2.能够错助于计算器进行有三角函数的计算,并能对结果的意义进行说明,发展数学的应用意识和解决问题的能力。
过程与方法
经历探索实际问题的过程,进一步三角函数在解决实际问题过程中的应用。
情感态度与价值观
积极参与探索活动,并在探索过程中发表自己的见解,三角函数是解决实际问题的有效工具。
教学重点与难点
重点:能够把数学问题转化成数学问题,能够借助于计算器进行有三角函数的计算。
难点:能够把数学问题转化成解直角三角形问题,会正确选用适合的直角三角形的边角关系。
教学过程
一、问题引入,了解仰角俯角的概念。
提出问题:某飞机在空中A处的高度AC=1500米,此时从飞机看地面目标B的俯角为18°,求A、B间的距离。
提问:1.俯角是什么样的角?,如果这时从地面B点看飞机呢,称∠ABC是什么角呢?这两个角有什么关系?
2.这个△ABC是什么三角形?图中的边角在实际问题中的意义是什么,求的是什么,在这个几何图形中已知什么,又是求哪条线段的长,选用什么方法?
教师通过问题的分析与讨论与学生共同学习也仰角与俯角的概念,也为运用新知识解决实际问题提供了一定的模式。
二、测量物体的高度或宽度问题.
1.提出老问题,寻找新方法
我们学习中介绍过测量物高的一些方法,现在我们又学习了锐角三角函数,能不能利用新的知识来解决这些问题呢。
利用三角函数的前提条件是什么?那么如果要测旗杆的高度,你能设计一个方案来利用三角函数的知识来解决吗?
学生分组讨论体会用多种方法解决问题,解决问题需要适当的数学模型。
2.运用新方法,解决新问题.
⑴从1.5米高的测量仪上测得古塔顶端的仰角是30°,测量仪距古塔60米,则古塔高()米。
⑵从山顶望地面正西方向有C、D两个地点,俯角分别是45°、30°,已知C、D相距100米,那么山高()米。
⑶要测量河流某段的宽度,测量员在洒一岸选了一点A,在另一岸选了两个点B和C,且B、C相距200米,测得∠ACB=45°,∠ABC=60°,求河宽(精确到0.1米)。
在这一部分的练习中,引导学生正确来图,构造直角三角形解决实际问题,渗透建模的数学思想。
三、与方位角有关的决策型问题
1.提出问题
一艘渔船正以30海里/时的速度由西向东追赶鱼群,在A处看见小岛C在北偏东60°的方向上;40nin后,渔船行驶到B处,此时小岛C在船北偏东30°的方向上。已知以小岛C为中心,10海里为半径的范围内是多暗礁的危险区。这艘渔船如果继续向东追赶鱼群,有有进入危险区的可能?
2.师生共同分析问题按以下步骤时行:
⑴根据题意画出示意图,
⑵分析图中的线段与角的实际意义与要解决的问题,
⑶不存在直角三角形时需要做辅助线构造直角三角形,如何构造?
⑷选用适当的边角关系解决数学问题,
⑸按要求确定正确答案,说明结果的实际意义。
3.学生练习
某景区有两景点A、B,为方便游客,风景管理处决定在相距2千米的A、B两景点之间修一条笔直的公路(即线段AB)。经测量在A点北偏东60°的方向上在B点北偏西45°的方向上,有一半径为0.7千米的小水潭,问水潭会不会影响公路的修建?为什么?
学生可以分组讨论来解决这一问题,提出不同的方法。
延伸阅读:
中考复习专题(二)待定系数法复习教案
【内容分析】
重点:灵活选择题目给定的条件,利用待定系数法确定函数解析式.
难点:会利用或找出给的条件设出函数解析式的一般形式.
考点:待定系数法是确定代数式中某些项的系数的重要数学方法,它是以代数式形式上的恒等变换的性质为依据,通过特定的已知条件,辩证地转化已知和未知的关系,从而求得代数式中某些系数的值,在中考题目中往往会有多处涉及,其中临沂市近几年中考题最后压轴的第一问多是利用待定系数法确定函数解析式.
【复习目标】
通过训练,让学生熟练掌握待定系数法确定函数解析式.
【环节安排】
环节
问题设计
教学活动设计
1.如图1,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()
A.y=-x+2B.y=x+2C.y=x-2D.y=-x-2
2.已知点A(m,1)在直线y=2x-1上,求m的方法是,可得m=.
3.已知点B(-2,n)在直线y=2x-1上,求n的方法是,可得n=.
