拥有丰富情感世界的机器人可以带来更多人性化的服务,人机合作也可进行地更加深入,可以为人类带来更为逼真的体验和享受。人类或可与智能机器人携手共创一个和谐世界。但是另一方面,在机器人获得情感时,机器人是否能彻底贯彻人类命令及协议的担忧也迎面而来。
4.规避机器人情感获得的风险
规避智能机器人获得情感的风险应预备强制措施。首先要设计完备的智能机器人情感协议,将威胁泯灭于未然。其次,应控制智能机器人的能源获得,以限制其自主活动的能力,杜绝其建立独立体系的可能。最后,要掌控核心武器,必要时强行停止运行、回收、甚至销毁智能机器人。
三、总结
参考文献
[2]曾毅,刘成林,谭铁牛.类脑智能研究的回顾与展望[J].计算机学报,2016,(01):212-222.
2教学方法研究
研究生教学应更突出学生的主体地位,注重发挥其学习的主动性和自觉性,为此,课程组结合课程特点,在教学方法进行了如下探索。
2.1加强教学设计
教学设计就是对教学活动进行系统计划的过程,是教什么(课程内容)及怎么教(组织、方法、策略、手段及其他传媒工具的使用等)的过程[2]。在教学过程中,每节课授课前,坚持集体备课的原则,由课程组集体讨论选定授课内容,补充阅读文献,根据授课对象与课程内容特点,确定课堂组织方式,采用的授课方式以研讨式教学为主,给合讲授、实验、自学等。
2.2抓好课堂教学环节
教学方法与教学手段是保证课堂教学效果的关键。本课程授课对象主要为硕士研究生,他们的接受能力较强,有一定的求知欲。由于学员人数较少,授课方式可灵活组织。教室有完备的多媒体设备,基本的软件实验环境,教学过程可采用灵活教学方法、多种教学手段,提高教学效率,保证授课质量。
1)以研讨式为主的教学方式。研究生教学应坚持学术研究为导向,发挥学员在学习过程中的主动性和自觉性。由于研究生学员有一定的学习基础与自学能力,教员可以在课前给学员布置预习内容,学员通过查阅资料、分析整理进而形成自己的观点,使在课堂教学中师生互动交流成为可能,改变传统的教员讲,学员听的灌输式教学方式。研讨式教学也有力于培养学员积极思考、创新思维的习惯与能力。
2)教学手段的信息化。人工智能原理教学一个突出矛盾是知识点多、内容抽象、理论性强,但学时较少,因此,必须发挥现代教学手段的作用,提高教学效率。为此,课程组对每节课都精心设计了教学课件,课堂教学中以课件为主,辅以板书,充分利用多媒体信息量大、直观等优点,改善教学效果;引入教学声像资料,便于学员课下学习;设计演示程序,使部分比较抽象、不易于理解的内容,如子句归结、搜索策略更形象直观,易于学习和掌握。
3注重培养学员学术研究能力
学术能力是指专门对某一学问进行系统的哲理或理论研究的能力,它不仅包括思辨的方面,还包括实践及感性的敏感力等方面。研究生阶段学习的一个突出特点是要求学习的主体――研究生必须具备研究的能力[3]。论文写作是培养、锻炼、提高研究生的学术能力的重要途径,在教学实施过程中,要求每个专题学习结束后,都要提交一份格式符合期刊发表要求的总结报告,题目可自行选定,也可由教员指定;内容既可以是人工智能该专题某一算法的实现,也可以是对某一问题的进一步研究,或者是对该专题最新研究进展的综述。教员重点在以下几个方面予以指导。
1)选题准确。要求选题不能过于宏大,应以小题目反映大问题,具有一定的可研究性为宜。
2)研究内容。研究目标明确,方法恰当,能够提出自己的见解,所提观点正确。
3)论文结构。结构清晰、完整,论述严谨,表达规范。
4)占有文献丰富。撰写过程中要有意识培养学员查阅科技文献的能力,要求查阅反映最新研究成果的权威文献。
4加强实验环节教学
人工智能教学在进行各种理论知识讲授的同时,还应重视实践教学,把抽象的知识转化为形象、直观的实验,让学员真正理解人工智能的概念、本质、研究目标,从而提高学员多角度思维的能力和逻辑推理能力,进一步了解信息技术、计算机技术发展的前沿,培养他们对人工智能研究的兴趣,激发对人工智能技术未来的追求。为此,课程组借鉴国内外知名大学人工智能实验教学经验,编写了《人工智能原理实验指导书》,围绕问题表示、经典逻辑推理、不确定推理、搜索策略及简单专家系统实现等教学内容提供了7组实验供学员选择。
例如,在状态空间搜索一节教学过程中,先完成理论部分的教学,使学员对状态空间基本概念、问题表示及求解方法有一个准确的认识,然后进行实验教学。由学员自主完成重排九宫问题求解的程序,初始状态和目标状态如图1所示,调整的规则是,每次只能将与空格(左、上、下、右)相邻的一个数字平移到空格中[4]。实验过程重点指导学员掌握状态空间进行问题求解的关键步骤:问题表示和搜索策略。问题表示就是要确定该问题的基本信息及程序实现的数据结构,基本信息有初始状态集合、操作符集合、目标检测及路径费用函数,数据结构可采用向量、链表等形式;搜索策略可分为盲目式搜索和启发式搜索,可按照先易后难的原则,先实现盲目搜索中的广度优先及深度优先搜索,在此基础上再定义估价函数实现启发式搜索。而在启发式搜索实现过程中,又可以通过定义不同的启发函数:如某状态格局与目标节点格局不相同的牌数、不在目标位置的牌距目标位置的距离之和等加以比较,准确理解启发函数的意义。通过实验,学员加深了对课堂讲授的理论知识的理解,能够熟练地将状态空间法运用于实际问题的求解,提高了工程实践能力。
实验教学组织方式可根据具体的实验内容特点,采用上机编程实验、演示程序验证、模拟平台开发、分组讨论等多种形式进行。
5适度开展双语教学
研究生的英语基础普遍较好,基本都通过了国家公共英语四级考试,部分学员通过了六级考试,加之在本科阶段还开设了专业英语课程,因此,在培养研究生人工智能知识的同时,我们要提高学员阅读原版英文资料、用英语进行简单科技写作及对外学术交流的能力,适度开展双语教学,对此,我们可采取以下基本方式。
1)专业术语全部用英语表示。
在教学过程中用英语表达人工智能原理中的专业术语和主要概念,如KnowledgeRepresentation(知识表示)、Depth-FirstSearch(深度优先搜索)、Breadth-FirstSearch(广度优先搜索)等。
2)以英文原版教材为教学参考书。
选定机械工业出版社出版的《ArtificialIntelligenceStructuresandStrategiesforComplexProblemSolving》为参考书,该书“是人工智能课程的完美补充。它既能给读者以历史的观点,又给出所有技术的实用指南[5]。”
3)加强英文文献的阅读。
在课程论文撰写时,要求阅读一定数量的外文文献;在讨论课中,鼓励学员使用英语进行讨论。
经过课程学习,学员都能准确掌握人工智能学科专业词汇,英文运用能力得到一定提高,能较自如地阅读原版英文专业资料,为进一步用英文进行学术交流及学术论文写作打下基础。
6考试与成绩评定改革
考核方式采用传统的试卷与课程论文、实践环节等三部分组成,全面考查学员对基础理论知识掌握情况以及理论联系实际的能力,其中试卷占70%,课程论文占10%,实践环节占20%。课程论文题目不作限制,由学员在课程学习阶段结合某一专题选定题目,课程论文以选题意义、研究内容、论文结构、参考文献及撰写规范等指标为评价依据;实验成绩采用实验过程考查、实验结果验收和实验报告评阅相结合的考核方法,综合评定。这样做不但考核了学员人工智能基本理论掌握情况,也反映了学员的学术研究能力和工程实践能力。同时,考核结合实际教学进程,改变了单一课终总结性考核的弊端。
7结语
经过课程组近两年的教学方法研究与教学实践,研究生人工智能原理课程教学收到较好的效果,但仍存在一些问题,如在课堂讨论环节,个别学员准备不充分、讨论不够深入;课程论文撰写选题随意,文献综述不够全面、准确,论文格式不够规范等。在今后的授课中,课程组将根据授课研究生人数较少的特点,采取明确每名学员预习重点、加强课程论文交流等方式予以改进,力求取得更好的教学效果。同时,进一步充分利用便利的校园网平台,开展“人工智能原理”网络课程建设,购买或自主开发网络教学资源,引导学员利用网络资源进行个性化自主学习,增强教学过程的信息化程度。
参考文献:
[1]王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,2002:1.
