神策数据:618大促运营必看!精准营销4步法则一文全掌握

618大促是电商活动类型中非常典型的一类活动,这类活动一般借势而为,活动商品类目丰富,覆盖目标人群广泛。为了帮助活动运营同学基于数字化营销手段,对用户进行精准营销,从而最大程度上实现用户的活跃召回,推动购买行为的完成,最终达到提升活动交易额的目标。

本文主要围绕精准营销落地流程进行详细阐述。(文中数据均为模拟)

Step1:活动目标拆解,设计所需埋点

本环节将详细讲解如何确认活动指标,以及如何对指标进行拆分,落实到具体可执行的地方。为了保证更好地追踪后续活动效果,我们需要对埋点进行查漏补缺,活动上线前,需确保活动指标所需埋点已经完成开发上线。

1、活动目标是什么

618作为年中非常重要的营销节点,不同产品也会纷纷抓住此次流量机会,策划不同的营销活动,因此不同的产品形态会有不一样的活动指标。

提升效率类:主指标一般为使用量、付费。典型的产品如滴滴、百度网盘

促成交易类:主指标一般为交易量、交易额。典型的产品如淘宝、携程

电商活动大部分以促成用户交易为主要目标,因此活动指标一般会聚焦在交易量、交易额。下一步骤将以交易额为活动指标做为例子,并以此来详细描述如何细分拆解指标。

2、如何拆解活动目标

目标拆解实际上是将活动的目标指标,拆解为运营人员可以通过人工操作干预的一个个环节,以此来指导团队组织工作。

(1)目标拆解思路

活动目标拆解思路如下:

其中,上图所涉及的核心业务转化流程,是以电商产品中核心转化路径作为例子:

(2)目标拆解公式

根据以上拆解思路,通过指标计算公式拆解GMV(成交总额)得出:GMV=购买人数X客单价。通过核心业务转化流程拆解「购买人数」,然后再以新老用户维度拆解「活跃用户数」后,得出如下公式:

3、如何利用拆解后的目标指导运营工作

从上述拆解例子来看,拆解后的三大核心内容是新老用户数、业务流程转化、客单价。因此要针对这些核心内容结合历史数据进行分析并予以对应的运营举措。

Step2:划分用户群体,制定不同的营销方案

通过不同维度(如:用户生命周期、RFM模型)划分用户群体,制定不同营销策略,以此来实现用户精准营销;同时,也可以通过洞察不同群体特征,激发灵感,优化营销策略。

1、为什么要划分用户群体

当我们策划活动时,活动预算往往是有限的,比如说本年度618大促活动预算是10万元,用户量级为5万人,此时我们该如何去分配资源,来达到效果最大化呢我们需要认识用户、了解不同群体的特征,合理分配优先运营资源,以此来针对性制定营销策略,实现精准营销。

2、精细化营销策略的原理

当你对某个细分用户群做策略触达,并收获比此前更好的反馈时,整体的运营效果也会大幅提升,这就是精细化营销策略的价值。因此,需要有效地对用户进行精细化分层,才能获得大盘上最优的运营效果。

3、用户分层的方法

当你比较看重整体用户的运营效果时,可以选择「用户生命周期」的分层方法。因为不管你的业务和产品形态如何,用户必然会属于生命周期分层中的某个阶段。使用这种分层方法,可以确保每个用户都能获得针对用户所处阶段最合适的运营策略。

(1)用户生命周期

用户生命周期的定义

用户生命周期就是用户从开始接触产品到离开产品的整个过程,通常分为五个阶段:导入期、成长期、成熟期、沉默期和流失期。不同的产品形态定义各个时期的方法也是不同的,要深度结合自身的业务情况进行判断。通过对用户生命周期的划分,不仅可以宏观管理全量用户,而且可以明确用户的最大价值,通过运营手段让用户趋于停留在最大价值的阶段。

用户生命周期的维度

以电商为例。一般来讲,用户生命周期的划分维度如下:

导入期:没有发生过购买行为,但存在购买意向的顾客

成长期:已经完成首次购买流程

成熟期:发生多次购买行为

用户生命周期的标准

(2)用户价值区分

用户生命周期可以有效覆盖全盘用户,但是当用户体量较大且业务发展已步入成熟阶段时,我们的用户群体已不仅仅是行为相对简单的导入期或新用户群体了。成长期、成熟期的用户行为更加复杂,也值得我们根据创造价值的不同投入差异化的精力去做维持和转化;针对沉默流失期的用户,往往也需要面向不同价值的用户实施差异化的召回策略。此时用户价值分层恰好能够解决这个问题,它能够对需要认真投入精力运营的核心用户群体进行价值细分,实施差异化的营销策略,保证运营手段的有效性和针对性。

(3)价值分层:RFM

用户价值的RFM分层是指对于已经在产品内转化的用户,根据用户在产品中最近一次消费、消费频率、消费金额来做好用户群体价值界定。

RFM的定义

RFM模型通过用户最近一次消费(Recency)、消费频率(Frequency)、消费金额(Monetary)三个维度划分出来8个用户价值群体,将群体用户进行价值细分,如下图所示:

RFM标准制定

通过对用户的消费数据进行分析确定RFM的相应的阈值之后,我们可以建立RFM用户分层如下:

4、不同人群精准营销策略

用户分层后,一定会有一个“理想”的分层是我们“梦寐以求”的用户。比如,电商企业都希望能有大量的成熟期用户,持续在产品上产生交易。然而,初级分层的用户想要跃迁到下一层,会存在一些用户视角的阻塞点,让他们存在疑问不想转化。运营策略就是要解决这些用户当前存在的阻塞点,帮助初级分层的用户更容易跃迁到下一个理想的阶段。而对于成熟用户,需要增加他迈向流失的阻塞点,以留存理想中的用户。以下为我们列出的电商行业中用户视角常见的阻塞点,以及配套的一些运营策略:

将「用户生命周期」和「价值分层」结合起来后,不仅对不同阶段用户的策略更有针对性,也可以根据用户的价值分层有优先级地投入有限的资源。在活动预算有限时,对于重要分层的用户,可以做一定的倾斜,对于一般分层的用户,则可以不做太多额外的动作,节省资源。以下为我们列举的用户分层和策略,以供参考:

Step3:大促产品矩阵、备货逻辑和营销优惠类型

用户价值分层精准找到「人」,那「货」的阵地该如何打造

品类运营,需要将平台的商品进行分类管理,用商品与用户进行沟通,利用平台的资源进行短期场景包装及中长期商品策略规划,高效触达用户购买链路中的核心场景,提高商品成交转化,给公司带来业绩增长及品牌形象的提升。

一般来说,在品类运营的过程中,需要做到4“懂”:懂用户,懂商品,懂流量,懂整合营销。

1、品类运营大促任务推进4要点

这4个要点的具体任务包括:

选品:类目结构的健康度,产品矩阵搭建,品类定位。

定价:成本结构划分,营销策略+大促活动价。

销售:活动报送,资源位争取,以及渠道推广节奏。

毛利:促销返利,单品利润,到整体品类利润。

2、大促产品矩阵、备货逻辑、成本结构

大促前期除了策划活动之外,还需要运用不同商品分类打造产品矩阵,提升品牌整体调性,同时做好备货量的预备动作。

(1)产品矩阵

大促营收=Σ(各定位产品销售预估)或者大促营收=Σ(各类目商品销售预估)

通过对品类旗下的商品做产品矩阵的划分,可以分为以下4类商品:

(2)评估特色单品营销价值模型

从搜索量级、转化率层面做交叉分析,确立购买能力和引流能力二象限中对应商品的价值评估模型。

如IP联名、明星代言的特色单品,在搜索量级和转化率数据上,是高升量的商品,这类商品可以放在预售期曝光,以及拉新时使用。

反之,也可以通过数据情况,去发现是品牌力还是单品问题,未达到预期便做后续优化。

(3)大促备货逻辑

清晰的产品矩阵对应每个品类的目标占比,我们可以通过逻辑公式计算出大促备货量。在年中大促准备期间,完成备货和活动价确定等,备货公式为:

日均销量*日均销售量的倍数(倍数=预计销售额/日均销售额)

例如,引流品在备货时可依据日常销售量的倍数做1.5或2以上的系数调高,具体根据市场投放目标匹配合理进货量;而因为大促目标中,爆品占比高,进货量根据预估目标调高系数确定备货量,同时需要根据大促整场节奏、售卖数据情况,做库存周转、及时补货的预期管理。