4.已知某一次函数的图象经过点P(3,5)和Q(-4,-9),求一次函数的解析式是一般先,再由已知条件可得,解得,∴满足已知条件的一次函数解析式是:,这个一次函数解析式的图象与坐标轴交点坐标为:.
5.一次函数的图象经过反比例函数的图象上的A、B两点,且点A的横坐标与点B的纵坐标都是2.求这个一次函数的解析式.教师引入新课后,出示题目,学生自主完成.
教师巡视,及时发现学生完成的情况,记录下所出现的问题,以便集中处理.
教师要求学生在做题的同时,总结解决问题所运用的知识点、方法和规律.
找学生展示完成的情况,师生共同点评和分析,同时就检查过程中发现的问题进行处理,就本部分所用到的知识进行方法总结.
【例1】如图2,抛物线经过三点.求出抛物线的解析式.
【例2】如图3,一次函数与反比例函数的图像交与A(2,3)B(-3,n)两点.
(1)求一次函数与反比例函数的解式;
(2)根据所给条件,请直接写出不等式kx+b>的解集:.
(3)过B点作BD⊥x轴,垂足为C,求△ABC的面积.
【变式练习】已知如图4,抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.求抛物线的解析式;
教师出示例题,学生开始思考,先独立分析,然后在小组内交流,解答.
教师巡视,了解学生的讨论情况或解答的情况,搜集要强调的知识点、解题的方法及易出错的地方等等.
学生讨论交流后,请3位学生讲解.
展示部分学生的解答练习.
师生共同评析.
1.点(2,4)在一次函数的图象上,则_____.
2.若反比例函数的图象经过点,则该函数的解析式为_____.
3.函数y=x2+bx+3的图象经过点(-1,0),则b=.
4.已知二次函数y=ax2+bx+c的图象如图5,则这个二次函数的解析式是y=___.
5.函数y=(m-n)x2+mx+n是二次函数的条件是()
A.m、n是常数,且m≠0B.m、n是常数,且m≠n
C.m、n是常数,且n≠0
D.m、n可以为任意实数
6.抛物线y=x2-4x+c的顶点在x轴,则c的值是()
A.0B.4C.-4D.2
教师出示问题,学生开始解答
教师巡视,了解学生的解答的情况,搜集要强调的知识点、解题的方法及易出错的地方等等.
学生展示自己的成果,教师点评分析,并及时地鼓励学生。
通过本节课的复习,你有哪些收获?还存在哪些疑惑?
教师提出问题,学生思考,总结,在小组内交流.
人教版九年级数学上册全册教案及作业题(带答案)
第二十一二次根式
教材内容
1.本单元教学的主要内容:
二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.
2.本单元在教材中的地位和作用:
二次根式是在学完了八年级下册第十七《反比例正函数》、第十八《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.
1.知识与技能
(1)理解二次根式的概念.
(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).
(3)掌握=(a≥0,b≥0),=;
=(a≥0,b>0),=(a≥0,b>0).
(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.
2.过程与方法
(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.
(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.
(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.
(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.
3.情感、态度与价值观
通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.
教学重点
1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)及其运用.
2.二次根式乘除法的规定及其运用.
3.最简二次根式的概念.
4.二次根式的加减运算.
教学难点
1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用.
2.二次根式的乘法、除法的条限制.
3.利用最简二次根式的概念把一个二次根式化成最简二次根式.
教学关键
1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.
2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.
单元时划分
21.1二次根式3时
21.2二次根式的乘法3时
21.3二次根式的加减3时
教学活动、习题、小结2时
21.1二次根式
第一时
教学内容
二次根式的概念及其运用
理解二次根式的概念,并利用(a≥0)的意义解答具体题目.
提出问题,根据问题给出概念,应用概念解决实际问题.
教学重难点关键
1.重点:形如(a≥0)的式子叫做二次根式的概念;
2.难点与关键:利用“(a≥0)”解决具体问题.
一、复习引入
(学生活动)请同学们独立完成下列三个问题:
问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.
问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.
老师点评:
问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标(,).
问题2:由勾股定理得AB=
问题3:由方差的概念得S=.
二、探索新知
很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.
(学生活动)议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a<0,有意义吗?
老师点评:(略)
例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).
分析:二次根式应满足两个条:第一,有二次根号“”;第二,被开方数是正数或0.
解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.
例2.当x是多少时,在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.
解:由3x-1≥0,得:x≥
当x≥时,在实数范围内有意义.
三、巩固练习
教材P练习1、2、3.
四、应用拓展
例3.当x是多少时,+在实数范围内有意义?
分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.