[2]李志厚.国外教学设计研究现状与发展趋势[J].外国教育研究,1998(1):6-10.
[3]肖川,胡乐乐.论研究生学术能力的培养[J].学位与研究生教育,2006(9):1-5.
[4]周金海.人工智能学习辅导与实验指导[M].北京:清华大学出版社,2008:204.
[5]GeorgeF.Luger.ArtificialIntelligenceStructuresandStrategiesforComplexProblemSolving[M].北京:机械工业出版社,2009:754.
ReformonPostgradratesArtificialIntelligenceCourseTeaching
TANYuehui,QIJianfeng,WANGHongsheng,LIXiongwei
1研究背景
随着时代的发展,计算机技术因其优越性在多个领域得到广泛应用。“计算机学科的一个重要分支就是人工智能,它与基因工程、纳米科学被列为21世纪三大尖端技术”,它为人工智能技术在航空业的应用创造了条件。现代航空业的迅猛发展,带来空中交通流量的飞速增长。目前,航空业经常出现空中交通堵塞、拥挤等现象,迫切需要引进先进的技术手段,提升空中交通技术,改进管理手段,有效提升空域容量与空间利用率。
根据空中交通管理的理论特点,以及空中交通管理技术特点,人工智能技术在空中交通管理中的应用研究逐渐引起了人们的重视,并取得较大发展。人工神经网络在空中交通流量预测、飞行间隔控制、飞行冲突智能调配等方面的研究初见成效。但我国空中飞行流量需求的日益增大,迫切需要将人工智能技术有效运用到空中交通管理中,建立人工智能空中交通管理辅助系统,真正实现类似专家功能的新型空中交通管理系统。本文基于这样的认识,尝试将人工智能技术应用到空中交通管理系统中,有效提升空中交通的空域容量,使空中交通更加有序,更好地服务于积极社会的发展,提升人们的生活质量。
2人工智能技术概况阐述
“人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的”从计算机应用系统的层面来理解,人工智能研究的主要内容是如何制造出人造的智能机器,以及人造的智能系统,具备模拟人类智能活动的能力,从而延伸人们智能的一门科学。
人工智能领域的研究始于1956年,“人工智能”这个术语第一次出现于达特茅斯大学召开的一次会议上。随后人们逐渐在问题求解、自然语言理解、自动程序设计、专家系统、逻辑推理与定理证明、博弈、学习以及机器人学等领域展开研究,成功建立了具有一定程度的人工智能计算机系统。随着研究的不断深入,人工智能理论得到不断的丰富与发展。随着计算机硬件的快速发展,计算机的存储容量不断扩大、运行速度不断提高、价格低廉,人工智能技术的发展将会给人们的生活、工作等带来更大的影响。
3空中交通管理人工智能系统构成简述
4空中交通管理人工智能辅助系统的实现方式
4.1飞行流量管理辅助决策的实现
人工智能系统飞行流量管理模块主要将空域资源“空闲”的概念与A算法与辅助决策进行结合。其具体操作过程是根据飞行流量管理数据库,储存或读取数据,计算流量,预测冲突,依据基本容量模型,建立A算法数学模型,对空中航班进行动态与静态排序,最终完成人工智能技术对空中飞行流量的辅助决策作用。
4.2飞行冲突探测与解脱辅助决策的实现
飞行冲突探测与解脱辅助决策系统能够向空管员提供高效的避撞辅助方案,有效弥补管制员决策过程中的不足,对飞行冲突情况进行分析,寻找出积极的解脱方案。
飞行冲突探测与解脱辅助决策系统推理过程大致包括以下几个方面:突中航空器、突中航空器优先等级评估、冲突类别评定、避撞应对方案、建立避撞路线。推理选择最主要的过程是推理机制,为了完成推理过程,该系统中还必须包括一系列的规则:航空器优先级别评定规则、避撞方案确定规则、避撞空管规则、建立避撞路线规则等;还要建立层次型结构及模块化知识库,确保避撞推理的有效运作,保证知识库得到有效维护,并且能够及时的更新。
5结束语
人工智能技术在空中交通管理中的应用,必将使空中交通管理更高效、更安全、更有序,必将最大程度的提升空域的利用效率。人工智能技术的应用领域是广泛的,相信随着人们对人工智能技术研究的不断深入,人工智能技术必将在更多方面提供智能化辅助管理服务,使人工智能技术不断的服务于社会经济,服务于人们的需要。
人工智能技术可以说是计算机技术、信息论、心理学以及语言学等诸多学科彼此联系与交叉之后形成的一门全新的学科。近年来,随着全球范围内计算机技术的持续发展,计算机的形象也出现了新的变化。主要表现在人机交互的场景变得愈来愈普遍,计算机被人们赋予了更加多的智能性因素。因为人们将最新计算机技术运用到了诸多学科,对这部分学科的认知也进入到了全新的发展期,从而推动了诸多新研究成果的持续出现。比如,围棋人机大战之中人工智能“阿尔法狗”的轻松取胜、人类大脑奥秘的发现、单一器官克隆的实现等。鉴于计算机这一人类诞生以来所发明的最为重要工具的持续发展,大量新知识、新理论持续涌现,促使人类一定要对其开展全面分析与研究。因为近些年来生物学、神经生理学等各种新研究成果的产生,让人工智能和人类智能的相互关系引发了人们越来越多的探讨。
一、人工智能概述
人工智能(简称AI),又被称为机器智能,是在上个世纪五十年代的Dartmouth学会当中被首次提出的,是计算机科学的重要分支之一。当前能用以研究人工智能的重要物质手段和能实现人工智能技术的主要设备即为计算机。人工智能是通过研究让计算机全面模拟人类思维的过程以及学习、推理和思考等功能的学科,包含了计算机智能的产生原理、形成与人脑智能近似的电脑等,从而让计算机能够真正实现更加高层次、更加高水平的实践运用。人工智能的本质其实是对人类思维中信息过程的一种模拟。对人类思维所进行的模拟主要可通过两条道路来开展,其一为实现结构上的模拟,也就是模拟人类大脑的结构,从而制造出类似于人脑的一种智能化机器。这一设想在实践中被证明为无法实现,这是由于人类对自身大脑和思维的过程还未能形成清晰而又明确的认知;其二是实现功能上的模拟,也就是放弃对人类脑部结构的仿真性模拟,转而从功能角度对人类大脑的思考过程加以模拟。如今人工智能所进行的努力就是对人脑功能的一种模拟。
二、人工智能发展状况分析
(一)全球人工智能发展现状
(二)我国人工智能发展现状
三、人工智能的未来发展趋势
四、结束语
总之,人工智能始终处在计算机研究技术的前端,其研究进展在相当大的程度上会决定计算机技术今后的发展趋势。人工智能只是人类工具的一种延长,无法替代人类的大脑,这一点从其诞生之日起就已确定。虽然人工智能无法对人类的智能造成挑战,但是随着人类对于人工智能的研究进一步深化,人工智能还会越来越接近于人类的智能。人工智这一人类智能客体化后之产物,其功效依然会受到人类智能之控制。如今已有大量人工智能的科研成果进入人类的现实生活之中。今后,人工智能的持续发展必然会对人类的生活与工作等带来更加巨大的影响。
[1]史忠植,王文杰.人工智能[M].北京:国防工业出版社,2007.
[2]周以真.计算思维[J].中国计算机学会通讯,2007(3).
