技术低温NH3SCR脱硝催化剂的研究进展

不可再生的化石燃料仍然是热电厂、汽车、水泥和钢铁等工业生产的主要能源。然而,化石燃料燃烧后产生的氮氧化物(NO、NO2、N2O及其衍生物)污染物,可引起酸雨、光化学烟雾和臭氧消耗等问题,因此降低NOx排放对环境保护至关重要。利用NH3的选择性催化还原(NH3-SCR)NOx因其脱硝效率高而得到了广泛的应用,特别是在电力行业,正惭惭在水泥行业兴起。由于工业烟气温度一般不超过300℃,因此SCR催化剂必须在低温条件下(100~300℃)具有较高活性。V2O5-WO3(MoO3)/TiO2是典型的高效催化剂,已被用于中温工艺的NH3-SCR技术。然而,该催化剂具有一些固有的缺点,如工作温度窗口窄而且高(350~400℃),以及高温环境中N2的选择性低。因此,许多研究人员继续研发温度窗口宽的低温NH3-SCR的高活性催化剂。

在此背景下,几种过渡金属氧化物基催化剂由于其优异的氧化还原性能、低廉的价格和较高的热力学稳定性,被广泛研究用于低温NH3-SCR反应。特别是过渡金属离子的d壳层中的电子容易得失可能是导致其高氧化还原性能的原因。例如,Cr/TiO2、Cr-MnOx、Fe-MnOx、Mn/TiO2、FexTiOy、MnOx/CeO2和Cu/TiO2等催化剂在低温范围内表现出良好的SCR活性。在早期的研究中,以TiO2为载体负载V、Cr、Mn、Fe、Co、Ni和Cu的氧化物在过量O2时具有较好的低温NH3-SCR活性,其催化性能表现Mn>Cu≥CrCo>FeVNi。特别是含锰催化剂由于其可变价态和优异的氧化还原能力,在低温区具有较好的脱硝能力。然而,这些催化剂对烟气中的SO2非常敏感,N2选择性低。因此,开发具有良好低温活性和高SO2/H2O适应性的催化剂对低温NH3-SCR具有重要意义。一般来说,有两种可行的策略可以提高低温NH3-SCR的性能:一种方法是用一种或多种金属氧化物对过渡金属氧化物进行改性,通过诱导协同效应来提高反应活性;另一种方法是合成负载材料来分散过渡金属基氧化物,这种氧化物可以通过金属载体相互作用来提高活性。近年来,许多负载型和混合型过渡金属催化剂配方被研究,以提高低温NH3-SCR的性能,以及对SO2/H2O的适应性。

1二元过渡金属基催化剂

多种过渡金属氧化物已被证明在低温下具有NH3-SCR活性。然而,单一过渡金属氧化物由于其低比表面积和热不稳定性,使其催化性能受限。因此,采取与其他金属氧化物混合或掺杂来提高过渡金属氧化物的低温SCR活性。近年来,Mn、Fe、Co、Ni和Cu基二元氧化物催化剂因其优异的催化性能而被广泛应用于低温NH3-SCR反应。特别是Mn基二元氧化物是一种很受欢迎的催化剂,被证明是低温NH3-SCR反应的有效催化剂。最近,Xin等设计了由Mn2O3和Mn2V2O7组成的催化剂,与低温下的Mn2O3相比,其NO转化率和N2选择性均有显著提高(见图1)。虽然Mn2V2O7具有良好的N2选择性,但NOx的转化率要低得多。特别是V0.05-MnOx催化剂在120~240℃温度区间90%以上的NOx转化率和80%的N2选择性。与V0.05-MnOx相同组分含量的机械混合Mn2O3和Mn2V2O7催化剂相比,化学制备的V0.05-MnOx催化剂表现出更高的NOx转化率(见图1),表明化学制备的V0.05-MnOx中Mn2O3与Mn2V2O7之间存在协同作用,而不是机械混合Mn2O3与Mn2V2O7催化剂。此外,两种机械混合催化剂相比,机械混合Mn2O3与Mn2V2O7催化剂具有更高的活性,表明催化剂中Mn2O3比MoO3活性更高。其中:

