通过理论分析和数据分析,研究者发现了神经动力学的短期变化和长期变化的随机性存在稳定的差异。神经动力学的短期变化的变化幅度较小,但动力学随机性较大;长期变化的变化幅度较大,但动力学随机性较小;
同时,研究者发现了混沌现象在神经群中空间分布的不均匀性。如果研究者不控制神经元活动强度的空间分布不均匀性,会发现神经元活动混沌程度随活动强度一样,从“浅层“向“深层“的神经元递减(此处,“层“仅是形象的说法,真实的微观尺度的神经群中不存在严格的分层结构,读者可以自行将“浅层“和“深层“替换为“上游“和“下游“进行理解)。当研究者对神经元活动强度进行标准化后(排除活动强度的空间分布不均对于混沌现象的影响),会发现相对“浅层“的神经元活动更具有规律性,而相对“深层“的神经元活动的混沌程度更高。
图5.KS熵及混沌现象在神经群中的空间分布
而后,研究者对动力学属性与信息编码和解码的关系进行了探索,得到了发现3和4。具体数据可见图6。
研究者发现特定的神经动力学可能导致信息编码和解码之间互相制约的关系。具体而言,当神经动力学的随机性(或混沌程度)较低时,信息编码和解码的效率以及质量会随着动力学随机性上升而上升。但是,当神经动力学的随机性超过特定阈值后,信息编码和解码的效率及质量就不再同向变化,前者依然随着动力学随机性上升而上升,后者则随动力学随机性的上升而下降。这意味着,对于动力学随机性相对大的神经元群,其编码和解码的性质之间存在权衡。研究者随后对这一现象给出了理论证明。
研究者还发现了神经动力学与神经元对外界刺激的表征(neuralrepresentation)之间的关系。具体而言,相对“浅层“的神经元具备更稳定的动力学特性,它们更多负责对刺激分布的局部信息进行特异化编码和表征,而相对“深层“的神经元的动力学随机性更大,它们更多负责对刺激分布的全局信息进行非特异化(non-specific)编码和表征。