0引言
随着经济的快速发展,人们生活水平得到了较好的改善。经济的繁荣使得我国工业水平正在不断提高。在社会主义市场经济环境下,竞争机制不断完善和发展,各企业要想在竞争激烈的市场环境中稳定发展,提高企业自身的工作效益非常重要,而人工智能在提高企业经济效益上有着重要作用。随着科学技术的不断发展,人工智能技术不断成熟并广泛的应用在电气工程自动化中,有效的提高了电气工程自动化的效率,为企业的发展带来了良好的经济效益。
1人工智能概述
人工智能也可以称作为机器智能,是人类对自然改造做制造出来的系统所表现出来的职能,人工智能是以计算机技术为依靠的。从某种意义上将,人工智能就是沿用人工的方法和技术,以人类的智慧为模型,实现机器智能化的发展。人工智能的产生是随着科学技术的发展而发展的,是人类与计算机技术发展的产物结晶。科学技术是第一生产力,随着科学技术的不断发展,人工智能的发展已经超越了计算机这一门学科。心理学、计算机学科、哲学、物理学等众多学科都与人工智能有着密切的关系。
2电气工程中实现人工智能控制的意义
在我国,是一个能源消耗大国,工业的发展,使得在人力上、物力上、财力上的投入不断增加,近年来,我国电气工程事业得到了飞速发展,为了满足人们日益增长的物质文化需求,适应经济快速发展的步伐,在竞争激烈的市场环境中,电气工程面临着巨大的挑战。随着科学技术的不断发展,人工智能逐渐进入到人们的视野,并且所担任的角色也来越重要。人工智能在电气工程中所扮演的角色尤为重要。当前我国电气工程很容易出现设备故障,经济效益低下,为了改变这些状况,在市场环境中长远生存下去,利用人工智能技术已经迫在眉睫了。在电气工程中,利用人工智能,可以实现智能化作业,在电气设备上实现智能化自我检修,防止出现设备故障,从而提高设备的工作效率,给电气工程事业带来经济效益[1]。
3人工智能在电气工程自动化控制技术中的应用
在我国电气工程中,运用人工智能作业,可以有效的提高智能化作业水平,在作业过程中,可以自行的对机械设备进行检查,从而加大对电气工程自动化作业的控制,提高电气工程自动化作业水平。下面就以火力发电工程为例,来分析人工智能在工程中自动化的控制技术。
3.1火力发电的原理
火力发电系统中主要由燃烧供给系统、给水系统、蒸汽系统、冷却系统、发电系统等主要部件构成。火力发电是指利用石油、煤和天然气等燃料燃烧时所产生的热能来加热水,使水变成高温、高压水汽,然后再由水蒸气推动发电器来发电。热电厂为火力发电厂,采用煤炭作为一次能源,利用皮带传送技术,向锅炉输送经处理过的煤粉,煤粉燃烧加热锅炉使锅炉中的水变为水蒸汽,经一次加热之后,水蒸汽进入高压缸。为了提高热效率,应对水蒸汽进行二次加热,水蒸汽进入中压缸。通过利用中压缸的蒸汽去推动汽轮发电机发电。从中压缸引出进入对称的低压缸。已经作过功的蒸汽一部分从中间段抽出供给炼油、化肥等兄弟企业,其余部分流经凝汽器水冷,成为40度左右的饱和水作为再利用水。40度左右的饱和水经过凝结水泵,经过低压加热器到除氧器中,此时为160度左右的饱和水,经过除氧器除氧,利用给水泵送入高压加热器中,其中高压加热器利用再加热蒸汽作为加热燃料,最后流入锅炉进行再次利用。以上就是一次生产流程[2]。
3.2产品设计人工智能化控制
在火力发电场中,电气设备的设计是一个非常艰难的过程,设备性能的好坏直接影响到了发电系统的整体效果,要想保障火力发电系统的正常使用,产品设计的科学性很重要。人工智能利用计算机科学技术,经过模型设计,计算出电力系统做需要产品的规格,从而提高了工作效率,缩短了设计的周期,在发电系统中便利统一指导和管理[3]。
3.3经济运行人工智能化控制
随着计算机技术的发展,在火力发电厂中,运用计算机技术实现火力发电各系统之间的监控,而人工智能集合了计算机技术与人类的智慧于一体,在火力发电厂中,利用人工智能可以计算出火力发电厂各个系统运行的功率,单位的流量。火力发电厂场中,各个分系统之间是相互联系的,利用人工智能,能够计算出会理系统所需要的燃料,蒸汽系统中的水温变化情况,已经发电成效,对火力发电系统中各个子系统都能够有效的控制起来,从而保障火力发电厂经济运行[4]。
3.4机械设备人工智能化控制
火力发电厂所需要的设备较多,所要投入的人力也较大,一般都是一个子系统由两到三个人监控,发电系统能够正常运行。通过计算机监控技术,只要一个中央控制系统就能对发电系统的各个子系统中进行人工智能操作,不仅能够节省大量的人力,还能针对设备故障进行自动化检修,保障设备运行的效率,实现人工智能化控制[5]。
4结语
随着我国科学技术的不断发展,人工智能已经逐渐成熟起来,并且广泛应用在当前企业的经营活动中。伴随着电气工程规模不断的扩大,电气自动化技术在电气工程中的作用也越来越大。在社会主义市场经济当中,随着市场竞争越来越激烈,我国电气工程要想在市场中取得发展,不断满足现代化经济快速发展的需要,就必须提高电气工程自动化的办公效率,利用人工智能技术,对企业办公实行自动化控制,从而有效的改善电气工程运行环境,提高经济效益,促进经济发展。
【参考文献】
[1]徐志国.人工智能(AI)在电力系统中的应用[J].现代电子技术,2013,06(21):24―25.
[2]王同文,管霖,张尧.人工智能技术在电网稳定评估中的应用综述[J].电网技术,2011,01(12):136―137.
[3]李华勇,王诗明,王华.电网智能操作票管理系统的研制与开发[J].江西电力,2012,10(06):104―105.
[4]毛钢元,刘志国.智能控制系统设计方法的比较研究[J].淮阴工学院学报,2010,10(05):198―199.
【关键词】人工智能应用发展前景
现如今,科技的飞速发展使得人们生活的需求也在不断的变化,单纯的计算机技术似乎已经无法满足人们的需求。计算机不仅要提供更加智能化的服务,而且还要提供更加人性化的服务,只有这样才能逐渐满足人们日益增长的需求。随着人工智能技术的不断发展与完善,它在社会、生活等各个领域中的应用和影响也越来越大,而且相对于其他技术也有着更大的发展空间与发展前景。
1人工智能的定义
人工智能并不是近些年才出现的新名词。早在1956年美国计算机协会组织的达特莫斯(Dartmouth)学会上就已经提出了“人工智能”这个词。美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能的定义是:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的学科”。而美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使用计算机去做过去只有人才能做到的智能工作”。由于人类的智能存在并不是单方面的,对于智能的研究很可能是多方面共同作用的结果,而且不同学科有不同的研究背景和不同的研究环境,对人工智能的理解不同,提出的观点也不同。这就导致了目前对人工智能的定义还没有一个统一的标准。
人工智能作为一门学科,它综合了计算机科学、心理学、生理学以及语言学等多种学科,是一门非常具有挑战性的综合型技术。人工智能技术的研究目的是为了让机器等设备能够代替人类或者人类专家来处理一些相对复杂的问题,因此也被称为机器智能。人工智能是相对于人类智能和自然智能而言的智能,使机器设备等通过对人类智能活动的模仿、延伸和扩展,实现某些机器思维,完成操作者的命令。