做好备货数量准备后,提前2个月左右做大促备货准备(可根据业务实际供应链和品牌供货周期来做实际进货周期倒推)。

(4)成本结构

确认了进货量,有了对应批次的进货价,加上线上成本、人力成本、税费、运费形成成本结构,通过成本定价机制,完成商品定价。

3、商品多渠道销售和行销活动策略

(1)多渠道销售

在完成前期的进货动作之后,「进销存」到了销售环节。

站外引流部分,和市场投放联动选品、定价、活动策略等,确立产品矩阵中适合投放引流的商品类型。

促销工具上,需要基于商品毛利,对不同商品提报大促活动中的不同形式,让他们参与秒杀、直降、满减等。

这之后,便需要对活动资源位做排期提报,以及设计工作流的沟通,策划不同资源位的文案、图样。

(2)营销活动优惠类型和适用场景

营销活动玩法方面,商品对应的活动,包括秒杀、直降、团购、阶梯满减、组合商品、N元任选池等,相应的优惠类型分为价格驱动和商品驱动,如下所示:

4、用户资产人群圈选+触达策略

「进销存」三部曲到了销售执行层面,商品对应的人群圈选和触达策略浮出水面,在大促各个资源位、购买关键链路中,提取用户行为节点做订单转化。

举个例子,圈选平台销量TOP10爆款商品的用户群体,做新品推荐、提升支付订单转化的触达策略。

第一,基于商品分类,在数据后台配置用户标签,「创建标签」-「事件偏好属性」,创建对应标签的规则,预估人数,选择标签更新方式。

第二,使用流程画布在大促预热期触达购买过爆品的用户,做新品营销。

然后,做策略器、分流器选择。如果做新品推荐测试,可以选择「策略器」做下一步的推进。

接下来,配置对应策略器的筛选条件、发送时机以及推送通道,新品abc等的对应触达条件、触达方式的信息填写,推荐新品+毛利范围内的优惠策略(满减券、直降等形式)。

第三,实时追踪新品库存动销率做补货。如果动销情况不佳,定位关键购买链路转化率,快速调整资源位、用户进一步分层触达策略。

以上,对于大促期间新品营销的用户圈选和触达,根据品类、商品、用户群体等做不同的排列组合制定策略,以吸引用户回到平台参与大促完成订单转化。

同样地,资源位主题的用户标签,也可以帮助品类运营同学在大促期间快速通过相应商品做运营策略触达。

5、识别突出品类表现,迭代人货匹配策略

第一步,分析各个商品购买用户数贡献,识别成熟单品、趋势爆品,与大促前商品定位做对比,是否与活动前的定位一致,如果不一致,对商品分类就要根据定位做调整;

第二步,以平台整体购买人数占比作为benchmark,明确拉新、复购优势商品,迭代未来人货匹配策略。

使用TOP商品新老客占比数据指标,按照销售用户比例中的首单、复购比例,和平台整体的首单、复购比例对比,选出合适的拉新、复购的优势商品。

如同比数据发现,品类b是当年增量品类,那么便可以在后续品类运营上,备货量保证不缺货、资源位优先、组合商品销售等做多方面的营销策略策划。

Step4:活动数据分析及迭代优化

最后,也是最重要的是环节,即数据分析,活动效果如何以及后续如何优化,都需要在数据中找答案。活动效果可以通过结果数据来体现,但后续的优化动作,需要对结果数据做过程分析,找到迭代方向。同时,数据本身离不开埋点,埋点设计也是很重要的一环节。

1、结果数据

活动效果如何,可以通过以下指标进行分析:

2、过程分析

对结果数据进一步做过程分析,找到后续迭代方向。接下来将以结果数据中的「关键步骤转化率」为例,来讲解如何将结果数据拆分为多个环节,以及如何解读每个环节的指标,找到迭代方向。

(1)用户购买转化路径拆解

关键步骤指用户购买转化路径,因此第一步是拆解用户购买转化路径。用户进入产品首页后,主要会根据有无购物需求划分为两条路径,如下图所示:

(2)路径环节关键点分析

(3)关键点分析内容及后续迭代方向

不同关键点可以分析的内容及后续迭代方向如图所示:

3、完善活动埋点设计

为了保证活动效果能被准确追踪,并且未来复盘时,能清晰回溯到前面拆解的活动发力点是否做好,应该在此时引入数据分析师同学评估需要监控的过程指标是否已经完成了相应埋点。

(1)根据活动流程或用户的关键行为设计事件

(2)根据活动需求完善埋点设计

最后,当618大促活动结束后,可以对每个环节内容进行深度复盘,将发现的问题结论沉淀记录下来,迭代精准营销方案,为后续活动策划做准备。

THE END
1.不能被动被大数据“算计”“‘双十一’红包为什么只有我领不到”“开个会员视频,发现朋友比我便宜几元”……近日,随着“双十一”的临近,不少网友为自己受到的“不公遭遇”发声。从网络投诉平台的留言看,令人诟病的“大数据杀熟”现象仍不时发生,并且出现新“变种”,不仅形式多样,而且套路日益隐蔽。 https://mp.weixin.qq.com/s?__biz=MzA4MjQxNjQzMA==&mid=2768937770&idx=1&sn=63e81995d9fda404666049d244301097&chksm=be76f3fddfbd7bda6379c966cfea304e460e3adc7f7dbef74f43fde0f8f77db3509085cdc01c&scene=27
2.智慧零售经济中的高效精准营销实现策略资质证书随着科技的飞速发展和大数据时代的到来,智慧零售经济正逐渐成为新的商业趋势,智慧零售经济以数字化、智能化技术为基础,通过深度分析消费者行为、精准定位市场需求,实现零售业的转型升级,高效精准营销是智慧零售经济的关键环节,本文将探讨智慧零售经济如何实现高效精准营销,以期为相关企业和从业者提供有益的参考。 https://wgb-lzbh.com/post/5209.html
3.精准化营销服务精准化营销服务是一种针对特定目标客户群体,通过精确定位和个性化营销策略实现市场推广的服务。在如今激烈竞争的市场环境下,企业需要更加精准地定位目标客户,将有限的资源投放在最有价值的渠道和客户上,以提高市场营销效果。 精准化营销服务的第一步是通过市场调研和数据分析,了解目标客户的特点、需求和消费行为等信息。通http://www.91yiqifa.com/yinxiao/20259.html
4.重庆五车科技借势“全网营销”清理库存,低成本渗透全新市场实施全网营销策略后,需要定期监测和评估营销效果。通过分析数据,了解营销活动的曝光率、点击率、转化率等指标,评估营销活动的成效,并根据评估结果进行调整和优化。 总之,借势 “全网营销” 清理库存并实现低成本渗透全新市场是一种可行的策略。通过扩大销售渠道、精准营销、价格策略调整、社交媒体营销、内容营销、合作与联https://www.163.com/dy/article/JI66R8610518K9M7.html
5.撕掉她衣服,数据解答优化云计算版76.80.2通过建立合适的数据模型和算法,可以有效地挖掘出头部数据中隐藏的规律和趋势。同时,云计算平台提供了强大的计算和存储能力,能够支持对海量数据的快速处理和分析。通过结合数据挖掘技术和云计算平台,企业可以实现对头部数据的高效利用,从而提升决策效率和竞争力。 具体应用方面,头部精准数据在市场营销、风险管理、人才招聘等http://www.xjche365.com/dodoc/guangyuan/981199.html
6.任务目标完成用户数据的清洗②任务背景随着电商市澈争加剧4、转换为特定格式的数据; 5、保存数据。 数据清洗后的应用价值 对于电商行业来说,用户数据是其重要的一部分,而数据清洗是数据处理的一个重要环节,数据清洗后,可以对其进行有效地分析。 第一,对于用户基本信息、联系方式、地址等进行有效地整理和归纳,便于后续营销工作的开展; https://blog.csdn.net/Shaidou_Data/article/details/138077163
7.新门内部资料精准大全,数据驱动方案实施U50.374新门内部资料精准大全为企业提供了一个强大的数据管理工具,通过数据驱动方案的实施,企业可以实现精准营销、资源优化和风险控制等目标。在这个过程中,企业需要关注数据整合、清洗、分析、可视化和应用等关键环节,并重视数据安全和隐私保护。随着技术的不断发展,数据驱动方案将成为企业提高竞争力的重要手段。http://365kjpx.com/post/8778.html