解:依题意,得
由①得:x≥-
由②得:x≠-1
当x≥-且x≠-1时,+在实数范围内有意义.
例4(1)已知y=++5,求的值.(答案:2)
(2)若+=0,求a2004+b2004的值.(答案:)
五、归纳小结(学生活动,老师点评)
本节要掌握:
1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
六、布置作业
1.教材P8复习巩固1、综合应用5.
2.选用时作业设计.
3.后作业:《同步训练》
第一时作业设计
一、选择题1.下列式子中,是二次根式的是()
A.-B.C.D.x
2.下列式子中,不是二次根式的是()
A.B.C.D.
3.已知一个正方形的面积是5,那么它的边长是()
A.5B.C.D.以上皆不对
二、填空题
1.形如________的式子叫做二次根式.
2.面积为a的正方形的边长为________.
3.负数________平方根.
三、综合提高题
1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?
2.当x是多少时,+x2在实数范围内有意义?
3.若+有意义,则=_______.
4.使式子有意义的未知数x有()个.
A.0B.1C.2D.无数
5.已知a、b为实数,且+2=b+4,求a、b的值.
第一时作业设计答案:
一、1.A2.D3.B
二、1.(a≥0)2.3.没有
三、1.设底面边长为x,则0.2x2=1,解答:x=.
2.依题意得:,
∴当x>-且x≠0时,+x2在实数范围内没有意义.
3.
4.B
5.a=5,b=-4
21.1二次根式(2)
第二时
1.(a≥0)是一个非负数;
2.()2=a(a≥0).
理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.
通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.
教学重难点关键新标第一网
1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.
2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;用探究的方法导出()2=a(a≥0).
(学生活动)口答
1.什么叫二次根式?
2.当a≥0时,叫什么?当a<0时,有意义吗?
老师点评(略).
二、探究新知
议一议:(学生分组讨论,提问解答)
(a≥0)是一个什么数呢?
老师点评:根据学生讨论和上面的练习,我们可以得出
(a≥0)是一个非负数.
做一做:根据算术平方根的意义填空:
()2=_______;()2=_______;()2=______;()2=_______;
()2=______;()2=_______;()2=_______.
老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.
同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以
()2=a(a≥0)
例1计算
1.()22.(3)23.()24.()2
分析:我们可以直接利用()2=a(a≥0)的结论解题.
解:()2=,(3)2=32()2=325=45,
()2=,()2=.
计算下列各式的值:Xkb1.com
()2()2()2()2(4)2
例2计算
1.()2(x≥0)2.()23.()2
4.()2
分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;
(4)4x2-12x+9=(2x)2-22x3+32=(2x-3)2≥0.
所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.
解:(1)因为x≥0,所以x+1>0
()2=x+1
(2)∵a2≥0,∴()2=a2
(3)∵a2+2a+1=(a+1)2
又∵(a+1)2≥0,∴a2+2a+1≥0,∴=a2+2a+1
(4)∵4x2-12x+9=(2x)2-22x3+32=(2x-3)2
又∵(2x-3)2≥0
∴4x2-12x+9≥0,∴()2=4x2-12x+9
例3在实数范围内分解下列因式:
(1)x2-3(2)x4-4(3)2x2-3
分析:(略)
五、归纳小结
本节应掌握:
2.()2=a(a≥0);反之:a=()2(a≥0).
1.教材P8复习巩固2.(1)、(2)P97.
第二时作业设计
一、选择题
1.下列各式中、、、、、,二次根式的个数是().
A.4B.3C.2D.1
2.数a没有算术平方根,则a的取值范围是().
A.a>0B.a≥0C.a<0D.a=0
1.(-)2=________.
2.已知有意义,那么是一个_______数.
1.计算
(1)()2(2)-()2(3)()2(4)(-3)2
(5)
2.把下列非负数写成一个数的平方的形式:
(1)5(2)3.4(3)(4)x(x≥0)
3.已知+=0,求xy的值.
4.在实数范围内分解下列因式:
(1)x2-2(2)x4-93x2-5
第二时作业设计答案:
一、1.B2.C
二、1.32.非负数
三、1.(1)()2=9(2)-()2=-3(3)()2=×6=
(4)(-3)2=9×=6(5)-6
2.(1)5=()2(2)3.4=()2
(3)=()2(4)x=()2(x≥0)
3.xy=34=81
4.(1)x2-2=(x+)(x-)
(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+)(x-)
(3)略
垂陉定理
(九年级数学)圆(二)——垂径定理
第周星期班别:姓名:学号:
环节一、学习目标:掌握垂径定理及简单运用
环节二、问题探讨
问题1:
如图:AB是直径(弦AB过圆点),CD是弦,且CD⊥AB于P,你能在图中找到其他相等的量吗?