2人工智能的应用简介
2.1人工智能在模式识别中的应用
数字识别、汉字识别和语音识别使用的技术是人工智能中的神经网络技术,神经网络具有学习能力和快速并行实现的特点。汉字识别的难度相对于数字识别来说要复杂的多,困难的多,影响其正确识别的因素很多。以一套汉字识别系统为例――“汉王笔”,这是一套在手写板上书写的汉字联机输入计算机的汉字识别系统,是由中科院自动化研究所汉王公司开发的。语音识别在生活中并不陌生,目前很多移动端的应用程序中就有关于语音识别的应用。其中人工智能在语音识别中的应用代表之一是七国(英、日、意、德、法、韩、中)语言口语自动翻译系统。
人脸识别也是人工智能在模式识别中的重要应用。人脸识别主要是机器等设备基于人脸特征进行身份验证,相比其它人体生物特征的识别来说更加直接、精确度高。目前具有代表性的产品之一是汉王人脸通,它可以在无光线条件下进行人脸的识别,还可以利用高精度3D打印技术打印人脸的识别。汉王人脸通目前可以实现对易容的识别,同卵双胞胎、同卵三胞胎的识别。
2.2人工智能在计算机网络技术中的应用
智能化防火墙系统采用智能化识别技术,如记忆、统计、概率以及策略等方法对数据进行识别和处理。采用智能化识别技术的目的主要是为了减少了计算机在进行匹配检查过程中所要进行的庞大计算。智能防火墙系统有效的解决了普通防御软件拒绝服务等问题,并且还有效的遏制病毒传播与入侵。
入侵检测是防火墙技术核心组成部分,入侵检测技术主要是通过采集数据、筛选数据、数据分类和处理等过程,及时向用户报告当前安全状态。人工智能技术在入侵检测中较为广泛的应用例子有专家系统、模糊识别系统以及人工神经网络等。
智能型反垃圾邮件系统可以在不影响用户信息安全的基础上,对用户邮件进行有效检测,并及时提醒用户存在可能危害系统的垃圾信息。
2.3人工智能在远程教育中的应用
新西兰的研究人员制作出了一个“虚拟教师”――DubbedEve,“他”能根据远程学生的情绪状态做出适当的反应。DubbedEve三维动画教师是计算机科学中人工智能技术的实践应用。Eve的设计目的是以一对一的方式教8岁大小的孩子数学。Eve不仅可以接受孩子的提问、反馈、给出相应的答案,还能和孩子一起讨论问题,并能表现相应的情感。也能使用响应系统的基本信息判断孩子的反应,并从孩子的反应中相应的调整自己。为了制作出Eve,研究人员观察了教师和学生之间在真实生活中的交互情形,抓取了数千张面部表情、手势、身体语言等图片,编制了Eve的响应系统程序。基于人工智能的响应系统程序与嵌入式设备配合,机器设备能感知学生的情绪和其它生物信号、识别面部表情以及身体语言等。
3人工智能的发展前景
情感能力对于计算机与人的交互至关重要,如何赋予计算机情感能力将是人工智能技术的发展前景。当前国际人工智能领域对人工智能和认知领域的研究日趋活跃。有能力感知和适应人来情绪的计算机程序,将作为未来发展的必要趋势。
智能家居也是未来人工智能技术在生活中应用的发展前景。基于人工智能技术的无线传感装置可以实现通过各类集成化的微型传感器协作地实时监测、感知和采集环境信息,可以更好的提升现代住房的安全、舒适。还可以通过物联网等方式实现用户在异地对智能家居系统的远程查询和调控。人工智能技术在生活中的应用很大程度上为人民提供了方便舒适的生活环境,也是未来的发展趋势。
4总结
人工智能技术除了在模式识别和计算机网络技术中的应用之外,在工业生产、军事、农业生产、企业等各个领域当中都有了广泛的应用。人工智能技术不仅带动了新型处理技术的推广,而且还会延伸更多新型技术的发展。随着人工智能技术的不断完善与发展,它将在今后的社会、生活中发挥更大的作用。
[1]张妮,徐文尚,王文文.人工智能技术发展及应用研究综述[J].煤矿机械,2009,30:4-6.
[2]刘合鸣.论人工智能的研究与发展[J].科学实践,2010,248-249.
[3]曾雪峰.论人工智能的研究与发展[J].现代商贸工业,2009,13:248-249.
[4]张彬.探讨人工智能在计算机网络技术中的应用[J].软件,2012,11:265-266.
[5]陕粉丽.人工智能在模式识别方面的应用[J].长治学院学报,2007,24:39-32.
andLanguagein
EmbodiedAgents
2010
Hardback
ISBN9783642012495
Nolfi等著
交流和语言的本质及其发展演变目前依然是科学界的一个难题。随着人工智能技术的不断发展,“怎样使多个人工智能体之间进行类似于人类或其他动物一样的交流”成为一个重要的研究热点,吸引了越来越多学者的兴趣。这个领域的研究将使我们了解交流产生的根源及其演变过程,使我们能制造可以进行沟通的人工智能来解决目前遇到的诸多问题。本书对这一领域的研究进行了全面的介绍和分析,介绍了这个领域的基本理论和常用分析研究方法,还分析了该技术的应用前景和本领域的发展方向。书中还给出了若干具体的实验过程,介绍了常用的软硬件工具。
本书的主要作者StefanoNolfi是意大利国家研究理事会认知科学研究中心的资深科学家,领导着自主式机器人实验室,并且是进化机器人学的创始人。本书适用于认知领域、人工生命、人工智能和语言学等领域科研工作者、研究生和教师。
刘军涛,助理研究员
一、引言
二、人工智能态势下的市场营销
(一)智能营销的内涵
智能营销,是伴随着人工智能应用的发展而产生的一个新的营销概念。智能营销不等同于电子营销,它是建立在大数据、人工智能、云计算等综合技术基础上的一种智能化运作模式(汪涛2014),是可以模仿营销人员的部分行为活动的过程。随着人工智能技术在营销领域的应用,智能化的设备通过仿真、思考、行动等模式完成了营销人员所需要进行的一部分工作,深刻改变了营销思维和方式。作为智能经济条件下的新产物,目前学者们对智能营销还没有形成一致的概念界定。但是随着对人工智能的逐步深入了解,业界逐渐形成了一种共识,即它是企业借助计算机网络、移动互联网等智能技术来进行营销活动的各种新思维、新方法、新工具的一种创新营销新概念(常亚平2018),它包括智能识别、智能存储、智能执行等多个方面。
(二)智能营销的技术基础
(三)人工智能在营销中的应用体现
三、人工智能带来的营销管理新趋势
四、人工智能时代市场营销面临的挑战
五、结论
[1]高山行,刘嘉慧.人工智能对企业管理理论的冲击及应对[J].科学学研究,2018(11).
[2]常亚平,王良燕,黄劲松,等.3D(大数据、数字化和发展中)背景下的营销战略与转型专栏介绍[J].管理科学,2018(5):1-2.
[3]Shankarv.Howartificialintelligence(AI)isreshapingretailing[J].JournalofRetailing,2018,94(4):vi-xi.
[4]汪涛,谢志鹏.拟人化营销研究综述.外国经济与管理,2014(1):38-45.
[5]Wangtao,XIEZhipeng.Areviewoftheliteratureofper-sonificationmarketing[J].ForeignEconomics,Manage-ment,2014(1):38-45.
