贵金属纳米材料极简史–材料牛

目前的宇宙学研究表明人们梦寐以求的贵金属元素诞生于中子星合并以及超新星爆炸。贵金属,特别是金,化学性质稳定,在自然界中可以单质形式存在。距今约七八千年前,尼罗河畔的古埃及人在地球上最早发现并使用了黄金。而黄金的稀缺性让人们自古以来就希望可以人工合成黄金。从公元一世纪起,西方的炼金术师们便开始了逐梦之旅,他们满怀憧憬地搭建起一个个简陋而危险的实验室,企图把常见金属炼化为黄金。而在东方,战国时期阴阳家学派创始人邹衍为炼丹术的发展提供了理论基础。刘邦的孙子,淮南王刘安酷爱炼丹,与门客们合著《淮南子》,上书“为神丹既成,不但长生,又可以作黄金”。虽然现代科学已经让人们明白古代的炼丹术与炼金术是行不通的,但是它们为化学的发展做出了极大的贡献。

贵金属纳米材料

更为神奇的是,早在公元四世纪时,人们已经将贵金属纳米粒子应用在了日常生活之中。罗马人使用分色玻璃制作了莱克格斯杯(LycurgusCup),当光线从不同方向照射杯子,杯子呈现不同的颜色。现代研究发现莱克格斯杯中的“色彩魔术师”实际上是分色玻璃中的金银纳米颗粒。1847年,法拉第(MichaelFaraday)用磷来还原三氯化金溶液制备得到了金纳米颗粒,并且观察发现了不同大小的金纳米颗粒具有不同的颜色。1951年,Turkevich等人使用柠檬酸来还原氯金酸合成了金纳米颗粒。这种方法至今仍是合成金纳米颗粒的常用方法之一。二十世纪五十年代末,RichardFeyneman提出了在原子尺度上搭建新的微观世界,创造新物质,并且研究其性质应用的思想。这被视为纳米研究的思想起源。到了七十年代末期,MIT的K.EricDrexler认为我们可以模仿细胞中生物分子,并将人工合成的分子进行组装和排布。他将此称之为纳米技术。1984年,原联邦德国萨尔蓝大学Gleiter团队采用原位加压法将金属钯粉制成6nm大小的纳米颗粒,具有划时代意义。

随着科学仪器设备的进步和发展,人们开始可以对纳米甚至更小尺度的金属材料进行物理化学性质的研究。由于超小尺寸带来的量子效应包括表面效应、量子尺寸效应和宏观量子隧道效应等特性使得贵金属纳米材料变得愈发“神通广大”。从二十世纪末到现在,对贵金属纳米材料的研究日新月异。研究者们发现纳米金具有优异的催化性能,这打破了人们对于块体金化学惰性的固有印象。在所有金属中,银表现出最优异的导电率、导热率以及反射率。银纳米颗粒也表现出独特的性质,在催化、医药、生物、成像、光学等领域大展身手。

关于铂最初的记载出现于十八世纪四十年代。1741年,英国人CharlesWood于牙买加发现了铂样本,随后寄给WilliamBrownrigg进行分析。1750年,Brownrigg将对于铂的研究报告提交给了皇家学会。但是,西班牙人安东尼奥·乌略亚(AntoniodeUlloaydelaTorre-Girault)在两年前,也就是1748年,已经发表了关于铂的研究报告。二十世纪初,人们制备出了铂黑,并将其用作催化剂。如今铂基纳米材料已经是不可或缺的优异催化剂,在氢氧化、氢析出、氧还原、汽车尾气处理、一些石油化工反应等重要反应中无有出其右者。铂类分子配合物,如顺铂,更是疗效显著的抗癌药物。

