“民以食为天”,人的一生都离不开“吃”,并且“病从口入”,饮食直接或间接影响着我们的健康。不健康的饮食不仅导致多种疾病发生,甚至还可能减少寿命!
2019年,著名医学期刊《柳叶刀》发表了一篇大规模研究,分析了195个国家和地区饮食结构造成的死亡率和疾病负担。研究发现不良饮食造成的死亡人数超过吸烟等任何其他风险,改善饮食习惯可以预防全球五分之一的死亡。
并且可能颠覆以往认知的是,我国因为饮食结构而导致的高死亡率和疾病发生率,最大“杀手”可能不是糖和脂肪,而是钠摄入量高,全谷物摄入量低,水果摄入量低。换句话可以理解为:我们吃的食物偏咸、全谷物类食物摄入不足、蔬菜水果摄入太少,甚至疾病风险比高糖高油饮食的欧美国家还要高出了许多。
终止高血压饮食(DASH饮食)和地中海饮食等健康饮食模式已被验证有益心血管健康,但考虑到西方饮食模式不易被中国人广泛接受,以及中国膳食文化、习惯的复杂性,今年,由北京大学临床研究所,复旦大学附属华东医院临床营养科、广东省食品营养与健康重点实验室、四川大学公共卫生学院营养系牵头共同发表在《美国临床营养杂志》,研究指出,中国心脏健康(CHH)饮食有效降低了血清总胆固醇(TC)和10年心血管疾病风险,并降低轻度高血压中国成年人的血糖水平。DASH饮食可将10年心血管疾病(CVD)风险降低10.3%。该研究中采用CHH饮食的影响更显著(降低27%)。
该研究的CHH饮食在开发阶段借鉴了健康膳食的主要食物特点,如低盐、富含蔬菜水果、增加全谷物和豆类等,以及主要营养素含量,包括脂肪、蛋白质、碳水化合物的比例、膳食纤维、钾、钙,并降低钠的摄入等。
CHH膳食方案经过严格的多中心随机对照试验证明了,只要食物搭配合理,符合中国人口味的健康中餐也能有效降低血压水平。
与此,同时《美国新闻与世界报道》今年发布了2024年度最佳饮食榜单。在这份最佳饮食排行榜中,“地中海饮食”仍牢牢稳居榜首,这也是该饮食模式7年蝉联榜首。“地中海饮食”确实在减重、减少“三高”、降低心血管疾病风险、防癌等方面有突出优势。
这些权威饮食研究表明只要将不健康的膳食转变为健康的膳食,就能够大幅度降低血压,并改善血脂和血糖,炎症且有望显著减少疾病事件。这一研究结果促使人们认识到通过健康膳食能够预防疾病、促进健康的巨大作用。
比起DASH饮食能够将10年内心血管疾病风险降低10.3%,中国心脏健康(CHH)饮食的效果更为显著,能降低27%,造成这一差异的可能原因是什么?
“一方水土养育一方菌”。
众多研究证明,饮食是塑造肠道微生物群的主要和关键因素。例如:
◆精制谷物、乳制品和茶或咖啡的摄入与颤螺菌目(Oscillospirales)相对丰度增加有关;
◆甜饮料和甜点、动物脂肪和土豆与未分类的普雷沃氏菌种的相对丰度增加有关;
因此,肠道微生物组的独特性可能是CHH饮食显著降低心血管风险的重要原因。
不同人群可能需要符合自身需求的饮食模式。以下总结了一些主流饮食模式,帮助您了解其特点、益处和潜在不足,以便选择更适合自己的健康饮食。
首先要介绍一种典型的不健康饮食模式,也是现在很多年轻人都喜爱的西方饮食模式。
西方饮食是一种现代饮食模式,在西方社会中普遍存在。近年来,随着生活节奏加快,这种饮食在我国也越来越受欢迎。
“
西方饮食有什么特点?
高糖和高碳水化合物:西式饮食中的高糖和高碳水化合物主要来自于精制食品,如白面包、糕点、甜点和含糖饮料。
高动物蛋白:西式饮食中动物蛋白的摄入量较高,主要来自于牛肉、猪肉、鸡肉和奶制品。
低膳食纤维:膳食纤维摄入量低,因为这类饮食中新鲜水果和蔬菜的比例较低。
为什么这么多人选择西方饮食?