也正因为如此,人工智能发展进程中所面临的挑战才不仅仅局限于技术或产业领域,而更多体现在经济、社会、政治领域的公共政策选择上。首先,普遍建立在科层制基础上的公共事务治理结构,是否能够适应技术发展和应用过程中所大规模激发的不确定性和不可预知性再者,长久以来围绕人类行为的规制制度,是否同样能够适应以数据、算法为主体的应用环境最后,如何构建新的治理体系和治理工具来应对伴随人工智能发展而兴起的新的经济、社会、政治问题
应对上述挑战并不完全取决于技术发展或商业创新本身,而更多依赖于我们的公共政策选择。本文试图在分析人工智能发展逻辑及其所引发的风险挑战的基础上,对人工智能时代的公共政策选择做出分析,并讨论未来改革的可能路径,这也就构成了人工智能治理的三个基本问题。具体而言,人工智能本身成为治理对象,其发展与应用构成了治理挑战,而在此基础上如何做出公共政策选择便是未来治理变革的方向。
一、人工智能的概念及技术发展逻辑:算法与数据
伴随着人工智能技术的快速发展,尤其是其近年来在棋类对弈、自动驾驶、人脸识别等领域的广泛应用,围绕人工智能所可能引发的社会变革产生了激烈争论。在一方面,以霍金[2]、马斯克[3]、比尔-盖茨[4]、赫拉利[5]为代表的诸多人士呼吁加强监管,警惕“人工智能成为人类文明史的终结”;在另一方面,包括奥巴马[6]在内的政治家、学者又认为应该放松监管,充分释放人工智能的技术潜力以造福社会。未来发展的不确定性固然是引发当前争论的重要原因之一,但围绕“人工智能”概念内涵理解的不同,以及对其发展逻辑认识的不清晰,可能也同样严重地加剧了人们的分歧。正因为此,廓清人工智能的概念内涵和发展逻辑不仅是回应争论的需要,也是进一步提出公共政策建议的前提。
人工智能研究的目标是使机器达到人类级别的智能能力,而其中最重要的便是学习能力。[10]因此,尽管“机器学习”是“人工智能”的子域,但很多时候我们都将这两个概念等同起来。[11]就实现过程而言,机器学习是指利用某些算法指导计算机利用已知数据得出适当模型,并利用此模型对新的情境给出判断,从而完成行为机制的过程。此处需要强调一下机器学习算法与传统算法的差异。算法本质上就是一系列指令,告诉计算机该做什么。对于传统算法而言,其往往事无巨细地规定好了机器在既定条件下的既定动作;机器学习算法却是通过对已有数据的“学习”,使机器能够在与历史数据不同的新情境下做出判断。以机器人行走的实现为例,传统算法下,程序员要仔细规定好机器人在既定环境下每一个动作的实现流程;而机器学习算法下,程序员要做的则是使计算机分析并模拟人类的行走动作,以使其即使在完全陌生的环境中也能实现行走。
由此,我们可以对“人工智能”设定一个“工作定义”以方便进一步的讨论:人工智能是建立在现代算法基础上,以历史数据为支撑,而形成的具有感知、推理、学习、决策等思维活动并能够按照一定目标完成相应行为的计算系统。这一概念尽管可能仍不完善,但它突出了人工智能技术发展和应用的两大基石——算法与数据,有助于讨论人工智能的治理问题。
首先,算法即是规则,它不仅确立了机器所试图实现的目标,同时也指出了实现目标的路径与方法。就人工智能当前的技术发展史而言,算法主要可被划分为五个类别:符号学派、联接学派、进化学派、类推学派和贝叶斯学派。[12]每个学派都遵循不同的逻辑、以不同的理念实现了人工智能(也即“机器学习”)的过程。举例而言,“符号学派”将所有的信息处理简化为对符号的操纵,由此学习过程被简化(抽象)为基于数据和假设的规则归纳过程。在数据(即历史事实)和已有知识(即预先设定的条件)的基础上,符号学派通过“提出假设-数据验证-进一步提出新假设-归纳新规则”的过程来训练机器的学习能力,并由此实现在新环境下的决策判断。
从对“符号学派”的描述中可以发现,机器学习模型成功的关键不仅是算法,还有数据。数据的缺失和预设条件的不合理将直接影响机器学习的输出(就符号学派而言,即决策规则的归纳)。最明显体现这一问题的例子便是罗素的“归纳主义者火鸡”问题:火鸡在观察10天(数据集不完整)之后得出结论(代表预设条件不合理,超过10个确认数据即接受规则),主人会在每天早上9点给它喂食;但接下来是平安夜的早餐,主人没有喂它而是宰了它。
所有算法类型尽管理念不同,但模型成功的关键都聚焦于“算法”和“数据”。事实上,如果跳出具体学派的思维束缚,每种机器学习算法都可被概括为“表示方法、评估、优化”这三个部分。[13]尽管机器可以不断的自我优化以提升学习能力,且原则上可以学习任何东西,但评估的方法和原则(算法)以及用以评估的数据(数据)都是人为决定的——而这也正是人工智能治理的关键所在。算法与数据不仅是人工智能发展逻辑的基石,其同样是治理的对象和关键。
总而言之,围绕“人工智能是否会取代人类”的争论事实上并无太大意义,更重要的反而是在廓清人工智能的内涵并理解其发展逻辑之后,回答“治理什么”和“如何治理”的问题。就此而言,明确治理对象为算法和数据无疑是重要的一步。但接下来的重要问题仍然在于,人工智能时代的崛起所带来的治理挑战究竟是什么当前的制度设计是否能够对其做出有效应对如果答案是否定的,我们又该如何重构治理体系以迎接人工智能时代的崛起本文余下部分将对此做进一步的阐述。
二、人工智能时代崛起的治理挑战
不同于其他颠覆性技术,人工智能的发展并不局限于某一特定产业,而是能够支撑所有产业变革的通用型技术。也正因为此,其具有广泛的社会溢出效应,在政治、经济、社会等各个领域都会带来深刻变革,并将同时引发治理方面的挑战。具体而言,挑战主要体现在以下三个方面。
再者,治理方法的滞后性,即长久以来建立在人类行为因果关系基础上的法律规制体系,可能难以适用于以算法、数据为主体的应用环境。人工智能的价值并不在于模仿人类行为,而是其具备自主的学习和决策能力;正因为如此,人工智能技术才不能简单地理解为其创造者(即人)意志的表达。程序员给出的只是学习规则,但真正做出决策的是基于大规模数据训练后的算法本身,而这一结果与程序员的意志并无直接因果关联。事实上也正由于这个特点,AlphaGo才可能连续击败围棋冠军,而其设计者却并非围棋顶尖大师。也正是在这个意义上,我们才回到了福柯所言的“技术的主体性”概念。在他看来,“技术并不仅仅是工具,或者不仅仅是达到目的的手段;相反,其是政治行动者,手段与目的密不可分”。[15]就此而言,长久以来通过探究行为与后果之因果关系来规范人的行为的法律规制体系,便可能遭遇窘境:如果将人工智能所造成的侵权行为归咎于其设计者,无疑不具有说服力;但如果要归咎于人工智能本身,我们又该如何问责一个机器呢由此,如何应对以算法、数据为核心的技术主体所带来的公共责任分配问题,是当前面临的第二个治理挑战。
上述三方面共同构成了人工智能时代崛起所带来的治理挑战。面对这些挑战,各国也做出了相应的公共政策选择。本文第三部分将对各国人工智能的治理政策进行对比性分析。在此基础上,第四部分将提出本文的政策建议。
三、各国人工智能治理政策及监管路径综述
美国于2016年同时颁布了《国家人工智能研究与发展战略规划》和《为人工智能的未来做好准备》两个国家级政策框架,前者侧重从技术角度指出美国人工智能战略的目的、愿景和重点方向,而后者则更多从治理角度探讨政府在促进创新、保障公共安全方面所应扮演的角色和作用。就具体的监管政策而言,《为人工智能的未来做好准备》提出了一般性的应对方法,强调基于风险评估和成本-收益考量的原则以决定是否对人工智能技术的研发与应用施以监管负担。[17]日本同样于2016年出台了《第五期(2016~2020年度)科学技术基本计划》,提出了“超智能社会5.0”的概念,强调通过推动数据标准化、建设社会服务平台、协调发展多领域智能系统等各方面工作促进人工智能的发展和应用。[18]
尽管美国和日本的政策着力点不同,但其共有的特点是对人工智能的发展及其所引发的挑战持普遍的包容与开放态度。就当前的政策框架而言,美日两国的政策目标更倾斜于推动技术创新、保持其国家竞争力的优势地位;当涉及对人工智能所可能引发的公共问题施以监管时,其政策选择也更倾向于遵循“无需批准式(permissionless)”的监管逻辑,即强调除非有充分案例证明其危害性,新技术和新商业模式默认为都是被允许的。[19]至于人工智能的发展对个人数据隐私、社会公共安全的潜在威胁,尽管两国的政策框架都有所涉及,却并非其政策重心——相比之下,英国、法国则采取了不同的政策路径。
在本文看来,无论是“无需批准式监管”还是“审慎监管”,在应对人工智能时代崛起所带来的治理挑战方面都有其可取之处:前者侧重于推动创新,而后者则因重视安全而更显稳健。但需要指出的是,这两种监管路径的不足却也十分明显。正如前文第二部分所指出,一方面,快速迭代的技术发展与商业模式创新必将引发新的社会议题,无论是算法是否受到言论自由的权利保护还是普遍失业对社会形成的挑战,它们都在客观上要求公共政策做出应对,而非片面的“无需批准式监管”能够处理。更重要的是,“无需批准式监管”的潜在假设是事后监管的有效性;然而,在事实上,正如2010年5月6日美国道琼斯工业指数“瞬间崩盘”事件所揭示的,即使单个电子交易程序合规运行,当各个系统行为聚合在一起时反而却造成了更大的危机。[23]在此种情形下,依赖于合规性判断的“事后监管”基本上难以有效实施。另一方面,人工智能本身的自主性和主体性使得建立在人类行为因果关系基础上的“审慎监管”逻辑存在天然缺陷:既然人类无法预知人工智能系统可能的行为或决策,开发者又如何证明人工智能系统的无害性
正如本文所反复强调的,人工智能与其他革命性技术的不同之处,正是在于其所带来的社会冲击的综合性和基础性。人工智能并非单个领域、单个产业的技术突破,而是对于社会运行状态的根本性变革;人工智能时代的崛起也并非一夜之功,而是建立在计算机革命、互联网革命直至数字革命基础上的“奇点”变革。因此,面对人工智能时代崛起所带来的治理挑战,我们同样应该制定综合性的公共政策框架,而非仅仅沿袭传统治理逻辑,例如只是针对具体议题在“创新”与“安全”这个二元维度下进行艰难选择。本文在第四部分从承认技术的主体性、重构社会治理制度、推进人工智能全球治理这三方面提出了政策建议,并希望以此推动更深入地围绕人工智能时代公共政策选择的研究与讨论。
四、人工智能时代的公共政策选择
《新一代人工智能发展规划》明确提出了到2030年我国人工智能发展的“三步走”目标,而在每一个阶段,人工智能法律法规、伦理规范和政策体系的逐步建立与完善都是必不可少的重要内容。面对人工智能时代崛起的治理挑战,究竟应该如何重构治理体系、创新治理机制、发展治理工具,是摆在决策者面前的重要难题。本文基于对人工智能基本概念和发展逻辑的梳理分析,结合各国已有政策的对比分析,提出以下三方面的改革思路,以为人工智能时代的公共选择提供参考。
上述三方面从整体上对人工智能时代的公共政策框架做出了阐述。与传统政策局限于“创新”与“安全”之间做出二维选择不同,本文以更综合的视角提出了未来公共政策选择的可能路径。就其内在联系来讲,建立并完善围绕算法和数据的治理体系是起点,其将重构人工智能时代的规则与制度;创新社会治理机制并完善社会保障体系是底线,其将缓解人工智能所带来的影响与波动;构建全球治理机制则成为了制度性的基础设施,推动各国在此之上共同走向人工智能时代的“人类命运共同体”。
五、结语
[参考文献]
[5][以]赫拉利.人类简史[M].北京:中信出版社,2014.