2三元和多元过渡金属基催化剂

单一过渡金属氧化物的催化性能也可以通过与两种或多种其他金属氧化物混合协同相互作用来提高催化活性,因此,过渡金属氧化物被广泛报道用于制备三元或多金属基低温NH3-SCR催化剂。Fang等研究了Fe0.3Mn0.5Zr0.2催化剂的低温NH3-SCR性能,发现与Fe0.5Zr0.5和Mn0.5Zr0.5催化剂,在200~360℃温度范围内NO转化率可以达到100%。此外,Fe0.3Mn0.5Zr0.2催化剂具有优异的稳定性和对SO2良好的适应性,这是由于Fe、Mn和Zr之间的相互作用所致。

222Chen等研究了Co0.2CexMn0.8-xTi10(x=0、0.05、0.15、0.25、0.35和0.40)氧化物催化剂的NH3-SCR反应性能,观察到Co0.2Ce0.35Mn0.45Ti10催化剂在180~390℃的温度窗口中具有100%的NO转化率和N2选择性>91%。虽然引入SO2和H2O后NOx转化率有一定程度的下降,但Co0.2Ce0.35Mn0.45Ti10催化剂对SO2/H2O具有较好的适应性。结果表明,Ce、Co、Mn和Ti氧化物之间的相互作用导致了更多的表面L酸位、NO吸附位和适度的氧化还原能力,这对提高Co0.2Ce0.35Mn0.45Ti10的NH3-SCR活性起着至关重要的作用。

3负载型单过渡金属基催化剂

Sheng等合成了MnOx/TiO2纳米棒催化剂,在NH3-SCR反应中具有较高的活性、稳定性和N2选择性。他们的结论是,丰富的孔隙率、L酸位和高氧化还原性可能有利于提高催化性能。虽然MnOx/TiO2催化剂对H2O具有较好的适应性,但在有SO2存在时,容易失活。他们还报道了MnOx/TiO2、MnOx/ZrO2和MnOx/ZrO2-TiO2催化剂的低温NH3-SCR效率,发现MnOx/ZrO2-TiO2在80~360℃温度下具有良好的活性,在200℃下具有良好的抗H2O性。然而,所有催化剂对SO2和SO2/H2O的适应性差,导致不可逆失活。MnOx/ZrO2-TiO2催化剂由于其高表面积、L酸位和表面Mn4+,使得其在较宽的温度范围内表现出优异的NH3-SCR性能。

碳纳米管(CNTs)由于其优异的稳定性和独特的电子和结构性能,已被报道作为NH3-SCR反应的催化剂载体。Qu等报道,当Fe2O3以碳纳米管作载体时Fe2O3的表面积增大、分散性好,其NH3-SCR性能显著提高。此外,Fe2O3/CNTs催化剂对H2O/SO2具有良好的适应性。有趣的是,SO2对脱硝有一定的促进作用,这可归因于在SO2存在时,催化剂表面NH3吸附和活化的酸位增加。后来又开发了碳纳米管负载氧化铜催化剂,发现10%CuO/CNTs在200℃时具有较好的NH3-SCR活性和良好的稳定性。与10%CuO/TiO2相比,10%CuO/CNTs的性能更好。然而,它对SO2和H2O的适应性较差。

4负载二元和多元过渡金属基催化剂

鉴于两种活性组分在载体上的分散能够进一步增强其催化活性,研究人员广泛报道了负载二元过渡金属基氧化物,如:Mn-Ce/CNTs、Mn-Fe/TiO2、MnOx-CeO2/石墨烯、Mg-MnOx/TiO2、CeOx-MnOx/TiO2-石墨烯、Fe-Mn/Al2O3、Mn-Fe/W-Ti、MnOx-CeO2/TiO2-石墨烯等提高NH3-SCR反应的性能和对SO2/H2O的适应性。

Smirniotis研究了共掺杂金属(Cr、Fe、Co、Ni、Cu、Zn、Ce和Zr)与Mn/TiO2对NH3-SCR性能的促进作用。如图6所示,除Zn和Zr外,所有其他共掺杂金属对Mn/TiO2的活性都有积极的影响,特别是Mn-Ni/TiO2在其它TiO2负载的双金属催化剂中具有最高的NO转化率和N2选择性。