钯是贵金属中熔点最低、密度最低的。钯纳米材料在有机催化、燃料电池电极反应、储氢、生物医药等领域发挥着不可取代的作用。1803年英国化学家威尔亚姆.沃尔拉斯统(WilliamHydeWollaston)发现钯之后很快便发现了铑。铑基纳米材料也是重要的工业催化剂,主要用作汽车尾气催化剂。另外在玻璃工业、镶牙合金业和珠宝业等行业也可以看到铑基材料的身影。

1803年,英国化学家SmithsonTennant在铂矿石中发现了铱。他以希腊神话中的彩虹女神Iris之名将新元素命名为“Iridium”。1844年,俄罗斯籍的波罗的海德意志科学家KarlErnstClaus在喀山大学发现了钌。钌和铱的分子配合物是极佳的光敏剂。钌和铱基的配合物以及纳米材料也是有机不对称加氢和针对多种氧化反应的极好的催化剂。

锇也由Tennant发现,是自然界中密度最高的元素,有22.59g/cm3。锇及其合金在石油炼化中可以作为催化剂使用。另外,在电子工业上,锇基材料可做电子元器件用,比如电阻、继电器和热电偶等。锇还可作为制造光学玻璃时的容器内衬。另外,钟表和仪器中的轴承和钢笔尖等也多采用锇铱合金制作而成。

总体上,贵金属纳米材料已经被广泛用作催化剂、助燃剂、导电浆料、电极材料、磁流体、吸波材料和纳米药物等,在冶金工业、电子电器、先进陶瓷、生物医药工程、农业、化工、光电器件、环境、新能源和先进国防等领域发光发热。

贵金属纳米材料结构调控的最新进展

图一动力学控制的两种在Pd十面体上生长Au的模式(J.Am.Chem.Soc.2023,145,13400)。

随着人们对贵金属纳米结构的深入研究,越来越多的贵金属纳米材料被合成出来。其中大部分材料至少在某一维度尺寸在1-100nm的范围内。如果贵金属材料的尺寸继续减小到1nm以下,他们还能稳定存在吗?会表现出什么样的性质呢?这些问题促使研究者们合成更加精细的贵金属纳米材料。2017年,J.R.Regalbuto教授课题组以二氧化硅为载体,采用静电吸附法(Electrostaticadsorptionmethod),通过pH调节使得二氧化硅表面-OH去质子,从而可以吸附带正电的贵金属前驱体,再在氢气中进行热还原得到了一系列超小(~1nm)、均匀合金的双金属纳米颗粒(如图二左半部分,Science2017,358,1427–1430)。2019年,郭少军教授课题组采用水热合成法得到了PdMo双金属烯(PdMobimetallene),其为高度弯曲的纳米片,厚度小于1nm(Nature2019,574,81–85)。王训教授课题组发展了一系列亚纳米尺度材料的合成方法,其中便包括厚度仅为0.7–0.9nm的亚纳米Pd纳米带(CCSChem.2019,1,642–654)。虽然超小的贵金属纳米材料也可以被制备,但是就像世界上没有完全相同的两个人,纳米粒子在尺寸、组成和结构上也几乎不可能是完全相同的(如图二右半部分,Science,2020,368,60)。

图二超小、均匀合金的双金属纳米颗粒(Science2017,358,1427–1430)以及不完全相同的Pt纳米颗粒(Science,2020,368,60)。

幸运的是,贵金属团簇的发现为科学家们提供了理想的研究体系,其具有类分子特性,内部原子结构与表面配体结构精确。著名生物化学家RogerD.Kornberg教授课题组于2007使用X射线单晶衍射给出了Au102团簇的结构,分辨率达到1.1(Science2007,318,430-433)。如图三所示,这个Au纳米团簇包括102个金原子以及44个对巯基苯甲酸配体。2009年,RongchaoJin教授团队报道了具有硫醇配体的Au25纳米团簇(J.Mater.Chem.2009,19,622-626)。2017年,AmalaDass教授组合成了Au279团簇,此团簇为给出明确晶体结构的最大的贵金属Au团簇(J.Am.Chem.Soc.2017,139,15450-15459)。光谱研究表明,在510nm处,该团簇具有明显的等离子体共振吸收峰。一年后,朱满洲教授报道了当时最小的合金纳米团簇—Cd1Au14(StBu)12,并给出了其单晶衍射结构(J.Am.Chem.Soc.2018,140,1098810994)。