[7]Turing,A.M.ComputingMachineryandIntelligence.Mind,1950,59(236).
[11][12][13][美]佩德罗-多明戈斯.终极算法:机器学习和人工智能如何重塑世界[M].黄芳萍译.北京:中信出版社,2016.
[14]Benkler,Y.TheWealthofNetworks:HowSocialProductionTransformsMarketsandFreedom.YaleUniversityPress,2006.
[15]Foucoult,M.DisciplineandPunish.A.Sheridan,Tr.,Paris,FR,Gallimard,1975.
[16]Srnicek,N.,&Williams,A.TheFutureisn'tWorking.Juncture,2015,22(3):243-247.
[19]Thierer,A.PermissionlessInnovation:TheContinuingCaseforComprehensiveTechnologicalFreedom.MercatusCenteratGeorgeMasonUniversity,2016.
[21]周衍冰.大数据产业在法国的发展及应用[N].学习时报,2014-11-03.
[22]Thierer,A.D.,&Watney,C.J.CommentontheFederalAutomatedVehiclesPolicy,2016.
[23][美]杰瑞·卡普兰.人工智能时代:人机共生下财富、工作与思维的大未来[M].杭州浙江人民出版社,2016.
(一)人工智能。人工智能是一门研究、理解和模拟人类智能,并且发现其内在规律的学科。它是计算机科学的一个分支,试图发现智能的实质,并创造出一种以人类思考的方式做出相似反映的智能机器。同时,它又是计算机知识、心理学知识和哲学知识的集合,模拟人的意识和思维过程,让机器能够做到只有人类智慧才能做到的复杂的事项。
(二)智能家居。智能家居是嵌入式技术、通信技术和网络技术的集合,通过系统将各种家居与人们的居家生活紧密结合,以提高人们生活的舒适感和安全感。随着人工智能的迅猛发展,智能家居正与人工智能紧密结合,让消费者享受到更人性化的居家体验。
二、文献综述
欧阳婷梓研究了人工智能对智能家居的影响,认为人工智能应用的落地将会使智能家居产业升级,同时还指出Al技术还有待突破,市场决定人工智能能否再次爆发。荣华英和兼国恩研究了人工智能发展背景下国际智能家居行业贸易发展前景,认为国际智能家居行业贸易将朝智能产品设计、智能生产制造、智能高效物流和智能商业服务方向发展。吴斌在研究我国智能家居系统发展存在的问题时,指出要制定行业标准体系,降低系统成本并完善售后服务。
观察现有研究,发现有关人工智能时代下智能家居行业发展的研究仍相对较少,本文指出Al对智能家居行业发展的影响,指出未来发展机遇,并预测未来该行业的发展趋势,对行业发展具有指导意义。
三、智能家居行业发展现状
(一)国际智能家居行业发展现状。美国的AmazonEcho、GoogleHome和AppleHomeKit占据了国外的智能家居语音控制平台市场,Contro14利用Zigbee技术可以与世界知名品牌的家电产品连接,控制各种设备和系统;英国的LaingHomt公司早在2000年建立了“智能家居”示范街,给每栋房子都装上了智能管理系统,近年也在国内建立起了一些智能家居体验式展厅;日本软银生产的Pepper人形情感机器人能够读懂人类的情感,并做出相应的反映,在各种场合为人们服务,松下于2017年“PanasonicHome+全屋智能”战略,让全屋各个部分的功能都智能化;德国的Apartimentum未来型公寓将物联网应用和先进科技结合起来让住户的生活更加简洁舒适。据中国报告大厅的《2016-2021年中国智能家居产业市场运行暨产业发展趋势研究报告》数据显示智能家居市场规模逐年上涨,但增长速度开始放缓,随着人工智能的发展,行业开始进入技术融合,技术沉淀打造更加智能的家居用品的阶段,2016~2018年全球智能家居市场规模变化如图1所示。
智能家居产业错综复杂,涉及众多产品,根据目前各企业涉及的领域,大致分为六个流派:以海尔、美的为代表的传统家电企业,通过将原有的产品智能化提高销售;以阿里巴巴和京东为代表的互联网企业,通过自产智能硬件或与传统家电企业建立合作涉足智能家居行业;以华为和小米为代表的手机硬件企业,通过研发软件、生产硬件和建立智能家居生态系统进军智能家居行业;以Honeywell、Bosch和松下为代表的安防企业,在本身安防设备的基础上智能化,占据智能家居安防市场;以AmazonEcho和GoogleHome为代表的国外智能家居企业,通过语音识别和人工智能技术进军国内市场;以及一些提供云平台服务和小型硬件的供应商。
四、当前智能家居行业面临的问题
(一)缺乏规范统一的标准。在整个智能家居产业中,至今还没有制定统一的标准,导致各大公司各行其道,各自开发自己的系统,与其他厂商开发出来的系统并不兼容,目前具有代表性的是谷歌、苹果、微软加入了高通主导的AllSeen联盟,英特尔、三星、戴尔等公司组成了智能家居设备标准联盟OIC。之后,谷歌在收购Nest之后力推Thread,苹果自家提出Homekit。一方面用户的智能体验降低;另一方面加重了用户的转换成本。而人工智能是一项复杂的产业,它不是一两家公司就能经营好的,它需要各领域的公司参与进来研发技术、搭建平台、生产终端,各司其职,并用统一的标准将各个环节连接起来。
(二)缺乏人性化的伪智能。目前,智能家居产品大多通过手机来实现,但有些厂商以“智能”为噱头,将原本简单的操作强加到手机上,使得手机承担较多的功能。然而,除了年轻人对智能手机的操作较为熟悉,其他用户面对复杂的“智能”操作只能望而却步,严重缺乏人性化设计。
(四)信息安全存在隐患。物联网信息传输过程中,个人信息极易被黑客窃取,不法分子通过这些个人信息进一步窃取用户的财产,会造成巨大的社会不稳定,对智能家居未来发展构成巨大威胁。如果智能家居产业在未来想占据较大一部分家居市场,就必须克服信息安全问题,加大信息的监管力度。
五、Al助力智能家居行业发展
(一)AI与智能家居结合进入最终状态。经过几十年的发展,智能家居经过了用App远程控制家电的单品智能化和多个电器间相互感应的智能互动两个阶段,以上两个阶段均为弱智能阶段,得通过手机来操作。而第三阶段是家居产品与人工智能的深入结合,赋予家居产品人性化,摆脱手机的操控,通过自主学习、主动记忆、自主决策为用户提供舒适的生活。
(二)提升全新的交互体验。语音交流以其与人交流的亲和感,成为当今最流行的人机交互方式。人类通过语音给机器下达指令,机器通过语音识别执行指令。近几年,语音识别技术取得重大突破,语音识别准确率达到97%以上。而智能音箱具有语音交互、提供音乐和有声读物等媒体内容、提供多种互联网服务以及可以对智能家居进行控制等功能,深受大众追捧,因而被称为智能家居的入口。为抢占智能家居的入口,互联网各大巨头纷纷加紧研究抢占市场。2014年11月,亚马逊推出智能音箱Echo,至今已有几千万的销量,随后谷歌推出GoogleHome,微软推出Cortana,紧接着国内的京东推出叮咚音箱,阿里巴巴也推出了“天猫精灵”,小米推出“小爱同学”。