口感和风味诱人:西式饮食的多样化和丰富的口味可以给人们带来饮食上的享受。
方便快捷:许多西式食品,如快餐和即食食品,准备起来非常方便和快速,适合忙碌的现代生活节奏。
西方饮食对健康有哪些危害?
西方饮食在带来味觉上享受的同时,也伴随着许多健康隐患。
易导致炎症:西方饮食与全身性慢性炎症和脂多糖易位有关,高脂饮食的摄入增加了促炎细胞因子的产生,导致全身性慢性炎症和脂多糖易位。这可能增加患心血管疾病、糖尿病和其他炎症性疾病的风险。
增加慢性病风险:长期摄入西方饮食与多种慢性疾病的风险增加有关,包括心血管疾病、某些类型的癌症、代谢综合征和认知能力下降。
影响免疫系统:西方饮食可能会影响免疫系统的功能,增加自身免疫性疾病和感染性疾病的风险。
对肠道微生物群有什么影响?
西方饮食中易于消化的非细胞营养素增加,可能会改变肠道pH值、微生物群组成和新陈代谢,影响肠道微生物群稳态的调节和维持。
与其他饮食相比,西方饮食与肠道微生物组多样性的显著降低有关,其肠道特征转向以拟杆菌属为主的肠道特征。其他丰富的物种属于Ruminococcus、Faecalibacterium、双歧杆菌属、Alistipes、Blautia、Bilophila。
小结
综上所述,西方饮食虽然在某些方面为人们提供了便利,但其对健康的负面影响不容忽视。
为了改善健康状况,建议采取更加均衡和多样化的饮食模式,如地中海饮食,同时限制加工食品和高糖食品的摄入。
地中海饮食已经七年位于饮食榜单总体排名第一。
什么是地中海饮食?
地中海饮食是一种以蔬菜水果、鱼类、五谷杂粮、豆类和橄榄油为主的饮食风格,源自希腊、西班牙、法国和意大利南部等地中海沿岸的南欧国家。
这种饮食风格强调食物的天然、简单和清淡,富含营养,有助于减少患心脏病的风险,保护大脑免受血管损伤,降低中风和记忆力减退的风险。
地中海饮食有什么特点?
植物性食物的丰富性:地中海饮食模式强调大量摄入水果、蔬菜、豆类、全谷物、坚果和种子。
适量的动物蛋白:适量摄入鱼类、海鲜、鸡蛋、家禽和低脂或脱脂乳制品。
限制红肉和加工肉类:减少红肉和加工肉类的摄入,这些食品通常含有较多的饱和脂肪。
适度饮酒:适量饮用红酒,尤其是晚餐时。
香料的使用:使用香料和草药代替盐来增加食物的风味。
高膳食纤维:通过食用全谷物、豆类和蔬菜来增加膳食纤维的摄入。
地中海饮食推荐的食物
特级初榨橄榄油;
新鲜水果,如蓝莓、草莓、无花果、桃子、芒果、梨和苹果;
新鲜蔬菜,如菠菜、羽衣甘蓝、芝麻菜、洋蓟、茄子、西葫芦、红薯、球芽甘蓝、芹菜、洋葱和胡萝卜;
藜麦、燕麦、鹰嘴豆、扁豆、杏仁、核桃、亚麻籽、奇亚籽;
植物奶,如杏仁奶或燕麦奶、希腊酸奶;
肉类如鸡胸肉、火鸡肉末、三文鱼、金枪鱼;
鸡蛋;
香草(新鲜或干燥)和香料,包括罗勒、牛至、迷迭香、百里香和大蒜
地中海饮食应该避免吃哪些食物?
地中海饮食的优点之一是限制性不强。这种饮食方法不禁止食用任何食物或食物种类,但会鼓励您限制食用某些食物的量。
红肉:可以将红肉作为配菜。
甜食:将甜食视为偶尔的庆祝食物,而不是日常的放纵。
酒精:虽然适量饮用红酒是可以的,但过量饮酒可能会损害健康。不建议目前不喝酒的人饮酒。
黄油:用更健康的替代品来代替黄油,比如橄榄油。
全脂乳制品:减少食用冰淇淋和其他全脂乳制品。
含糖饮料:不建议饮用含糖饮料,包括果汁。
地中海饮食的健康益处有哪些?