图三Au102团簇的结构(Science2007,318,430-433)。

图四Rh-WOx对催化剂(Nature2022,609,287-292)。

图五液态金属参与合成的高熵合金纳米颗粒(Nature2023,619,73–77)。

俗话说金无足赤,人无完人。其实,合成出完美的理想材料是极具挑战的。但是有缺陷就一定是坏事吗?经过多年的研究,学者们发现贵金属基纳米材料中的各种缺陷所引起的材料电子结构的改变,对调节其光学、电学、磁学和催化等性质有决定性的影响(Chem.Sci.2020,11,1738-1749)。2017年,MatthewW.Kanan教授使用先进的电化学扫描显微镜直接观察到了Au电极的晶界具有明显高于晶畴表面的电化学二氧化碳还原活性(Science2017,358,1187-1192)。这个突破性的工作掀起了开发晶界富集金属纳米催化剂的热潮。最近,张华教授课题组采用一锅湿化学合成法得到了具有多种缺陷结构的异相AuCu多级纳米片,如图六,其缺陷结构包括非常规的2H晶相、2H/fcc相界、边缘台阶位点(高指数晶面)、堆叠层错、孪晶界以及晶界(Adv.Mater.2023,10.1002/adma.202304414)。由于其独特的结构,2H/fccAu99Cu1多级纳米片表现出优异的电催化二氧化碳还原性能。

图六2H/fccAu99Cu1多级纳米片(Adv.Mater.2023,DOI:10.1002/adma.202304414)。

对贵金属纳米材料进行应力调节,被认为对调控其d带电子中心,从而调节其催化活性具有重要意义(Nat.Rev.Mater.2017,2,17059)。金明尚教授课题组通过P原子在Pd@Pt核壳纳米立方体中的掺杂和脱出,实现了对Pt表面应力的系统性连续调节(Nature2021,598,76–81)。随后,张华教授课题组通过外延生长实现了对亚稳态fcc-2H-fcc晶相Pd的晶格拉伸(J.Am.Chem.Soc.2022,144,1,547–555)。近日,伍志鲲教授课题组通过配体工程,在约1nm尺度上,实现了对Au52团簇的晶格压缩(如图七,Angew.Chem.Int.Ed.2023,e202308441)。

图七Au52团簇的晶格压缩(Angew.Chem.Int.Ed.2023,e202308441)

图八4HAu纳米带(Nat.Commun.2015,6,7684);2HAu纳米片(Nat.Commun.2011,2,292);以及异质结构的金属间纳米材料(Nat.Syn.2023,2,749–756)。

合成制备具有手性结构,特别是原子级手性结构的贵金属纳米材料被认为对手性催化、手性光学、电磁学、偏振控制、负折射率材料以及手性传感等领域具有重大意义。2018年,KiTaeNam教授团队以手性氨基酸和多肽作为结构导向剂,合成了手性等离激元Au纳米颗粒(Nature,2018,556,360–365)。2020年,LuisM.Liz-Marzán教授以配体分子形成的手性软模板为诱导,合成了具有手性活性的各向异性纳米Au棒(如图九,Science2020,368,1472-1477)。