图中相等的线段有:,相等的弧有:
猜测:
条件
归纳:
垂径定理:垂直于弦的直径平分,平分这条弦所对的
几何语言:∵AB为⊙O的直径,(或者:弦AB过圆心)
AB⊥CD
∴DP=,,(垂径定理)
拓展:
在垂径定理中,题设与结论共有5个语句,分别是:
(1)弦AB过圆心O(AB是直径);(2)弦AB垂直于弦CD(AB⊥CD);
(3)弦AB平分弦CD(DP=CP);(4)弦AB平分();
(5)弦AB平分();
其中用任两个作为条件,都可以推出其他三个结论.
环节三、垂径定理的应用
例1:在⊙O中,弦AB的长为16cm,圆的半径是10cm,求圆心O到AB的距离。
解:连接AO,作OE⊥AB于E
∵OE经过⊙O的圆心,OE⊥AB
∴AE==cm()
在Rt△AOE中,∵OE2=()
∴OE==
答:OE的长为
环节四、做一做A组
1、如图:在⊙O中,AB是直径,AB⊥CD于点E,若CD=8
的度数是120°,的度数是240°,则CE=,
ED=,
2、在⊙O中,半径OA=30,弦AB长30,求点O到AB的距离。
分析:(1)点O到AB的距离是过点O作AB的线,垂足为,此时线段为点O到AB的距离。
(2)要求点O到AB的距离,即求线段的长,此时线段在什么图形中?
已知什么条件,可用什么方法?
解:过点O作,垂足为
3、图1:在⊙O中,AB是直径,AB⊥CD于E,若CD=16,圆的半径为10,则圆心到弦CD的距离是
4、图1:在⊙O中,若,,则弦AB必经过,且DE=
5、图1:在⊙O中,OE=5,弦CD=24,AB⊥CD于E,则⊙O的半径为
6、如图,MN是⊙O的直径,C是AB的中点,AB=6,OC=4,求OA及直径MN
解:∵MN是直径,AB弦且C是AB的中点
∴AC=,MNAB()
∵AB=6
∴AC=
在Rt△AOE中,∵OA2=()2+()2()
∴OA===
又∵直径MN=OA
∴直径MN=
答:OA为,直径MN为
B组
7、如图,在⊙O中,AB是弦,∠AOB=120°,OA=5cm,则圆心O到AB的距离和弦AB的长。
解:
8、如图:在半径为5cm的圆中,AC是直径,弦AB⊥BC,OD⊥AB于D,若BC=6cm,求OD和AB的长.
解:
C组
9、如图⊙O的半径是5cm,AB和CD是两条弦,且AB∥CD,AB=6cm,CD=8cm,求AB和CD的距离。
10、右图是我国隋代建造的赵州桥,我们可以很方便地量出它的跨度为37.4米,拱高为7.2米,我们怎样通过跨度和拱高求出桥拱的半径?
证明2导学案
善国中学九年级数学导学案
题1.2.2直角三角形型新授时5教师
目标进一步掌握推理证明的方法,发展演绎推理能力;
重点了解勾股定理及其逆定理的证明方法;
难点结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。
教法合作探究
一、预习导航预习导航
1、写出你知道的勾股数
2、勾股定理的内容是:_______________
它的条是:______________________________________;
结论是:______________________________。
学习困惑记录
二、讲授新
探究新
3、将勾股定理的条和结论分别变成结论和条,其内容是:
下面我们试着将上述命题证明:
已知:在△ABC中,AB2+AC2=BC2
求证:△ABC是直角三角形。
分析:要△ABC是直角三角形,只须∠A=90°,单独只有一个三角形不能得出结论,那就需用另外作一个Rt△A′B′C′,使∠A′=90°,A′B′=AB,A′C′=AC,通过证三角形全等得到结论。
证明:
定理:如果三角形两边的__________等于__________,那么这个三角形是直角三角形。
四、合作交流:
1、观察勾股定理及上述定理,它们的条和结论之间有怎样的关系?然后观察下列每组命题,是否也在类似关系。
(1)如果两个角是对顶角,那么它们相等。
如果两个角相等,那么它们是对顶角。
(2)如果小明患了肺炎,那么他一定会发烧。
如果小明发烧,那么他一定患了肺炎。
(3)三角形中相等的边所对的角相等。
三角形中相等的角所对的边相等。
像上述每组命题我们称为互逆命题,即一个命的条和结论分别是另一个命题的__________和__________。
2、“想一想”,回答下列问题:
(1)写出命题“如果两个有理数相等,那么它们的平方相等”的逆命题。它们都是真命题吗?