大量研究发现,地中海饮食存在以下的健康益处:
降低患心脏病和中风的风险;
预防认知能力下降和痴呆症;
可能预防2型糖尿病;
可能减轻炎症和自身免疫性疾病(如类风湿性关节炎)的症状和进展;
可能有助于缓解抑郁症
改善心血管健康
地中海饮食已得到广泛研究,并一直被证明对心脏健康有益。在希腊、意大利和日本等七个国家的一项大规模研究调查了13000名男性的饮食与心脏病之间的关系。研究表明,摄入的膳食脂肪类型(特别是不饱和脂肪)比脂肪总量更有益于心脏健康。此后,包括2019年的PREDIMED研究和2022年的随机临床试验在内的众多研究发现,坚持地中海饮食与降低血压、胆固醇和体重有关,从而降低心血管疾病、死亡率、冠心病和中风的发病率。
降低癌症死亡率及糖尿病风险
一项对美国25,315名女性的前瞻性研究显示,那些坚持地中海饮食模式的人在25年的随访期间全因死亡率降低了23%。
改善大脑健康
地中海饮食以海鲜、坚果、种子、特级初榨橄榄油、豆类、绿叶蔬菜和全谷物为主,对大脑健康有诸多益处。
多项研究表明,地中海饮食可以减缓人们大脑的衰老迹象。此外,越来越多的研究表明,这种均衡的饮食可以降低患痴呆症和阿尔茨海默病的风险。
事实上,一项2023年的研究和2018年的研究表明,坚持地中海饮食的人患痴呆症的风险降低了23%,并且对阿尔茨海默病进展的保护期为1.5至3.5年。地中海饮食不仅可以改善认知功能和预防神经退行性疾病,还可以改善心理健康。
一项2019年的研究显示,补充了鱼油的地中海式饮食改善了抑郁症患者的心理健康。多吃蔬菜、水果、全谷物、坚果和豆类,同时限制不健康食品,可以显著改善包括抑郁症在内的心理健康状况。
地中海饮食可以帮助减肥吗?
地中海饮食已被证明可以促进长期减肥多项研究表明,地中海饮食以植物为主的全食健康饮食方式对想要减肥的人有益。例如,2015年的一项研究发现,与低脂饮食的人相比,遵循地中海饮食一年多的人减掉的体重更多。
利于体重维持和管理
2018年的一项大型纵向研究对32000多名参与者进行了评估,结果发现,对于基线体重正常的参与者而言,遵循地中海饮食可降低6至20年后体重增加和肥胖的风险,并降低腹部脂肪的风险。
这些因饮食而导致的微生物组变化与短链脂肪酸产量的增加和代谢副产物(如乙醇、对甲酚和二氧化碳)产量的减少有关。
地中海饮食中富含的膳食纤维能够促进有益细菌的生长,如双歧杆菌、粪杆菌、Tenericutes、Dorea等。
膳食纤维还能增加产丁酸菌的丰度,如Roseburiahominis、Agathobaculumbutyriciproducens、Faecalibacteriumprausnitzii和厌氧菌Anaerostipeshadrus,这些细菌能够产生短链脂肪酸,对维持肠道屏障功能和抗炎作用至关重要。
两项干预研究将地中海饮食与特定分类特征联系起来,增加Faecalibacteriumprausnitzii、Roseburia丰度,减少Ruminococcusgnavus、Collinsellaaerofaciens、Ruminococcustorques丰度。
此外,地中海饮食中的植物化学物质,包括多酚、硫代葡萄糖苷、萜类等,也是肠道微生物群的重要底物,可以促进有益菌的生长,并通过微生物群依赖的生理效应,如短链脂肪酸介导的胰岛素抵抗衰减,对宿主健康产生积极影响。
地中海饮食是否存在不足?
文化和可获得性:地中海饮食可能不适合所有人或每种文化,且某些地区可能难以获得地中海饮食中推荐的食物。
成本:一些地中海饮食推荐的食物,如特级初榨橄榄油、新鲜海鲜和坚果,可能成本较高。
个体差异:每个人的营养需求和健康状况都不同,地中海饮食可能需要根据个人情况进行调整。
饮酒问题:虽然适量饮酒是地中海饮食的一部分,但并不适合所有人,特别是那些有酒精依赖或其他健康问题的人。
哪些人不适合地中海饮食?
地中海饮食通常对所有人都是安全的,包括老年人、儿童和孕妇。
但也存在一些局限性和不足,在采纳这种饮食模式时,应考虑个人的健康状况、文化背景和经济能力。
被评为最佳快速减肥饮食第一名的是生酮饮食。
什么是生酮饮食?