图九手性纳米金棒(Science2020,368,1472-1477)。

图十对胶体分子形成的实验以及模拟研究(Science2020,369,1369-1374)。

THE END
1.探索中国特色黄金市场发展之路上海、香港、东京、孟买、新加坡等城市,凭借其独特的地理位置、成熟的金融市场及政府的积极支持,正加速发展贵金属交易业务,力求在全球黄金市场中占据更加重要的位置,成为连接东西方黄金市场的桥梁和枢纽。 02 黄金投资与中国黄金市场发 黄金价格的主要影响因素包括黄金供给与需求、https://mp.weixin.qq.com/s?__biz=MjM5MjU1NTcxNQ==&mid=2649419048&idx=1&sn=d1ac9b38f6f9b46b5427fde9e02ef6c5&chksm=beba3a8489cdb392f2281cc0222000c50812e0ada71a49e7f3ef4ea5ac0c489d0d32f529f75c&scene=27
2.纳米人40.首次合成单分散贵金属纳米晶 夏幼南和孙玉刚发明了一种精确控制合成几乎单分散的银和金纳米晶的醇热法。 2003年 41.首次实现金属表面纳米化 卢柯发明了一种金属表面纳米化技术,极大地提高了金属材料的力学性能。 2004年 42.发现石墨烯 Andre Geim和Konstantin Novoselov发明了一种剥离单层石墨烯的技术。 http://www.nanoer.net/e/action/ShowInfo.php?classid=32&id=22965
3.矿冶人物赵怀志:贵金属材料专家矿冶人物矿冶园赵怀志,贵金属材料专家。他的研究与开发工作取得了一系列科技成果,首创银一铈电接触材料,发现和合成一些新物相,揭示缅甸砂铂矿的矿物种类和特点,实验制作了—些贵金属二元和三元相图等。他获得国家发明奖、省级自然科学奖和省部级科技进步奖多项,参与起草并制订国家部颁标准,撰写出版专著,发表论文,推广科学技术,为我国http://mooc.kuangyeyuan.com/article/131
4.假贵金属纪念币都是使用合金材料表面镀金银制作的。追问病史:月经干净10天,平时身体健康,没有痛经,有左侧盆腔肿块史。最可能的诊断是:() A. 子宫肌瘤、 B. 卵巢囊肿蒂扭转 C. 盆腔子宫内膜异位症 D. 急性盆腔炎 E. 阑尾炎 查看完整题目与答案 患者,女性,27岁。因停经28周,晚上起床小便后发现阴道出血,超过平时月经量,伴下腹坠胀感,不伴腹痛和其https://www.shuashuati.com/ti/9067d2c7b5d24640bc80011cf266c1d8.html?fm=bd9435fd8c871a8555fdca2a6285afb12b
5.自然地理资源范文11篇(全文)我省有着丰富的矿产资源,特别是在当今不可再生资源匮乏的时代云南拥有着:黑色金属矿产,建材非金属矿产及彩石矿产,能源矿产,有色金属及贵金属矿产,冶金辅助原料矿产,化工非金属矿产,稀有及稀土矿产,特种非金属矿产九大矿产资源。 3 丰富的旅游资源优势 3.1 谈到云南的旅游,人们最向往去的就是大理,丽江,西双版纳州。丽https://www.99xueshu.com/w/ikey92farzok.html
6.是“人”和“世界”被发现的时代。阅读下列材料,结合所学知识回当时,不仅商人还有政府官员都希望能够找到贵金属和新的贸易地区。一位西班牙探险家说,他和他的同伴去新大陆,是为了“给那些生活在黑暗之中的人们带去光明,与人们渴望的一样,他们也希望发财致富”。——摘编自刘明翰主编《欧洲文艺复兴史?经济卷》等(1)根据材料一,概括文艺复兴运动在意大利兴起的历史背景。以《https://www.jyeoo.com/shiti/c81a5c10-1155-415b-a5b0-250936f0d328