(2)一个命题是真命题,那么它的逆命题也一定是真命题吗?
互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。
(4)是否任何定理都有逆定理?
(5)思考我们学过哪些互逆定理?
三、应用深化当堂训练:
1、判断
(1)每个命题都有逆命题,每个定理也都有逆定理。()
(2)命题正确时其逆命题也正确。()
(3)直角三角形两边分别是3,4,则第三边为5。()
2、下列长度的三条线段能构成直角三角形的是()
①8、15、17②4、5、6、③7.5、4、8.5④24、25、7⑤5、8、10
A、①②④B、②④⑤C、①③⑤D、①③④
下训练:
1、以下命题的逆命题属于假命题的是()
A、两底角相等的两个三角形是等腰三角形。
B、全等三角形的对应角相等。
C、两直线平行,内对角相等。
D、直角三角形两锐角互等。
2、命题:等腰三角形两腰上的高相等的逆命题是
_______________________________________________
3、若一个直角两直角边之比为3:4,斜边长20C,则两直角边为(,)
4、已知直角三角形两直角边长分别为6和8,则斜边长为________,斜边上的高为_________。
5、写出下列命题的逆命题,并判断每对命题的真假:
A、五边形是多边形。
B、两直线平行,同位角相等。
C、如果两个角是对顶角,那么它们相等。
D、如果AB=0,那么A=0,B=0。
6、公园中景点A、B间相距50,景点A、C间相距40,景点B、C间相距30,由这三个景点构成的三角形一定是直角三角形吗?为什么?
7、台风过后,某小学旗杆在B处断裂,旗杆顶A落在离旗杆底部C点8处,已知旗杆原长16,则旗杆在距底部几米处断裂。
8、小明将长2.5的梯子斜靠在竖直的墙上,这时梯子底端B到墙根C的距离是0.7,如果梯子的顶端垂直下滑0.4,那么梯子的底端B将向外移动多少米。
中考真题:用四个全等的直角三角形拼成了一个如图所示的图形,其中a表示较短,直角三角形,b表示较长的直角边,c表示斜边,你能用这个图形证明勾股定理吗?
切线的判定
数学:35.4《切线的判定》教案(冀教版九年级下)
一、教材分析
1、教材所处的地位和作用
切线的判定是九年制义务教育课本数学九年级第二学期第三十五章“圆”中的内容之一,是在学完直线和圆三种位置关系概念的基础上进一步研究直线和圆相切的特性,是“圆”这一章的重点之一,是学习圆的切线长和切线长定理等知识的基础。
2、内容
“切线的判定和性质”共两个课时,课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时。为了突出本节课的重点、突破难点,我没有采用教材安排的顺序,而是依据初三学生认知特点,将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,让呈现一个循序渐进、温过知新的过程。
本节课主要有三部分内容:(1)切线的判定定理(2)切线的判定定理的应用(3)切线的两种判定方法。教学重点是切线的判定定理及其应用。教学难点是切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一。
二、教学对象分析
在学习本节内容之前学生已经掌握了圆的切线的定义,直线和圆的三种位置关系和一种直线与圆相切的判定方法(用d=r)。在学习用d=r来判定直线与圆相切的内容时曾为本节内容打过伏笔,设置过悬念,所以学生对本节内容的学习充满期待的。
三、教案设计思路
为了实现教学目标,本节课我主要突出抓好以下五个环节:
1.复习提问打好基础,为新课作铺垫。
问题1是例2的基础,问题2则起着复旧孕新、引入新课的作用。
2.发现、证明、理解定理学好基础知识。
根据初三学生有一定创造、自学能力的特点,在教学中,教师通过启发和指导学生阅读教材,教会学生通过自己观察,发现结论,再设法证明结论的学习方法,同时也强化了学生的阅读、自学能力。
3.应用定理培养基本技能。
定理是基础,应用是目的。本环节首先给出两道判断题,目的是为了让学生更好地明确此定理的使用条件,然后在此基础上讲解例1。讲解时,我抓住教材本身的特点,用两头凑的办法揭示证题思路,显示证题的书写程序,较好地解决了本课的难点。之后,做两个练习加以巩固,最后由师生共同完成例2,总结出判定切线常用的两种添辅助线的方法。
4.小结与拓展
通过小结,进一步帮助学生明确本节课的重点内容。拓展题是本节内容的提升,不是很难,但有助于培养学生的数学思想以及良好的思维习惯,激发学习的积极性。
5.布置作业充分发挥家庭作业的巩固知识、形成技能的作用。作业的分层布置,使每一位学生都有难度适宜的作业,不但能培养优生,而且可以照顾到后进生,充分体现了因材施教的教学原则。
《切线的判定》教案
教学目标:1、理解切线的判定定理,并学会运用。
2、知道判定切线常用的方法有两种,初步掌握方法的选择。
教学重点:切线的判定定理和切线判定的方法。
教学难点:切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一.