生酮饮食(keto)是一种高脂肪、低碳水化合物的饮食,旨在让你的身体进入酮症状态,燃烧脂肪以帮助人们减肥。这种饮食的目的是快速减肥,而不会感到饥饿或渴望。
生酮饮食为什么有助于快速减肥?
当你剥夺身体的碳水化合物,就会欺骗它,让它相信自己正在挨饿,迫使它几乎完全依赖脂肪,你的身体就会开始分解储存的脂肪来获取能量,这会导致你减肥。
研究表明,生酮饮食在短期内可以有效减肥,但从长远来看,它可能并不一定比摄入更多碳水化合物的低脂饮食更好。
生酮饮食有什么特点?
高脂肪:生酮饮食中,脂肪通常占总热量摄入的70%至80%,这包括了饱和脂肪、单不饱和脂肪和多不饱和脂肪。
适量蛋白质:蛋白质的摄入量需要控制,以避免身体将过多的蛋白质转化为葡萄糖,从而影响生酮状态。
极低碳水化合物:碳水化合物的摄入量通常限制在每天20至50克,远低于一般饮食的摄入量。
生酮比例:生酮饮食的生酮能力定义为脂肪克数与碳水化合物和蛋白质克数之和的比值,常见的生酮比为4:1或3:1。
包括特定食物:饮食中鼓励摄入的食物包括肉类、鱼类、蛋类、健康脂肪(如橄榄油、椰子油)、非淀粉性蔬菜等。
生酮饮食有哪些健康益处?
生酮饮食对一些人的健康有益,包括:
短期内减轻体重:生酮饮食通过限制碳水化合物的摄入,迫使身体燃烧脂肪来获取能量,有助于体重减轻。
减少糖尿病患者对胰岛素的需求:生酮饮食有助于降低血糖水平,对糖尿病患者可能有积极影响。
改善认知功能:一些研究表明,生酮饮食可能有助于提高认知功能和记忆力。
减少炎症:生酮饮食中富含的抗炎食物,如浆果等,有助于减少身体的炎症反应。
可能的神经保护作用:生酮饮食可能有助于改善线粒体功能,对某些神经退行性疾病有潜在的保护作用,并被发现可以减少癫痫患者的发作。
癌症治疗的潜在辅助:一些研究表明,生酮饮食可能有助于减少某些癌症治疗的副作用,并可能对癌细胞的生长有一定的抑制作用。
生酮饮食已被证明可以帮助糖尿病患者降低糖化血红蛋白水平并减少胰岛素剂量。在一项临床试验中,采用极低碳水化合物生酮饮食的参与者将胰岛素剂量减少了一半,并在24周内达到正常血糖水平,比采用低热量饮食的另一组更快。研究表明,生酮饮食可能对患有某些神经系统疾病的成年人有治疗作用,包括癫痫、阿尔茨海默病、偏头痛和神经胶质瘤,这些疾病是由人体代谢营养物质的方式发生紊乱引起的。
生酮饮食可能存在的健康风险?
虽然生酮饮食可以在短期内快速减轻体重,但同时也存在一些健康风险。包括以下几点:
生酮饮食可能增加心血管疾病风险,如增加低密度脂蛋白(“坏”胆固醇)水平较高。
水果和蔬菜摄入量减少可能导致营养缺乏,如维生素和矿物质摄入不足。
可能影响肌肉消耗和运动表现。
高蛋白质摄入可能增加代谢疾病的风险。
肉类和乳制品的增加可能促进某些有害肠道细菌代谢产物产生,如氧化三甲胺和硫化氢。
此外生酮饮食还可能导致肾结石和其他肾脏问题,脂肪肝和其他肝脏问题或是心脏病。
临床前研究也表明,肠道微生物组的组成在响应生酮饮食时发生了显著变化,最明显的是:
Akkermansia,乳杆菌属、Roseburia、副拟杆菌属(Parabacteroides)增加
Turicibacter、Desulfovibrio、大肠杆菌和志贺菌属物种大幅减少。
——超重成年人
在涉及17名超重成年人的研究中,为期4周的生酮饮食显示在人肠道中放线菌门(Actinobacteria)和厚壁菌门的大量减少。具体来说,有益的双歧杆菌的19种物种减少了,而拟杆菌门丰度增加。这些变化部分是通过宿主产生酮体诱导的。
——癫痫儿童
在涉及12名严重癫痫儿童的为期3个月的研究中,遵循生酮饮食的儿童显示健康促进和消耗纤维的双歧杆菌属、直肠真杆菌(E.rectale)和Dialister属的丰度大幅减少。相反,儿童显示拟杆菌属和大肠杆菌属的丰度增加,后者部分归因于大肠杆菌(Escherichiacoli)的增加。
哪些人不适合遵循生酮饮食?
