两个预测模型比较,再教你一招IDI模型预测IDI

在上一期的内容中,我们介绍了如果想要比较两个疾病模型的预测能力,除了可以绘制两个模型的ROC曲线并计算曲线下面积(AUC)外,还可以用定量的指标来比较新、旧模型预测准确率的改善程度,即净重新分类改善指

在上一期的内容中,我们介绍了如果想要比较两个疾病模型的预测能力,除了可以绘制两个模型的ROC曲线并计算曲线下面积(AUC)外,还可以用定量的指标来比较新、旧模型预测准确率的改善程度,即净重新分类改善指数NRI。

NRI主要用于在设定好的切点水平下,例如某个指标的诊断界值,或高、中、低风险划分的界值等,来判断和比较新、旧模型的预测能力是否有所提高,在实际的临床应用中容易计算,也容易理解。

但是NRI的不足之处在于它只考虑了设定某个切点时的改善情况,不能考察模型的整体改善情况,此时我们就需要用到另一个指标,NRI的孪生兄弟--综合判别改善指数(IntegratedDiscriminationImprovement,IDI)。

综合判别改善指数IDI

IDI是由Pencina等人于2008年提出的,应该说算是一个非常新的判别指标了。由于它考虑了不同切点的情况,可以用来反映模型的整体改善状况,在一定程度上补齐了NRI的短板。同时,虽然AUC也考虑到了不同切点,但是AUC的改善情况在临床中不易解释,IDI也因此弥补了AUC的缺陷,可以形象地展示研究对象被准确重新判别的比例。

因此小咖也建议大家,在进行2个疾病模型比较,或者2个指标诊断效能比较时,除了传统的ROC曲线及其AUC,也可以同时给出NRI和IDI,更加全面多层次的展示模型的改善情况。

IDI计算方法

IDI的计算其实也比较简单,它反映的是两个模型预测概率差距上的变化,因此是基于疾病模型对每个个体的预测概率计算所得。它的计算方法为:

其中Pnew,events、Pold,events表示在患者组中,新模型和旧模型对于每个个体预测疾病发生概率的平均值,两者相减表示预测概率提高的变化量,对于患者来说,预测患病的概率越高,模型越准确,因此差值越大则提示新模型越好。

而Pnew,non-events、Pold,non-events表示在非患者组中,新模型和旧模型对于每个个体预测疾病发生概率的平均值,两者相减表示预测概率减少的量,对于非患者来说,预测患病的概率越低,模型越准确,因此差值越小则提示新模型越好。

最后,将两部分相减即可得到IDI,总体来说IDI越大,则提示新模型预测能力越好。与NRI类似,若IDI>0,则为正改善,说明新模型比旧模型的预测能力有所改善,若IDI<0,则为负改善,新模型预测能力下降,若IDI=0,则认为新模型没有改善。

我们可以通过计算Z统计量,来判断IDI与0相比是否具有统计学显著性,统计量Z近似服从正态分布,公式如下:

其中SEevents为Pnew,events-Pold,events的标准误,首先在患者组,计算新、旧模型对每个个体的预测概率,求得概率的差值,再计算差值的标准误即可。

同理,SEnon-events为Pnew,non-events-Pold,non-events的标准误,是在非患者组,计算新、旧模型对每个个体的预测概率,求得概率的差值,再计算差值的标准误即可。

研究实例

根据上面的公式,我们可以计算出IDI=(78.4%-69.5%)-(34.1%-46.4%)=21.2%(文献中给出对应的P=0.0005),具有统计学显著性,提示在加入了cfDNA后,新模型的整体预测能力有所改善,综合判别的能力提高了21.2%。

注意事项

通过两期的内容,我们介绍了AUC、NRI和IDI这3个指标在判断和比较两个疾病风险模型预测能力中的应用,三者相辅相成,各有不同,最后我们再来总结几点需要注意的地方:

3.如果目前还无法确定明确的划分切点,那么IDI和AUC可能是较好的选择,如果比较关心切点处的改善情况,那么NRI可能是较好的选择。如果结局指标不是二分类变量,而是多分类情况,例如高、中、低风险,那么NRI和IDI可能是更好的选择,AUC则显得较为复杂。