教学过程:
一、复习提问
【教师】问题1.怎样过直线l上一点P作已知直线的垂线?
问题2.直线和圆有几种位置关系?
问题3.如何判定直线l是⊙O的切线?
启发:(1)直线l和⊙O的公共点有几个?
(2)圆心O到直线L的距离与半径的数量关系如何?
学生答完后,教师强调(2)是判定直线l是⊙O的切线的常用方法,即:定理:圆心O到直线l的距离OA等于圆的半(如图1,投影显示)
再启发:若把距离OA理解为OA⊥l,OA=r;把点A理解为半径在圆上的端点,请同学们试将上面定理用新的理解改写成新的命题,此命题就是这节课要学的“切线的判定定理”(板书课题)
二、引入新课内容
【学生】命题:经过半径的在圆上的端点且垂直于半径的直线是圆的切线。
证明定理:启发学生分清命题的题设和结论,写出已知、求证,分析证明思路,阅读课本P60。
定理:经过半径外端并且垂直于这条半径的直线是圆的切线.
定理的证明:已知:直线l经过半径OA的外端点A,直线l⊥OA,
求证:直线l是⊙O的切线
证明:略
定理的符号语言:∵直线l⊥OA,直线l经过半径OA的外端A
∴直线l为⊙O的切线。
是非题:
(1)垂直于圆的半径的直线一定是这个圆的切线。()
(2)过圆的半径的外端的直线一定是这个圆的切线。()
三、例题讲解
例1、已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。
求证:直线AB是⊙O的切线。
引导学生分析:由于AB过⊙O上的点C,所以连结OC,只要证明AB⊥OC即可。
证明:连结OC.
∵OA=OB,CA=CB,
∴AB⊥OC
又∵直线AB经过半径OC的外端C
∴直线AB是⊙O的切线。
练习1、如图,已知⊙O的半径为R,直线AB经过⊙O上的点A,并且AB=R,∠OBA=45°。求证:直线AB是⊙O的切线。
练习2、如图,已知AB为⊙O的直径,C为⊙O上一点,AD⊥CD于点D,AC平分∠BAD。
求证:CD是⊙O的切线。
例2、如图,已知AB是⊙O的直径,点D在AB的延长线上,且BD=OB,过点D作射线DE,使∠ADE=30°。
求证:DE是⊙O的切线。
思考题:在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,BD为半径作圆,问⊙D的切线有几条?是哪几条?为什么?
四、小结
1.切线的判定定理。
2.判定一条直线是圆的切线的方法:
①定义:直线和圆有唯一公共点。
②数量关系:直线到圆心的距离等于该圆半径(即d=r)。
③切线的判定定理:经过半径外端且与这条半径垂直的直线是圆的切线。
3.证明一条直线是圆的切线的辅助线和证法规律。
凡是已知公共点(如:直线经过圆上的点;直线和圆有一个公共点;)往往是"连结"圆心和公共点,证明"垂直"(直线和半径);若不知公共点,则过圆心作一条线段垂直于直线,证明所作的线段等于半径。即已知公共点,“连半径,证垂直”;不知公共点,则“作垂直,证半径”。
五、布置作业
《切线的判定》教后体会
本课例《切线的判定》作为市考试院调研课型兼区级研讨课,我以“教师为引导,学生为主体”的二期课改的理念出发,通过学生自我活动得到数学结论作为教学重点,呈现学生真实的思维过程为教学宗旨,进行教学设计,目的在于让学生对知识有一个本质的、有效的理解。本节课切实反映了平时的教学情况,为前来调研和研讨的老师提供了真实的样本。反思本节课,有以下几个成功与不足之处:
成功之处:
一、教材的二度设计顺应了学生的认知规律
二、重视学生数感的培养呼应了课改的理念
数感类似与语感、乐感、美感,拥有了感觉,知识便会融会贯通,学习就会轻松。拥有数感,不仅会对数学知识反应灵敏,更会在生活中不知不觉运用数学思维方式解决实际问题。本节课中,两个例题由教师诱导,学生发现完成的,而三个习题则完全放手让学生去思考完成,不乏有不会做和做得复杂的学生,但在展示和交流中,撞击出思维的火花,难以忘怀。让学生尝试总结规律,也是对学生能力的培养,在本节课中,辅助线的规律是由学生得出,事实证明,学生有这样的理解、概括和表达能力。通过思考得出正确的结论,这个结论往往是刻骨铭心的,长此以往,对数和形的感觉会越来越好。