不建议以下人群食用生酮饮食:
患有胰腺疾病的人;
患有肝脏疾病的人;
甲状腺有问题;
脂肪代谢紊乱;
饮食失调或有饮食失调史;
胆囊疾病或已切除胆囊的人
此外,孕妇、未接受过减肥医学建议的儿童、患有某些类型癌症的人、患有心脏病的人和高水平运动员都不应尝试这种饮食。这种饮食还会对胰岛素和生殖激素产生巨大影响。糖尿病患者采用生酮饮食是有争议的,尤其是接受胰岛素治疗的人,至少需要仔细的医疗监测。
总的来说,生酮饮食是一种特殊的饮食模式,它最大的优势在于能够快速减肥,并可能具有一定的神经保护作用,减轻炎症、改善认知功能,但同时也存在潜在的风险和挑战。
在开始生酮饮食之前,建议咨询医生或营养专家,以确保这种饮食模式适合个人的健康状况和生活方式。并且由于生酮饮食具有严格的限制性,不建议长期使用。
DASH饮食是一种预防及控制高血压的饮食模式,也是除地中海饮食外,最利于心脏健康的饮食模式。
什么是DASH饮食?
DASH饮食是推荐给想要预防或控制高血压的人的饮食计划。它通过增加纤维、水果、低脂(或脱脂)奶,和有益心脏健康的矿物质(包括钙、钾和镁)的摄入量,同时减少钠和不健康脂肪的摄入量来实现这一目标。
特点
多不饱和脂肪:DASH饮食强调摄入多不饱和脂肪,如橄榄油、亚麻籽油、山茶油等,这些脂肪有助于改善心血管健康。
全谷物:饮食中包括丰富的全谷物,如糙米、全麦面包和全麦意大利面,它们提供膳食纤维和必要的维生素和矿物质。
蔬菜和水果:鼓励大量摄入各种蔬菜和水果,以提供抗氧化剂、维生素和矿物质。
限制饱和脂肪和胆固醇:减少黄油、起酥油、人造黄油、奶酪和熏肉等饱和脂肪和胆固醇含量高的食物的摄入。
减少钠的摄入:DASH饮食建议减少钠的摄入,将钠的每日摄入量限制在2300毫克,以帮助降低血压。
如何开始DASH饮食?
您无需对饮食做出重大改变,只需从饮食习惯的小变化开始DASH饮食即可。例如:
每餐添加一份蔬菜或水果;
每周吃两顿或两顿以上的无肉餐;
使用香草和香料可以使食物更美味,而无需加盐;
吃杏仁、山核桃或其他坚果代替薯片;
尽可能将白面粉换成全麦面粉;
午餐或晚餐后(或两者皆有)散步15分钟;
DASH饮食有哪些健康益处?
降低血压:DASH饮食能够有效降低高血压,减少心血管疾病的风险。
改善心脏健康:通过减少饱和脂肪和胆固醇的摄入,以及增加多不饱和脂肪和膳食纤维的摄入,有助于改善心脏健康。
促进消化系统健康:富含膳食纤维的食物有助于维持肠道健康,预防便秘。
控制体重:DASH饮食由于其高纤维和低脂肪的特点,有助于控制体重。
预防糖尿病:研究表明,DASH饮食有助于预防2型糖尿病。
抗炎作用:由于富含抗氧化剂和抗炎成分,DASH饮食可能有助于减少慢性炎症。
DASH饮食与地中海饮食有许多相似之处,包括对全谷物、蔬菜、水果和低脂乳制品的摄入。因此,我们可以合理推测,DASH饮食也可能对肠道微生群产生积极影响,包括:
改善肠道环境:DASH饮食可能通过增加肠道中的短链脂肪酸(SCFA)产生,改善肠道环境。SCFA有助于维持肠道屏障的完整性,调节免疫反应,并提供能量。
减少炎症:DASH饮食中较低的饱和脂肪和反式脂肪含量可能有助于减少肠道炎症,改善肠道健康。
促进肠道蠕动:DASH饮食中丰富的纤维摄入有助于促进肠道蠕动,预防便秘,并为肠道微生物提供营养。
可以通过DASH饮食减肥吗?
