图1支持MassiveMIMO的有源天线基站架构
3.MassiveMIMO测试技术3.1天线系统的演进对测试技术的挑战随着天线系统向现代化的发展,尤其是5G的演进,一体化的基站有源天线系统(AAS)形态逐渐成为主流,通道数越来越多,有源天线连接方式也会简化,RU和天线高度集成,射频指标不再局限于传统的RU传导测试,OTA测试将成为未来测试演进的方向,同时也将带来极大的测试挑战。表1天线系统的演进对测试技术的挑战
3.2测试信号调制化
图2测试信号调制
有源天线工作在各种业务载波状态下实现网络覆盖,为真实测试有源天线性能,测试系统需要具备以下测试能力:1、测试系统需求支持业务信号的幅度、相位测试。尤其是存在的大带宽信号测试;2、方向图测试信号模式需要讨论定义。3.3天线波束多样化
图3MassiveMIMO天线网络覆盖示意图
在天线波束辐射特性趋于复杂场景下:
1:如何准确评估天线业务波束指向准确性、副瓣、波瓣宽度等;2:如何选择多波束的测试场景;3:多波束天线的测试效率问题;4:对于多波束如何通过二维的辐射特性,评估覆盖性能。
测试建议:
1:需要评估在两个主面下,有源天线尤其是MassiveMIMO天线指标要求;需要研究定义3D辐射指标要求;2:在真实业务信号下评估多波束辐射性能,建立测试Case集。
3.4通信天线频段高频化高频(毫米波)覆盖一直属于业界难题,而MassiveMIMO能很好解决该问题。其作为5G的扩展频段,提供容量保障。在同等数量天线单元情况下,频率越高,覆盖距离越短。高频率的毫米波在覆盖上有着天然的劣势,然而,理论上这可以通过增加天线数量来补偿。随着频段的上升,要想达到相同的覆盖距离,就需要增加天线单元数量,这意味着天线成本的上升。所以,降低天线成本成又为5G多天线技术的关键问题之一。高频MassiveMIMO天线作为5G演进关键技术之一,几个关键特征:高频率、大带宽、超大规模阵列天线。这些关键特征对测试提出新的述求:
a)高频天线辐射指标重新分析定义;b)测试场地和仪器需支持大口径超高频天线的测试,尤其是OTA特性的测试;c)测试仪表需要支持超高频、超宽带信号的测试。
3.5射频指标测试空口化随着天线一体化发展,尤其是MassiveMIMO天线,RF传导射频指标带有辐射方向性,并且通道数量大。如何进行射频指标的测试是目前遇到的一个巨大挑战。目前均未清晰的技术途径,3GPP标准上也在技术研讨中。目前方向之一是进行空口测试,但如何对这些射频指标空口性能进行定义,如何进行测试均是目前业界的难题。目前射频指标空口测试,3gppR13标准明确定义EIRP和EIS,其他空口指标已经在最近的RAN计划的R14标准中立项分析。目前该部分内容目前非常复杂,各方都在研究当中,暂无明确结论如何对这些射频指标进行空口测试。目前主要分为两部分:
a)带内指标---目前来看,如果天线性能已知,可以通过OTA现有测试方案进行评估。b)带外指标---天线带外性能未知,且带外非常宽的频点对空口测试是一个巨大挑战!
3.63D波束赋形特性建立在精确信道估计的3D-beamforming,以传统的多个2D截面描述波束特性可能存在局限性。如下图所示,从传统E面和H面的切割并无法体现波束副瓣分布特性。而且MassiveMIMO天线的业务波束是随用户在变化,则遍历测试所有波束场景几乎不可能。实际测试建议选择典型业务场景进行测试。MassiveMIMO天线相对于传统天线覆盖,业务波束可能会更窄,其指向的准确性直接影响网络覆盖性能。因此其业务波束指向的准确性测试尤其重要。每一个天线阵列能分裂出几个波束也成为MassiveMIMO网络覆盖性能的重要指标,在这几个波束覆盖下的用户能实现的吞吐量如何也需要成为评估的一部分。
图4波束赋形特性
4.总结随着网络的持续演进,天线与射频模块将深度融合,MassiveMIMO有源天线将是未来天线的发展主流。一体化测试和空口测试可能成为未来测试的演进方向。相比于传统天线和射频测试方法,测试指标以及评价体系,测试原理和方法、测试平台等都遭遇重大挑战,这些可能是移动通信系统天馈网络前所未有的重大革新,亟待我们去探索。