不足之处:
一、这节课没有“高潮”,没有让学生特别兴奋激起求知欲的情境,整个教学过程是在一个平静、和谐的氛围中完成的。
二、课的引入太直截了当,脱离不了应试教学的味道。
三、教学风格的定势使所授知识不能很合理地与生活实际相联系,一定程度上阻碍了学生解决实际问题能力的发展。
中考数学方程及方程组的应用复习
节第二题
型复习教法讲练结合
目标(知识、能力、教育)1.掌握列方程和方程组解应用题的方法步骤,能够熟练地列方程和方程组解行程问题和工程问题。培养学生分析、解决问题的能力。
2.掌握列方程(组)解应用题的方法和步骤,并能灵活运用不等式(组)、函数、几何等数学知识,解决有关数字问题、增长率问题及生活中有关应用问题。
重点掌握工程问题、行程问题、增长率问题、盈亏问题、商品打折、商品利润(率)、储蓄问题中的一些基本数量关系。
教学难点列方程解应用题中---寻找等量关系
教学媒体学案
一:【前预习】
(一):【知识梳理】
1.列方程解应用题常用的相等关系
题型基本量、基本数量关系寻找思路方法
工作
(工程)
把全部工作量看作1
比例问题
相等关系:各部分量之和=总量。设其中一分为,由已知各部分量在总量中所占的比例,可得各部分量的代数式
年龄问题大小两个年龄差不会变抓住年龄增长,一年一岁,人人平等。
利息
问题本息和、本金、利息、利率、期数关系:利息=本金×利率×期数相等关系:
本息和=本金+利息
行程问题
追击问题
2:同时不同地出发:前者走的路程+两地间的距离=追击者走的路程
相遇问题同
上相等关系:甲走的路程+乙走的路程=甲乙两地间的路程
航行问题顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度1:与追击、相遇问题的思路方法类似
2:抓住两地距离不变,静水(风)速度不变的特点考虑相等关系。
数字问题多位数的表示方法:是一个多位数可以表示为(其中0<a、b、c<10的整数)1:抓住数字间或新数、原数间的关系寻找相等关系。
2:常常设间接未知数。
商品利润
率问题商品利润=商品售价-商品进价
首先确定售价、进价,再看利润率,其次应理解打折、降价等含义。
2.列方程解应用题的步骤:
(1)审题:仔细阅读题,弄清题意;(2)设未知数:直接设或间接设未知数;
(3)列方程:把所设未知数当作已知数,在题目中寻找等量关系,列方程;
(4)解方程;(5)检验:所求的解是否是所列方程的解,是否符合题意;
(6)答:注意带单位.
(二):【前练习】
1.某商品标价为165元,若降价以九折出售(即优惠10%),仍可获利10%(相对于进货价),则该商品的进货价是
2.甲、乙二人投资合办一个企业,并协议按照投资额的比例分配所得利润,已知甲与乙投资额的比例为3:4,首年的利润为38500元,则甲、乙二人可获得利润分别为元和元
3.某公司1996年出口创收135万美元,1997年、1998年每年都比上一年增加a%,那么,1998年这个公司出口创汇万美元
4.某城市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个城市现有的城镇人口数与农村人口数,若设城镇现有人口数为x万,农村现有人口y万,则所列方程组为
5.一个批发与零售兼营的具店规定,凡是一次购买铅笔301支以上(包括301支),可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有学生小王购买铅笔,如果给学校初三年级学生每人买1支,则只能按零售价付款,需用(m2-1)元(m为正整数,且m2-1>100);如果多买60支,则可以按批发价付款,同样需用(m2-1)元.设这个学校初三年级共有x名学生,则①x的取值范围应为②铅笔的零售价每支应为元,批发价每支应为元
(用含x,m的代数式表示)
二:【经典考题剖析】
1.A、B两地相距64千米,甲骑车比乙骑车每小时少行4千米,如果甲乙二人分别从A、
B两地相向而行,甲比乙先行40分钟,两人相遇时所行路程正好相等,求甲乙二人
甲x32
乙x+432
的骑车速度.