可以通过DASH饮食安全且可持续地减肥。但是,诀窍是留意份量并考虑您选择食物的卡路里含量。通常,当人们从正常的饮食模式过渡到DASH饮食方式时,他们可能会自动减少卡路里,因为他们在饮食中添加了更多的蔬菜和均衡的膳食。
短期减肥
虽然DASH饮食并不是专门为减肥而设计的,但它可以帮助人们减肥。临床试验的荟萃分析表明,与采用对照饮食方案的患者相比,DASH饮食方案的患者在8至24周内额外减轻了3.1磅体重,在24周内腰围减少了1.05厘米。
在另一项随机临床试验中,与对照饮食相比,DASH饮食八周后体重和BMI显著下降。
长期减肥
如果您像DASH饮食一样从饮食中去除加工、含糖、含盐和高脂肪的食物,并定期锻炼,您很可能会继续减肥。
体重维持和管理
一旦达到目标体重,就应该能够通过DASH饮食来维持体重。纤维和蛋白质会让人有饱腹感,而卡路里含量足以让人精力充沛。
DASH饮食有什么优缺点?
优点
营养丰富;
不用计算碳水化合物或卡路里;
能够带来饱腹感——富含高纤维食物;
一份包含食谱的明确计划;
多样的食物和口味;
具有已证实的健康益处。
缺点
成本:DASH饮食中推荐的食物,如新鲜水果、蔬菜和全谷物,可能比加工食品和快餐更昂贵;
便利性:在外就餐时,遵循DASH饮食可能较为困难,因为餐馆的食物往往含有较多的钠和不健康脂肪。
食物选择限制:需要避免或减少某些食物的摄入,如高饱和脂肪和高胆固醇的食物,这可能限制了食物的选择。
哪些人不适合尝试DASH饮食?
DASH饮食对大多数成年人来说都是健康的选择,除非医生建议限制某种营养素。例如,患有肾病的人可能需要低钾饮食。
总的来说,DASH饮食是一种对大多数人来说健康且有益的饮食模式,特别是对于那些需要控制血压的人。
然而,DASH饮食可能不适合所有人。例如,严格素食者可能会发现在不摄入动物产品的情况下很难遵循DASH饮食的建议,因为它包括了低脂奶制品。
此外,对某些食物成分有过敏或不耐受的人,如乳糖不耐受者,可能需要调整DASH饮食以适应他们的特定需求。肾脏疾病患者也可能需要在遵循DASH饮食时调整蛋白质的摄入量。
亚洲饮食,通常指的是东亚、东南亚和南亚等地区的食物习惯,如中餐、日本料理和韩国料理,具有其独特的特点和对肠道微生物群及整体健康的影响。
亚洲饮食强调整体健康和平衡,注重天然食材的使用,富含蔬菜、水果、全谷物、豆类、鱼类和适量的肉类。以下是亚洲饮食的主要特点以及它们对肠道微生物群和健康的潜在影响。
亚洲饮食的特点
全谷物:亚洲饮食中的主食经常是全谷物,如糙米、燕麦和小米,富含B族维生素和矿物质。
适量的肉类:与西方饮食相比,亚洲饮食中的肉类摄入量通常较少,更倾向于使用瘦猪肉、鸡肉和偶尔的红肉。
传统发酵食品:亚洲饮食中常见的发酵食品,如泡菜、味噌、纳豆和酸奶,含有益生菌,有助于肠道健康。
亚洲饮食对健康有什么影响?
改善消化健康:亚洲饮食中的高纤维和发酵食品有助于改善消化健康,减少便秘和肠易激综合征的症状。
抗炎抗氧化:亚洲饮食中的茶、香料和某些蔬菜(如姜、大蒜)富含多酚和抗氧化剂,这些成分具有抗炎和抗氧化作用,能够减少氧化应激和炎症反应。
促进体重管理:亚洲饮食中的食物通常热量较低,有助于控制体重和减少肥胖的风险。
增强免疫力:亚洲饮食中的抗氧化剂和免疫调节成分有助于增强免疫力,减少感染的风险。
改善认知功能:一些研究表明,亚洲饮食中的成分,如omega-3脂肪酸和多酚,可能有助于改善认知功能和预防神经退行性疾病。
亚洲饮食存在哪些不足?