THE END
1.预测准确率怎么计算股票频道如何计算预测准确率 在财经领域,预测准确率是一个重要的参考指标,用于衡量分析师、机构或投资者在市场分析中的预测能力。本文将介绍如何计算预测准确率,以帮助您更好地了解这一指标。 预测准确率的计算方法 预测准确率的计算方法是通过以下几个步骤进行的: https://stock.hexun.com/2024-03-28/212350220.html
2.销售预测准确率的计算智造前沿月销售预测的准确率只要将每周的数量相加来计算。 二、销售预测准确率的意义 1. 通过跟踪和持续提高销售预测准确率,增强对需求的监控,从而减少对供应链带来剧烈波动,降低运营成本,提高供应的稳定性,提高客户满意度。 2. 作为设置安全库存的重要依据。 三、提高销售预测准确率的方法 https://www.wethinks.com/shows/26/315.html
3.预测准确率怎么计算理想股票技术论坛想了解如何计算预测准确率?本文介绍了预测准确率的计算方式,帮助你评估预测模型的准确性。了解预测准确率的计算方法,可以提高对股票市场的预测能力。 ,理想股票技术论坛https://www.55188.com/tag-07009520.html
4.一种煤层突出危险性区域预测临界值的确定方法及系统与流程目前,国内尚未形成一套系统的确定区域突出危险性预测临界值的方法和系统。根据相关经验,区域突出危险性预测临界值试验常通过煤巷掘进进行试验考察确定,但试验过程中采用顺层钻孔测定原始瓦斯压力,则存在封孔难度大、测试时间长、成本费用高、压力测定不准确等不利条件,因此在生产实际过程中常将瓦斯含量8m3/t(地质构造带http://mip.xjishu.com/zhuanli/47/202210741774.html
5.2024清宫表完整版分享,掌握计算方法准确率高达100%现如今,虽然重男轻女的观念基本上很少了,但依旧有很多宝妈在怀上后想知道胎儿的性别。最常见的就是用清宫表来预测生男生女,即根据虚岁,以及怀孕月份来推算怀的是男孩还是女孩。不过需要注意的是,这类方法往往准确率不高,在50%左右。建议最好通过医学手段检测,可信度更高。 https://www.shengbb.net/wenda/d68cb54b4b4d798f0b1e.html
6.模型测试集上准确率(ACC)精确率precision召回率recallAUC评估指标本文探讨了混淆矩阵的基本概念,包括TP、TN、FP和FN,以及准确率、精确率、召回率和F1分数的计算方法。重点介绍了AUC(ROC曲线下的面积)在评估模型性能中的作用,通过实例演示如何使用sklearn库进行准确率和AUC的计算。 摘要由CSDN通过智能技术生成 参考: https://zhuanlan.zhihu.com/p/530885866?utm_id=0 混淆矩阵https://blog.csdn.net/weixin_42357472/article/details/123889415
7.预测准确率计算公式实际上是这样的,预测准确率,一般来讲有两种算法,一种是21131-误差绝对值/预测,一种是1-误差绝对值https://iask.sina.com.cn/jxwd/6ctz0REKLl5.html?ivk_sa=1024320u
8.性能评价范文12篇(全文)(2) 试验结果计算包括主蒸汽流量计算、发电热耗率、汽耗率、汽水损失率等指标的计算。 (3) 试验结果修正 对于试验时汽机偏离设计运行条件的情况, 应对试验结果进行修正。按照ASME PTC6A-2000标准方法, 对试验热耗率进行热耗修正, 得到最终的热耗率。所有修正根据电厂业主、制造厂与试验单位协商确定的修正曲线或修https://www.99xueshu.com/w/ikeynsi4e0rm.html
9.生男生女计算公式预测男女准确率超高(快收藏)举例说明:女性怀孕农历月份为7月,女性虚岁年龄为25岁。根据以上生男生女公式计算为:49+7-25+19=50;结果为双数生女宝。 4、68+女性怀孕的农历月份-怀孕时女性的虚岁=结果;结果为单数生男宝,结果为双数生女宝。 举例说明:女性怀孕的农历月份9月,怀孕时女性的虚岁28岁。根据以上生男生女公式计算为:68+9-28=49;https://www.snsnb.com/zixun/60792-1.html
10.基于机器学习的足球比赛结果预测与方法研究.docx粗略的统计数据如进球、射门和助攻仍然是分析球员表现的最常用的方法;这样的预测方法所得到的结果准确性低于以机器学习方法为基础的分析预测准确率,机器学习预测模型在各个领域的应用充分的证明了这一点。事实证明,本文并非是单纯的在预测足球比赛,而是“事后诸葛亮”,通过对比赛各项数据统计与比赛结果进行分析,找出对https://max.book118.com/html/2022/0613/5122144000004242.shtm