1材料与方法1.1试验材料试验所用水样采自广东省清远市某金矿区排水,石灰从市场购买,粉煤灰取自广州某燃煤电厂,花生壳、玉米芯从某农贸市场购买。将花生壳、玉米芯洗净、烘干,用粉碎机粉碎过2mm筛,用密封袋保存备用。粉煤灰和石灰的理化性质见表1。
表1粉煤灰和石灰理化性质
1.2改性花生壳的制备花生壳的改性方法有酸改性法、碱改性法、有机化合物改性法等,目的是增加其表面的阴离子基团,目前应用最多的是酸改性法。改性花生壳的制备步骤如下:称取50g过2mm筛并经水洗的花生壳,置于2.5L大烧杯中,加入500mL1mol/L磷酸溶液,搅拌1h,离心去除液体部分,在50℃下烘干,然后升温至180℃加热1.5h。经上述处理后的花生壳用75℃去离子水清洗去除游离的磷酸,然后在50℃下烘干备用。
(2)吸附剂吸附。参考前人研究成果,当生物质吸附剂的用量为10~20g/L时对重金属有较好的去除效果,基于此,对吸附剂的投加量进行设计,见表2。取上一步石灰中和后的水样200mL置于500mL锥形瓶中,按表2的投加量将吸附剂置于尼龙袋中,然后放入废水中,在恒温振荡机上振荡1h后过滤,收集滤液,测定pH和重金属含量。
表2不同吸附剂的投加量
所有试验均设置空白对照和重复试验,废水中的重金属采用HNO3-HClO4消解,等离子光谱仪(ICP-OES,OPTIMA5300DV)测定消解液中重金属含量。所得数据均为各重复试验的平均值,原始数据的整理由Excel软件完成,采用Origin8.0软件作图。
2结果与讨论2.1废水水质分析对采集的矿区水样进行分析,结果见表3。
表3废水水质检测结果
由表3可知,该水样呈强酸性,总氮、SO42-、As、Cd、Pb、Zn均不同程度地超过地表水Ⅲ类标准要求(GB3838—2002)。可见该水样属于典型的重金属污染矿山酸性废水。
2.2石灰投加量对pH的影响及对重金属的去除效果石灰投加量对废水pH的影响及对重金属的去除效果如图1所示。从图1可以看出,投加石灰后水样pH显著上升,当石灰投加量为20g/L时,pH升高到6.21,已达到地表水Ⅲ类标准规定的pH(6~9),说明石灰能较好地中和酸性废水。
图1石灰投加量对废水pH和重金属去除效果的影响
投加石灰中和处理后,各组处理废水中As、Cd、Pb、Zn含量如表4所示。从图1、表4可以看出,石灰对As、Cd、Pb、Zn都有一定的去除效果,其中对As和Zn的去除效果最好,从去除率看As>Zn>Pb>Cd。当石灰投加量为20g/L时,对As、Zn的去除率分别达到89.7%、88.5%,对Cd、Pb的去除率分别为16.8%、31.4%。这可能是由于石灰与重金属离子形成了氢氧化物沉淀,减少了废水中的重金属含量。石灰投加量的增加对重金属离子去除率的提高并不明显。这可能是因为石灰投加量增加使废水达到饱和状态,生成较多的重金属氢氧化物——矾花,使得中和渣体积增大,沉降速度降低,同时石灰有可能被沉淀包裹,降低了去除效果。由于废水中重金属含量比较高,经石灰中和处理后出水水质仍然达不到地表水Ⅲ类标准,因此需进一步处理。
表4石灰中和处理后废水的重金属质量浓度
2.3吸附剂对pH的影响按照表2的投加量,采用不同吸附剂对20g/L石灰处理后的水样进行吸附,吸附完成后废水pH的变化情况如图2所示。从图2可以看出,花生壳和改性花生壳对废水pH的影响较小,而玉米芯和花生壳混合粉煤灰对废水pH有一定影响,当花生壳与粉煤灰按质量比2∶1投加后,废水pH升高到6.63,说明粉煤灰能一定程度地提高废水pH。这可能是因为粉煤灰中还含有CaO和其他少量碱金属氧化物及碱土金属氧化物,会使溶液呈碱性,从而提高废水pH。高伟等认为pH对吸附剂吸附重金属有较强影响,当pH较低时大量的H+会占据金属离子的吸附位置,导致吸附剂对重金属离子的吸附能力较低,pH过高时金属离子又易生成氢氧化物沉淀,也不利于吸附的进行。
图2吸附剂对废水pH的影响
农林废弃物如花生壳、玉米芯、秸秆等表面粗糙、内部多孔,含有羟基、酚羟基、羧基、氨基等基团,有利于对重金属的吸附;废弃物中的H+、Ca2+、Mg2+等有利于与污染物离子发生离子交换,且农林废弃物中含有高活性的化学基团,对其进行改性和化学修饰可提高官能团的数量或增加新的官能团。章明奎等研究发现非活体生物质对重金属都有较高吸附能力,5种生物质吸附重金属的能力依次为:花生壳>松树树皮>玉米芯>水稻谷壳>茶叶。用碱、柠檬酸和磷酸对生物质进行改性可显著增强其对重金属的去除能力,通过化学改性不仅可在农林废弃物中引入羧基,还可将巯基、磷酸根、硫酸根、胺基等其他吸附金属能力强的活性基团引入农林废弃物中,从而提高其对重金属的吸附能力,笔者的研究结果也证实了这一点。