8.2018年全国邮政科技创新成果公示系统创新性地使用了机器学习算法训练并智能获取邮件状态、轨迹信息,使用轨迹节点分析算法对邮件轨迹信息进行提取、清洗、加工、存储,预测分析异常邮件信息、记录工单、提供邮件分析报告,及时提醒主动客服人员提前处理、提前干预邮件异常环节,保障邮件及时送达。系统上线后,四川主动客服系统实现了从无到有,解决了主动客服人员邮http://www.chinapost.com.cn/xhtml1/report/190673/5624-1.htm
9.互联网的精准营销范文导语:如何才能写好一篇互联网的精准营销,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。 篇1 [关键词]互联网时代 畅销书精准营销 [中图分类号] G235 [文献标识码] A [文章编号] 1009-5853 (2015) 04-0061-05 https://www.gwyoo.com/haowen/191512.html
10.淘宝品类数据分析怎么做帆软数字化转型知识库淘宝品类数据分析可以通过以下几种方式进行:数据收集、数据清洗、数据分析、数据可视化。数据收集是整个数据分析的第一步,也是非常关键的一步。通过淘宝开放平台或者第三方数据服务获取相关品类的数据,如销售额、销量、访问量、转化率等信息。数据清洗是确保数据准确性的重要环节,去除重复、错误和不完整的数据。数据分析则https://www.fanruan.com/blog/article/396217/
11.数字经济核心要素:数据算法和算力2.3 数据采集、存储、清洗和管理 高质量的数据是大数据应用的前提,涉及数据全生命周期管理。数据采集是数据管理的起点,需要全面采集和获取结构化、非结构化数据。对内,要采集企业各业务系统、各环节产生的数据;对外,要利用爬虫技术采集互联网开放数据,利用传感器、物联网采集实时数据,并且通过数据交易获取第三方数据。采https://www.chinacoop.gov.cn/news.html?aid=1823586
12.二字爆特1码澳门,全身心数据计划创意设计版JSR8.75全身心数据计划是一种以用户为中心的数据分析方法,旨在为企业提供全面、精准的用户数据,助力企业实现精准营销。全身心数据计划包括以下几个环节: 1. 数据收集:通过多种渠道收集用户的基本信息、行为数据等。 2. 数据处理:对收集到的数据进行清洗、整理,形成可用数据。 http://www.fjgsy.com/post/6539.html
13.如何进行有效的用户分层运营51CTO博客数据分析基础是用户分层运营的基石,涵盖了数据收集、数据清洗、数据存储和数据可视化等关键环节。 数据收集:数据收集是数据分析的第一步。用户数据可以从多个来源获取,包括用户注册信息、行为数据、社交媒体数据等。对于用户分层运营,我们需要收集与用户特征和行为相关的数据,如年龄、性别、地理位置、购买历史、点击率、浏览https://blog.51cto.com/universsky/12681363
14.电子游戏行业——助力精准市场分析数据处理:清洗、整合与存储 收集到的原始数据往往杂乱无章,含有大量无效或冗余信息,数据处理成为精准市场分析的关键环节,这一过程包括数据清洗(去除重复、修正错误、填补缺失值)、数据整合(将不同来源的数据进行匹配和关联)以及数据存储(采用合适的数据库或数据仓库技术,确保数据的安全性和可查询性),经过处理后的数据更https://wap.scrhg-it.cn/guoji/907.html
15.大数据精准营销有哪些典型方式?,标准版RE35人物5. 实时营销,根据用户实时行为调整营销策略。 大数据精准营销的五大典型方式:洞悉消费者,引领市场潮流 在信息爆炸的时代,如何从海量数据中提取有价值的信息,实现精准营销,已经成为企业争夺市场的关键,大数据精准营销通过分析消费者行为、偏好和需求,为企业提供个性化的营销策略,本文将详细介绍大数据精准营销的五大典型方式http://www.hnspacenet.com/post/161.html
16.内容数据范文12篇(全文)2013年, 本集团提出了“深耕主业、多元开拓、加快转型、融合发展”的战略目标, 围绕这一目标, 集团大数据业务的需求, 除体现在整合现有集团所有数据资源、数据存储和分析能力外, 对内促进企业的精细化运营, 对外实现精准的内容服务和营销服务, 使报业的信息内容资源实现增值。https://www.99xueshu.com/w/ikeye1u5qrlv.html