7.世界一流科技期刊文章精选厦门大学化学化工学院、能源材料化学协同创新中心郑南峰和傅钢课题组,采用乙二醇保护的超薄二氧化钛纳米片作为载体,应用光化学方法,成功制备了负载量高达1.5wt%的单原子分散钯催化剂;在温和条件下高效脱除前驱体氯钯酸上的氯离子是成功制备的关键;研究成果发表于《科学》杂志。贵金属催化剂广泛应用于环保、能源和化工等领http://www.scichi.cn/zinecontent.php?id=1827
8.UiO66结构调控及其光催化分解水产氢的研究进展然而,通过进一步研究[9]发现,UiO-66材料作为光催化剂产氢还有待进一步优化,如带隙较宽导致的可见光利用率较低、电子-空穴易复合等问题。因此,需要对UiO-66进行结构调控来提高其光催化产氢性能。 本文结合光催化分解水产氢的机理,综述了近年来UiO-66材料结构改性的主要方法(贵金属改性、非贵金属改性、敏化改性、https://www.fx361.com/page/2022/0825/15032764.shtml
9.学会完成单位: 江苏太极实业新材料有限公司 主要完成人: 许其军 江晓峰 陆福梅 刘全来 葛明桥 8. 比肩铂的非贵金属非晶合金电催化剂研发及其催化反应机制研究 完成单位: 南京理工大学 中国科学技术大学 主要完成人: 兰 司 刘思楠 葛嘉城 高飞跃 高敏锐 9. 涤纶织物“闪染”免水洗关键技术及成套装备产业化 http://www.jscts.org.cn/web/notice.php?content=true&newid=335
10.XRF技术在贵金属领域的应用(一)——走进贵金属的应用领域贵金属的发展 贵金属主要指金、银和铂族金属(钌、铑、钯、锇、铱、铂)等8种金属元素。 贵金属的发现和发展是人类文明史发展的一个很好的表征。在贵金属中,金和银是最早被人们发现并被利用的金属,而黄金的开采又早于白银。早在公元前4000年,埃及人就已经懂得如何采集黄金、并广泛应用于生活中。铂族金属,由于开http://www.innuox.com/news_3/342.html
11.转邱永志陈志宏︱白银经济波动下的多维世界——读林满红或许是由于该书内容博宏庞杂,涉及领域众多,学者应接不暇难以应付; 亦或是近年来中国社会经济史领域成果新见叠出,大陆学者见怪不怪,逐渐失去了昔日兴致来与之对话而归于沉寂。无论怎样,笔者甘冒浅陋之险,对该书进行一番评介,恰当与否,敬请方家指正。一、该书构成的三个维度林满红林著全书由相互独立但又彼此联系https://book.douban.com/review/12489200/
12.2019年甘肃省公务员考试行测真题13.1955年我进入南开大学历史学系读书,老师告诉我们治史有“三求”:求真、求新、求用。到现在,我在41.随着贵金属货币演化成纸币,货币借助于信用发展出了金融产业。金融一旦成为一个产业,就可以与实体经济48.①另外,煤矿冒顶事故的发生一般都会有征兆,但人的认知能力有限,有的征兆可以发现,有的却难以发现 http://www.gsgwy.org/2020/0130/33260.html
13.上海有研贵金属材料有限公司简介:上海有研贵金属材料有限公司成立于2004-01-13,法定代表人为陈斌,注册资本为200 万人民币,统一社会信用代码为913101187584050791,当前处于存续状态。企业注册地址位于上海市奉贤区金海公路6055号11幢5层,所属行业为金属及金属矿批发,经营范围包括:一般项目:金属材料销售;金属制品研发;金属结构制造【分支机构经营】;有https://www.qixin.com/company/7a9b2829-873e-4ea5-8e42-db6cf7b5850e
14.冶金材料(精选十篇)目前,甘肃省在冶金有色新材料产业发展方面需求铜、铝、镍、钴高性能金属及合金结构材料装备及先进加工技术,镍钴铜与贵金属精深加工、铝型材、铝合金深加工、有色金属新能源材料、铜铅锌冶炼与加工、新型不锈钢薄板、稀土新材料制备和先进加工技术,以及资源综合高效利用与环境保护方面技术与研究成果。 https://www.360wenmi.com/f/cnkey2n2r125.html