(三)提供更安全、可控的应用环境。传统的密码输入和保护方式已经不再满足人们对操作便捷性和安全性的要求,于是推动了人们对生物识别技术的开发。生物识别是指通过计算机与生物传感器等高科技结合,提取人固有的生理特征和行为特征,以鉴定个人身份。目前人脸识别、指纹识别和虹膜识别已经得到广泛的应用。为达到更高的安全水准,通过红外线照射获取手指静脉图像的指静脉技术也在紧密研究当中,极大地迎合了人们对智慧生活的追求。
六、我国智能家居发展的机遇
(一)我国加速进入老龄化社会,智能家居需求增大。因为工作关系很多子女与父母在异地生活,难以妥善地照顾好父母的生活,而智能家居可以方便老人们的日常生活,提高老年人的生活质量,加上多年财富的积累,老年人的经济实力比年轻人要高,随着老龄化进程的加快,老年人人口的比例将加重,多重原因结合起来支撑起了未来潜在的市场需求。
(三)居民收入增多,消费价格将降低。随着经济的不断发展,人们的收入也在逐年上涨,到2020年我国将全面建成小康社会,届时人们的收入水平将会大幅增长,相比2010年翻一番。经济增长的同时,科技也在飞速发展,技术水平的不断完善降低了智能家居产品的成本,同时电信运营商的网络费用也在下调,日常的运营维护成本也在下降,消费者的消费成本将会大幅下降,市场需求将会激增,市场规模将会扩大。
(四)政策扶持,发展道路顺畅。智能家居产业发展被写入政府工作报告,政府相继出台《“互联网+”人工智能三年行动实施方案》、《智能制造工程实施指南(2016-2020年)》、《促进新一代人工智能产业发展三年行动计划(2018-2020年)》等指导性文件,促进智能家居、智能机器人、智能制造装备等领域产业发展。并成立“中国人工智能产业创新联盟”和“人工智能产业技术创新战略联盟”,把涉及人工智能领域的所有环节全面整合,扫除阻碍人工智能发展的一切障碍。
七、我国智能家居行业未来发展趋势
(一)标准日趋统一。当智能家居行业依旧遵循现在的发展方式,各企业各行其道,系统间互不兼容,消费者将会对该行业产生疲倦,未来市场规模可能难以扩大。除非出现一家领导性标杆企业,拥有自己的系统,能够生产出所有类别的智能家居产品,用户对该企业提供的方方面面都很满意,进而垄断了整个智能家居市场。很显然,出现这种情况的概率很小,没有一家企业可以力挽狂澜,所以市场逼着企业间建立起统一的标准,为用户提供便捷舒适的生活体验。
八、结语
主要参考文献
[1]陈晋.人工智能技术发展的伦理困境研究[D].吉林大学,2016.
[2]邓中祚.智能家居控制系统设计与实现[D].哈尔滨工业大学,2015.
智能电网是当今世界电力系统发展的重大变革,也是21世纪电力系统的重大科技创新和发展趋势。2003年,美国“未来能源联盟”首次提出智能电网的概念。同年,美国能源部了“Grid2030”设想[1],将美国的未来电力系统描述为一个完全自动化的电力传输网络,能够监视和控制每个用户和电网节点,保证从电厂到终端用户整个输配电过程中所有节点之间的信息和电能的双向流动。2005年,欧洲技术论坛(ETP)提出了“SmartGrid”概念[2],计划通过智能电网的建设,向所有用户提供高度可靠、经济有效的电能,充分开发利用大型集中发电机和小型分布式电源,提高电网公司运营效率,降低电能价格,加强与客户的互动,应对来自市场、安全和电能质量、环境等方面的压力。
国内也高度重视智能电网建设。2010年6月7日,总书记在两院院士大会上的讲话中提出,要“构建覆盖城乡的智能、高效、可靠的电网体系”。国家科技部于2009年11月24日的《关于加快我国智能电网技术发展的报告》中提出了明确的目标和任务。国家电网公司于2009年5月了“坚强智能电网”愿景及建设路线图。南方电网有限责任公司在2010年7月提出了“建设一个覆盖城乡的智能、高效、可靠的绿色电网”的目标。2011年2月,陕西省地方电力(集团)有限公司作为专业的配电网公司,联合清华大学提出了建设“多指标自趋优”智能配电网的目标。
1国外智能电网分代研究状况
分代研究在计算机和战斗机等领域已经取得了共识。计算机按照所采用的电子元件,历经了电子管计算机、晶体管计算机、集成电路计算机、大规模集成电路计算机,现在正在研发信息获取、存储、处理、通信与人工智能相结合的第五代计算机。20世纪40年代中期,以喷气式发动机为动力的战斗机出现后,按时代和技术水平,战斗机历经三代,目前正在研制第四代战斗机。
1.1智能电网演进模型
1.2智能电网持续发展理论
2011年7月,美国GridNet公司执行副总裁兼首席战略官AndresCarvallo和能源与IT行业学者JohnCooper合作出版了“TheAdvancedSmartGrid—EdgePowerDrivingSustainability”一书,提出了智能电网持续发展理论[4]。书中认为第一代智能电网(SmartGrid1.0)实现了发电厂到终端计量设备的电流与信息流的传输,典型的第一代智能电网是美国科罗拉多州博尔德市智能电网的建设。下一代智能电网(SmartGrid2.0)将是一个集成的、先进的智能电网体系,从战略上进行顶层设计,在组织、运行、系统集成与建模等多个维度进行柔性规划,下一代智能电网的一些技术已经在美国奥斯汀市智能电网研究项目PecanStreet中浮现。书中对第三代智能电网(SmartGrid3.0)进行了展望,并将其定义为一个基于互联网络的重新设计的能源系统。
1.3智能电网层次理论
1.4智能电网成熟度模型
智能电网成熟度模型是IBM、美国生产力和质量中心(APQC)及全球智能电网联盟(GIUNC)合作研究的成果[6]。智能电网的成熟度分为5个阶段:第1阶段,只有对智能电网的设想,主要工作是对技术的试验和评价,以及建立业务模型;第2阶段,企业在至少一个智能电网的重要业务领域进行投资和实施;第3阶段,企业对智能电网的组成部分进行重新配置,实现业务领域整合或产业链升级;第4阶段,实现企业范围的跨业务综合观测及综合控制,力争形成新的经济或商业模式;第5阶段,企业有能力在新的业务、运行、环境等机会出现时,充分利用并发展壮大。
2智能电网的本质——智能
2.1人类智能的发展阶段
人类智能经历了从初级到高级、从简单到复杂的演化过程。这种过程只在个体的前十几年表现得尤为突出,正是这一过程决定了每个人一生智能水平的高低,也决定了人类群体智能水平的多样性。
虽然多元智能理论并不着眼于各个智能在个体层面的发展顺序,但是结合JeanPiaget的认知发展理论,同时根据HowardGardner对每种智能概念的描述,可以对智能的8个组成部分以发展为时序,在多元维度上进行归类。在感知运动阶段,空间智能和音乐智能是人类智能重点发展的部分;到了前运算阶段,语言智能和身体运动智能在儿童身上表现较为明显;数学逻辑能力和自我认知能力在具体运算阶段得到了迅速发展;最后,从青少年阶段开始,终其一生,对自然的认知,人际交往能力随着阅历的丰富、经验的积累而日趋成熟。
2.2人工智能是对人类智能的模拟、延伸和扩展
(1)人工智能发展的初级阶段是对人类智能的模拟。通过传感器远程传送信号,需要操作者通过计算机终端控制机器执行动作,这类似于人类智能的感知运动阶段,具体的应用如排爆机器人、勘探机器人等。
