关于这方面的早期成就,我国科学家钱学森结合其从事火箭控制方面的工作,系统总结了当时工程控制理论与技术方面的成果,指出工程控制领域中的重要课题及发展方向,使控制论的基本原理成功地应用于工程技术领域,从而成为工程控制论的奠基者。50年代后期到60年代前期,在工程控制系统设计方面,发展了多变量控制理论、最优控制理论、自适应控制理论,研究了自学习、自组织系统。在工程控制技术方面,促进了电子计算机在国防及国民经济部门的广泛采用,促使生产过程自动化向多机、机组自动化以及综合自动化发展。
50年代末,60年代初,在大量工程实践基础上逐渐形成了第二代控制理论,或称现代控制理论。一般认为,它是由匈牙利出生的美国学者卡尔曼(R.E.Kalman,1930~)奠定的。他在控制论创始人维纳工作的基础上,引进了数字计算方法中的“校正”概念,吸取了50年代“最优化”的研究成果,于1960年国际自动控制联合会第一届大会上发表了《控制系统的一般理论》,以及相继发表的《线性估计和辨识问题的新结果》,对于控制系统的属性及其关联作用,提供了更深入的认识,奠定了现代控制理论的基础。
1960年前后,控制工作者发现传递函数法对于多变量系统往往只能反映系统的输入-输出之间的外部关系,而具有相同传递函数矩阵的若干系统可以有完全不同的内在结构。这就要求要有不同的设计原则,从而提出了“结构不确定原理”。卡尔曼等人在此基础上进行了更深入的研究并建立了“可控性”和“可观测性”的理论,这是我们对于控制系统认识深化的一个标志。如果某些系统的状态变量或其组合,在一定条件下可以受控制变量的影响,则称这类系统具有“可控性”,因而对该系统有可能实施最优控制。为此,知道该系统在什么条件下是可控的,是十分重要的。反之,如果系统的状态变量完全不受控制变量影响,也就谈不上什么最优控制了。同时,由于最优控制需取得状态的反馈信息,以便对系统状态进行最优控制,就必须能从观测值(一般指输出量)中获得关于系统状态的信息,即“可观测性”。否则,同样不能实施最优控制。
60年代中期,现代控制理论初步形成。之后的十几年,最优控制的问题受到很大重视。这主要是由于人们对高质量控制的需求和在控制系统中更有效地使用计算机所导致的必然结果。人们常用第二代控制理论的这些手段进行系统设计,大大改善了系统的精度及技术经济指标。除应用于航空、航天、航海等部门外,在冶金、石油、化工、交通运输等部门也得到广泛应用。
从生产过程自动化的角度来看,60年代中期已经从单参数自动调节(如温度、压力、流量等)或控制某一工艺参数的单机和局部自动化,发展到多参数最优控制,实现了多机和机组自动化,并开始向综合自动化过渡。
1975年底方始推出的分布式控制系统(DCS)或称集散控制系统,到80年代得到了迅猛发展,并成为90年代工业过程控制的主流和发展方向。其特点是“过程控制分散,信息管理集中”,表现了递阶控制的思想,整个系统由基本控制回路和上位控制管理计算机两级构成,并可向更上一级计算机通信。由于采用了分布式结构形式和冗余技术,提高了系统长期运行能力和可靠性。
90年代正在发展中的工业过程控制系统结构称之为网络控制,其特点是将最下位的现场传感器、调节器、执行器和可编程序控制器、过程控制站、管理操作站均纳入系统,且引入MAP(美国制造商自动化协议,国际通用的工厂自动化协议标准之一)协议标准和现场总线概念,形成一个全分布式的计算机控制系统,实现综合自动化。
现代化的大工业生产,系统庞大而复杂,单纯靠仪表、巡回检测和反馈控制等局部自动化已不能适应需要,也就逐渐创建了如图所示的由组织管理与过程控制相结合的多级计算机控制的大规模自动化系统,从而逐步走上了综合自动化的发展道路。1975年前后,已经研制出新型综合控制系统装置,这个装置将通用计算机、工业控制机、微处理机、通讯技术与常规仪表等综合成一套通用性大、操作集中,显示醒目和具有多种功能的最佳控制系统;以及采用包括快速数据通道、操作显示和过程控制等具有成套硬件和软件的组合式标准组件。根据冶金、电力、化工、轻工等部门的需要,可以组成从简到繁,可逐步扩充功能的计算机控制系统。
这个系统实际上是80年代得到迅速发展的计算机集成制造系统(CIMS)的一个雏形。CIMS是管理工程、控制工程、计算机工程、电子工程和机械工程等多学科的交叉、多种技术的集成和渗透形成的,是实现综合自动化的基本模式,也是21世纪的“未来产业基本模式”。CIMS在1991年世界范围内的销售额就已达700亿美元。CIMS从用户订货单开始,输入产品需要的有关信息,从产品初始构思、设计、制造、检验、管理、经营均有机联系的一个高技术综合生产控制系统。它将工厂控制系统与企业行政事务管理信息集成在一起,在企业内部完成自动化作业的全过程。它采用层次式的控制结构,将管理信息系统(MIS)、柔性制造系统(FMS)、计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助工程(CAE)等功能集于一身,采用MAP作为通讯网络并与远程网络相连。因此,CIMS的发展已使综合自动化成为现实。
图:计算机四级管理系统框图
遥测遥控系统是利用遥测技术实现远距离测量、控制和监视的系统,是自动化技术科学的一个重要分支,它是在自动控制、传感技术、微电子技术、计算机技术和现代通信技术的基础上不断完善和发展起来的。凡是距离遥远、对象分散或难以接近的系统,均可采用遥测遥控实现集中监控和管理,这已在无人驾驶飞机、人造卫星、导弹、空中交通管制、铁路调度、核工业、电力系统、地震预报台网、输油和输气管线等军事和国民经济部门得到广泛应用。
最早的遥测遥控系统只是测控距离较近的机械式或液压、气动式。19世纪出现使用电的有线遥测遥控系统,20世纪初出现无线遥测遥控系统。在20世纪20年代末,遥控飞行器的往返飞行距离已达1000公里。这项技术在第二次世界大战中得到迅速发展,40年代初先后研制成功飞机和火箭用的调频/调幅遥测系统,以及脉幅调制和脉宽调制等遥测系统。50年代又发展了脉码调制,标志着遥测遥控系统从模拟式发展到数字式。现今的遥测遥控系统的最大传输距离已达几亿公里,能传输兆比特级的数字图象信息,并出现了可编程序、自适应和分集式遥测遥控系统。航天遥控系统已发展成一个利用微波波段的载波作为遥控、遥测、测距和测速的共同载波,称为S波段统一载波测控系统,使系统设备大为简化。
此网站支持IE9及以上浏览器访问
地址:北京市海淀区中关村东路95号邮编:100190Email:casia@ia.ac.cn