Meng等合成了一种新型CuAlOx/CNTs(CNTs为碳纳米管)催化剂,用于低温NH3-SCR。他们发现CuAlOx/CNTs催化剂在180~300℃的温度范围内比CuAlOx具有更高的NO转化率和N2选择性(见图5)。结果表明,Cu+活性中心的形成、活性CuO的更好分散和更高的表面吸附氧有利于提高CuAlOx/CNTs催化剂的NH3-SCR活性。另外,在NH3-SCR过程中,CuAlOx/CNTs催化剂在240℃时对SO2/H2O具有较好的适应性。这是由于碳纳米管的存在可以连续促进NH4HSO4和NO的反应,以避免过量硫酸铵盐在催化剂表面形成和积累。

Zhao等报道了一系列Mn-Ce-V-WOx/TiO2复合氧化物催化剂,其NH3-SCR活性高于TiO2负载的单组分催化剂。特别是活性组分/TiO2=0.2摩尔比的催化剂在150~400℃表现出最佳的性能。Mn-Ce-V-WOx/TiO2复合催化剂活性组分/TiO2=0.2时在250℃时表现出优异的稳定性和对H2O/SO2较好的适应性。他们认为,Mn-Ce-V-WOx/TiO2的较好性能主要是由于四种活性组分的价态多样性及其较高的氧化还原能力。