分析:设甲的速度为x千米/时,则乙的速度为(x+4)千米/时
图(数形结合思想),然后设未知数,再列表,第一列填含未知数的量,第二列填题
目中最好找的量,第三列不再在题目中找,而是用前面两个量表示,往往等量关系
就在第三列所表示的量中.解完方程时要注意双重检验.
等量关系:t甲-t乙=40分钟=小时,方程:.
2.某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路。为
使工程能提前3个月完成,需要将原定的工作效率提高12%,问原计划完成这项工程用多少个月?
工时工作量工效
原计划x1
实际x-31
分析:工程量不明确,一般视为1,设原计划完成这项工程用x个月,实际只用了(x-3)
个月.等量关系:
实际工效=原计划工效×(1+12%).
方程:
3.某商场销售一批名牌衬衫,平均每天可售出20,每盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果每衬衫每降价1元,商场平均每天可多售出2。
(1)若商场平均每天要盈利1200元,每衬衫应降价多少元?
(2)每衬衫应降价多少元时,商场平均每天盈利最多?
分析:(1)设每衬衫应降价元,则由盈利可解出但要
注意“尽快减少库存”决定取舍。(2)当取不同的值时,盈利随变化,可配方为:求最大值。但若联系二次函数的最值求解,可设:结合图象用顶点坐标公式解,思维能力就更上档次了。所以在应用问题中要发散思维,自觉联系学过的所有数学知识,灵活解决问题。答案:(1)每衬衫应降价20元;(2)每衬衫应降价15元时,商场平均每天盈利最高。
4.某音乐厅5月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,
其中团体票占总票数的.若提前购票,则给予不同程度的优惠,在5月份内,团体
票每张12元,共售出团体票数的,零售票每张16元,共售出零售票数的一半.如果在6月份内,团体票要按每张16元出售,并计划在6月份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?
分析:这样的题字一大堆,看到头就发胀,同学们不要怕,要有信心,一定要仔细读题,当你读懂题后事实上这类题还是比较简单的,学数学的目的就是解决现实生活中的实际问题.
因为总票数不明确,所以看为1,设6月零售票每张定价元.
团体票数团体票收入零售票数零售票收入
5月(张)(元)(张)(元)
6月(张)(元)(张)(元)
等量关系:5月总收入=6月总收入
方程.
5.要建一个面积为150m2的长方形养鸡场,为了节约材料,
鸡场的一边靠着原有的一条墙,墙长为am,另三边用
竹篱笆围成,如图,如果篱笆的长为35m,(1)求鸡场
的长与宽各为多少?(2)题中墙的长度a对题目的解
起着怎样的作用?
三:【后训练】
1.如图是某公司近三年的资金投放总额与利润统计示意图,根据图中的信息判断:①2001
年的利润率比2000年的利润率高2%;②2002年的利润率比2001年的利润率高8%;
③这三年的利润率14%;④这三年中2002年的利润率最高。其中正确的结论共有()
A.1个B.2个C.3个D.4个
2.北京至石家庄的铁路长392千米,为适应经济发展,自2001年10月21日起,某客
小时,求列车提速前的速度(只列方程).
3.2003年春天,在党和政府的领导下,我国进行了一场抗击“非典”的战争.为了控制
疫情的蔓延,某卫生材料厂接到上级下达赶制19.2万只加浓抗病毒口罩的任务,为使抗
病毒口罩早日到达防疫第一线,开工后每天比原计划多加工0.4万只,结果提前4天完
成任务,该厂原计划每天加工多少万只口罩?
4.一水池有甲、乙两水管,已知单独打开甲管比单独打开乙管灌满水池需多用10小时.现
在首先打开乙管10小时,然后再打开甲管,共同再灌6小时,可将水池注满,如果一开
始就把两管一同打开,那么需要几小时就能将水池注满?
5.某公司向银行贷款40万元,用生产某种新产品,已知该贷款的年利率为15%
(不计复利,即还贷前每年息不重复计息),每个新产品的成本是2.3元,售价是4元,
应纳税款为销售额的10%。如果每年生产该种产品20万个,并把所得利润(利润=
销售额-成本-应纳税款)用归还贷款,问需几年后能一次还清?
6.某商店1995年实现利税40万元(利税=销售金额-成本),1996年由于在销售管
理上进行了一系列改革,销售金额增加到154万元,成本却下降到90万元,
(1)这个商店利税1996年比1995年增长百分之几?
(2)若这个商店1996年比1995年销售金额增长的百分数和成本下降的百分数相同,