(2)人工智能发展的中级阶段是对人类智能的延伸。着眼于通过程序算法实现机器的逻辑运算和自我认知能力,类似于人类智能的前运算和具体运算阶段。智能机器人通过处理器分析传感器收集的信息,在无人操控的状态下执行动作。有些智能机器人还能通过对人类语言的识别和模拟实现与人类的语言交流,如日本的ASIMO智能机器人,可以通过“脑—机”系统达到人类思维直接控制机器人的效果。
(3)人工智能的更高阶段,智能将成为一种系统层面的应用。人工智能体现出自我思维和机器情感等人类特有的能力,通过自我思维产生对外部环境的认识,通过机器感情与外部环境产生更为复杂的交互,这些能力使得人工智能发生了从模拟、延伸到扩展人类智能的突破。
2.3智能电网是人工智能在传统电网中的应用
智能电网建立在电力电子技术、传感与测量技术、控制仿真决策技术、信息与通信技术、人工智能技术等基础技术之上,以实现发电、储能、输电、配电、用电等环节的智能化为目的。其中,人工智能技术在推动智能电网发展中起着重要作用。
(1)人工智能的应用能够推动整个电力系统的发展。传统电网存在大量非线性的、模糊的、不确定、不精确、不完全真值的问题,人工智能技术应用的目的就是解决上述问题。基于人工智能的电网故障检测与诊断、具有灵活自愈功能的配电自动化等技术的应用表明,在期望能取得低代价的解决方法和鲁棒性方面,人工智能的应用显著改善了传统电网对不确定、高度非线性环境的适应能力。
(2)人工智能技术的应用体现了智能电网的本质。智能电网的本质是智能,现代人工智能技术是对人类智能的模拟,因而人工智能的应用是电网“智能化”的根本体现,人工智能技术应用使智能电网回归到了它的本质——智能。从这种意义上说,人工智能技术是否应用是评价一个电网是不是智能电网的基本依据。
(3)人工智能技术在电网中的应用程度体现了智能电网区别于传统电网的特征。传统电网未能完整地体现人工智能“感知、思维、行为”三要素,导致人的参与程度较低,传统电网始终徘徊在由工业化主导的阶段,在信息化与工业化融合时,遇到了重重困难。智能电网中,人工智能技术的广泛应用将使得电网逐步具有模拟人类智能的能力,从而减少人的参与程度。
(4)未来智能电网的发展中,人工智能是推动智能电网跃进发展的革命性力量。未来智能电网将是一个具有自预测、自诊断、自愈、自组织和自管理特性的电网。智能电网的跃进发展将主要依靠电网的自学习能力,人的干预将退居其次。人工智能的应用,使得电网的自学习成为可能。在可以预见的将来,除了人工智能技术,其他技术均无法有效增强电网的自学习能力。
3智能电网分代原则、标准与模型
以上分析了智能电网的本质,以下在智能电网的本质基础上提出智能电网分代的原则、标准以及智能电网分代模型。
3.1智能电网分代原则
智能电网分代必须遵循以下原则:
(1)惟一性原则:下一代和上一代的智能电网必须按照智能电网的本质进行划分。
(2)革命性原则:下一代智能电网必须在整体,而不是局部取得标志性进展和突破。
(3)连续性原则:下一代智能电网发展的关键要素必须蕴含在上一代智能电网的发展过程中。
3.2智能电网分代标准
智能电网的本质是智能。人工智能是人类智能应用于传统电网的纽带,人工智能将人类智能的8个方面归纳为“感知、行为、思维”3个要素,上述3个要素也是智能电网分代的标准。
感知是客观事物通过感觉器官在大脑中的直接反映。在多元智能的8个方面中,感知体现语言智能、空间智能、音乐智能。感知在人工智能技术中的体现有语音识别、机器视觉等。
行为是器官对外界刺激所产生的反应。行为体现身体运动智能,行为在人工智能技术中的体现有机器人学、智能控制等。
思维是主体处理信息及意识的活动。思维体现数学逻辑智能、人际智能、自我认知智能、自然认知智能,思维在人工智能技术中的体现有知识系统、专家系统、神经网络、进化计算等。
3.3智能电网分代模型
智能电网发展的各阶段均须具备人工智能3个要素的全部或部分,不具备3个要素的电网属于传统电网。依据3个要素在传统电网中渗透与融合的深度和广度,建立智能电网分代模型如图2所示。
图2中将智能电网划分为具有以下特征的三代智能电网:
(2)第二代智能电网:自适应智能电网(AdaptiveSmartGrid)。第二代智能电网在第一代智能电网自主感知能力的基础上,具备一定的自主决策能力和自主行为能力,是人工智能在电网中应用的中级阶段,较少需要人参与就能根据感知结果进行决策并采取行动。这种感知、决策和行为是独立的,即只在单一设备或系统局部的感知域内进行决策并根据决策结果驱动单一设备或系统局部采取行动,以达到局部最优。典型的自适应智能电网应用系统如智能调度系统、智能自愈系统等。
4智能电网分代的社会经济意义
技术创新与人类解放之间的历史发展进程表明,人的劳动方式在逐渐变化,技术创新使人在生产劳动中逐渐从事必躬亲的执行者演变成监督者、命令者,这种角色的演变,反映出技术创新在人的实践过程中所具备的强大能动作用。智能电网作为当前电网行业最重要的技术创新形式,同样发挥着着解放人类劳动的作用,亦即电网运行中人的参与程度不断减弱。
第一代智能电网通过技术创新实现自我感知,不但极大地拓展了认知的深度和广度,而且还使人的身体在一定程度上获得了解放。
第二代智能电网通过技术创新实现自我行为,将会极大地减轻人的劳动强度,甚至取代了劳动者在电网运行过程中仅有的操作、监督和控制工作,使人得以在很大程度上从体力劳动中解放出来。
第三代智能电网通过技术创新实现自我思维,“电脑”开始代替“人脑”控制电网运行,机器人劳动取代人的劳动,使人的活动逐渐从电网运行中淡出,这将使人的思维劳动强度得以极大的减轻。
以智能电网建设为标志的技术创新为电力产业提升运行管理水平,开发新产品和服务,以及延伸整个产业链奠定了坚实的技术基础。随着技术手段的革新与经营管理模式的转变,电力产业尤其是电网企业的供给可能性边界将极大扩展,不仅能够满足目前存在的潜在需求,而且还能在未来引领和创造新的需求,在供需双方良性互动的作用下,电力产业将不断优化升级,产业整体影响力和竞争力都会获得显著的提升。
5结语
智能电网分代是一个全新的课题,但是分代研究在计算机等其他领域并不鲜见,对这些领域进行分代的目的是通过研究“上一代是什么”来推测“下一代是什么”,因此有必要通过分代研究来预测和引导智能电网的发展方向。与其他领域分代研究更注重“回头看”的方法不同,智能电网尚未大规模应用,分代更注重“向前看”,正是人类智能与人工智能的发展规律,奠定了我们“向前看”的基础。未来,伴随智能电网的深入推进,实践应用总结出的成果和经验,将有助于深化对智能电网本质的认识,理论的可行性与实践的迫切要求,也必将对智能电网分代研究起到促进作用。
[1]USDepartmentofEnergy.Grid2030:Anationalvisionforelectricity'ssecond100years[R].USA:USDepartmentofEnergyInitiative,2003.
[3]FARHANGIHassan.Thepathofthesmartgrid[J].IEEEPowerandEnergyMagazine,2010,8(1):18-28.
[4]CARVALLOAndres,COOPERJohn.Theadvancedsmartgrid:edgepowerdrivingsustainability[M].Boston:ArtechHousePublishers,2011.