THE END
1.过渡金属氮从本质上讲,这些能量转换和存储技术的效率严格取决于两个关键的电催化反应,即氧还原反应(ORR)和析氧反应(OER)。不幸的是,由于两种电化学过程中四电子转移动力学缓慢,这些器件的过电位高、能量效率低,极大地阻碍了器件的大规模应用,因此需要高效的催化剂来促进。迄今为止,Pt和RuO2等贵金属催化剂已分别被公https://baijiahao.baidu.com/s?id=1783868389699061323&wfr=spider&for=pc
2.为什么许多过渡金属能做催化剂过渡金属催化剂特点 ①过渡金属氧化物中的金属阳离子的d电子层容易失去电子或夺取电子,具有较强的氧化还原性能。 ②过渡金属氧化物具有半导体性质。 ③过渡金属氧化物中金属离子的内层价轨道与外来轨道可以发生劈裂。 ④过渡金属氧化物与过渡金属都可作为氧化还原反应催化剂,而前者由于其耐热性、抗毒性强,而且具有光敏https://www.antpedia.com/news/59/n-2964959.html
3.北京化工大学程道建教授课题组GEE综述:过渡金属催化剂的第一性运用合理的计算手段与理论工具,可以揭示特定过渡金属体系的催化机理,或者针对特定反应体系进行过渡金属催化剂的设计。因此,计算手段与理论工具的联合应用对过渡金属催化剂的研发有着举足轻重的作用。近年来,越来越多研究者结合以第一性原理为代表的计算工具和以热力学原理为代表的理论知识,建立了一系列基于第一性原理计算https://wap.sciencenet.cn/blog-3393673-1269277.html
4.过渡金属有机化学——6000多种催化剂和配体,任您选择!为助力金属有机化学发展,百灵威可提供4000多种过渡金属催化剂以及2000多种配体系列产品: 涵盖钛、钒、铁、钴、镍、铜、锌、锆、钌、铑、钯、银、铱、铂、金等15种过渡金属催化剂,活性物质含量稳定,反应性好; 还可提供膦配体、胺配体、吡啶配体、氮杂环卡宾配体、烯配体等,其中还包括各种手性配体,纯度高,质https://www.jkchemical.com/post/5300
5.电解水制氢催化剂有哪些?其中贵金属催化剂具有优异的催化活性,但由于其储量和价格问题,无法大规模工业化应用,因此,目前的研究目标是尽量降低催化剂中贵金属的载量。过渡金属催化剂具有成本低、制备方法简单、结构组成多样等优势,成为目前研究的热点。非金属催化剂主要是碳材料,碳材料具有导电性优异、耐酸https://mp.weixin.qq.com/s?__biz=Mzk0NTMyNzE4Ng==&mid=2247515646&idx=3&sn=1ca37bb51d6e022b0b8967d7a8401263&chksm=c315e0c3f46269d5300678c6fb2922b7054efc083fbcb5b0b86af07f42c4a74f72e274749ca7&scene=27
6.过渡金属基电催化材料的研究进展https://www.hanspub.org/journal/aac https://doi.org/10.12677/aac.2023.134052 过渡金属基电催化材料的研究进展 陈俊伊,汤艳峰* 南通大学化学化工学院,江苏 南通 收稿日期:2023年7月21日;录用日期:2023年11月6日;发布日期:2023年11月10日 摘要 电化学水分解是一项很有前景的可持续制氢技术,电催化剂对于https://www.hanspub.org/journal/PaperDownload.aspx?paperID=75086
7.过渡金属(FeCo和Ni)单原子电催化剂在二氧化碳催化中的研究进展过渡金属催化剂中的d带电子结构接近费米能级,能够克服本征活化障碍,原子级催化剂更是因优异的催化活性而深受研究人员的亲睐。本文综述了过渡金属基(Fe、Co和Ni)单原子电催化剂的研究进展,以及其在eCO_2RR还原中的催化性能,对其面临的挑战与未来的发展方向进行了展望。 (共6页)https://mall.cnki.net/magazine/article/GXHG202403010.htm
8.后过渡金属催化烯烃聚合稳定性的改进与很多前过渡金属催化剂不同,后过渡金属α-二亚胺催化剂在相对温和的条件下易失活。研究α-二亚胺Pd(Ⅱ)催化剂时发现,当苯胺基通过C—N键自由旋转至与二亚胺金属配位环共平面时,其邻位上的烷基与金属中心相互作用,发生C—H键活化,形成六元环中间体进而失活[8]。增大配体位阻能抑制C—N键的自由旋转,从而抑制https://www.fx361.com/page/2013/1223/20826255.shtml
9.过渡金属基催化剂构筑及电还原二氧化碳产甲酸性能研究因此,本论文围绕构筑高效过渡金属基催化剂及其CO2RR产HCOOH性能展开研究,主要内容如下:(1)铟(In)基催化剂被广泛用于CO2RR制HCOOH,但催化性能离工业应用仍有较大差距,因此,提高其催化性能对该过程的工业化至关重要。为此,设计合成了In2O3、In2O3@C和In2O3@NC三种催化剂,探究了C和N物种对催化性能的提升机制https://www.docin.com/touch_new/preview_new.do?id=4768697312
10.“导师大讲堂”第二十一讲:后过渡金属络合物在聚合物催化过程研究Ziegler-Natta催化剂、茂金属催化剂和后过渡金属催化剂仍然是烯烃聚合催化剂的研发的3个主要方向。Fe、Co 系催化剂可以制备高密度聚乙烯,可通过改变配体的空间位阻使依稀齐聚制备a-烯烃,而且通过与茂金属催化剂可以只用乙烯一种单体制备线性低密度聚乙烯。这类催化剂一般以甲基铝氧烷为助催化剂,当然也可以其他路易斯酸https://www.shiep.edu.cn/b1/98/c1062a242072/page.htm
11.纳米人基于过渡金属的光催化氧化还原过程,可以使过渡金属催化剂产生氧化还原态,实现在传统氧化还原催化中不易获得的特色键形成。在芳烃官能化领域,传统交叉偶联催化中有价值的离去基团,已经在金属光催化中被广泛使用,譬如溴化物。问题在于,常规光催化剂的氧化还原电势不足以还原大多数芳基溴化物,因此往往无法直接合成有用的芳香http://m.nanoer.net/main/view?id=13685
12.过渡金属(CoRhIr)配合物催化无受体醇脱氢反应的理论研究传统无受体醇脱氢的均相催化剂活性中心主要基于Ru,Rh和Ir等贵金属。由于贵金属存在高成本、高毒性、低储量等无法回避的问题,开发前周期廉价过渡金属的脱氢催化剂有着重要的意义。最近,唐从辉教授课题组以廉价金属钴为活性中心成功合成了一例半三明治型配合物,能够高效催化醇和胺的无受体脱氢合成嘧啶、喹啉、咪唑等含氮https://www.chemsoc.org.cn/meeting/33rd/onlineposter/54-P-030.html