营养不均衡:在某些亚洲饮食中,可能缺乏足够的蛋白质和某些维生素(如维生素D和B12),特别是在素食主义者中。
高盐摄入:一些亚洲饮食,特别是中国和韩国的饮食,可能含有较高的盐分,这与高血压和心血管疾病的风险增加有关。
饮酒文化:在某些亚洲文化中,饮酒被视为社交活动的一部分,过量饮酒可能导致肝脏疾病和其他健康问题。
加工食品的增加:随着全球化的影响,亚洲饮食中加工食品和快餐的摄入量有所增加,这可能导致不健康脂肪和糖分的摄入增加。
传统烹饪方法:某些传统的烹饪方法,如油炸和烧烤,可能增加不健康脂肪的摄入。
食物过敏和不耐受风险:亚洲饮食中可能含有一些常见的过敏原,如花生、海鲜等,可能会引起一些人的食物过敏或不耐受,影响其健康。
亚洲饮食的健康益处主要体现在其丰富的植物性食物、低饱和脂肪和高纤维摄入。然而,高盐、高糖和加工食品的摄入也是亚洲饮食中需要注意的潜在健康隐患。
为了最大化亚洲饮食的健康益处并减少潜在风险,建议采取均衡的饮食方式,减少加工食品和高盐、高糖食品的摄入,同时增加蔬菜、全谷物和健康蛋白质的摄入。
素食饮食包括纯素饮食(VeganDiet)和现在新出现的一种弹性素食。
纯素饮食是指一种不包含任何动物产品的饮食方式,包括肉类、鱼类、奶制品、鸡蛋、蜂蜜等。纯素饮食者通常会食用植物性食品,如蔬菜、水果、全谷物、豆类、坚果和种子等。
而弹性素食饮食又称为半素食饮食,不像传统素食饮食那样严格,而是多吃植物性食物少吃肉。不用完全遵循无肉生活方式又可获得素食主义带来的健康益处。可以大多数时候选择无肉餐,但在特殊场合仍可享用汉堡或牛排等肉类。
素食饮食的特点
植物性食品的高摄入量:纯素饮食强调食用大量的植物性食品,包括全谷物、豆类、坚果、种子和蔬菜。
更高的纤维摄入:由于植物性食品通常富含纤维,纯素饮食者可能会摄入更多的纤维。
低饱和脂肪:由于不食用动物产品,纯素饮食通常含有较低的饱和脂肪。
可能的高抗氧化剂和植物化学物质摄入:植物性食品富含抗氧化剂和植物化学物质,这些对健康有多种益处。
素食饮食对健康有什么影响?
降低心脏病风险:由于纯素饮食中饱和脂肪和胆固醇的含量较低,可以降低心脏病的风险。
改善血糖控制:纯素饮食有助于改善血糖控制,对于预防和控制2型糖尿病有益。
促进健康的体重:由于富含纤维和低热量密度,纯素饮食有助于维持健康的体重。
可能降低某些癌症的风险:一些研究表明,植物性食品中的抗氧化剂和其他植物化学物质可能有助于降低某些类型癌症的风险。
改善肠道健康:高纤维饮食有助于维持肠道健康,促进良好的肠道菌群平衡。
首先,素食饮食通常富含碳水化合物和纤维,增加了肠道微生物的多样性和丰富性。这种饮食模式特征是拟杆菌门、普雷沃氏菌属的数量增加,而厚壁菌门与拟杆菌门的比例降低。
另一方面,纯素饮食中也包含多种植物化学物质,如多酚、类胡萝卜素、植物甾醇、木脂素和生物碱,这些物质已被证明对肠道微生物群具有调节作用。例如类胡萝卜素,有助于维持肠道免疫稳态,可能通过诱导IgA产生来提高抗肿瘤效率。
同时,纯素饮食中可能包含的益生元,如低聚半乳糖,对肠道微生物群也有积极影响。纯素饮食中的益生元成分可能有助于改善肠道微生物群的组成,促进有益菌的生长。
素食饮食存在哪些潜在不足?
营养缺乏的风险:纯素饮食者可能面临某些营养素缺乏的风险,特别是维生素B12、铁、钙、锌和ω-3脂肪酸。
社会和文化挑战:在某些文化和社会环境中,纯素饮食可能会遇到社会接受度和可获得性方面的挑战。
需要更多的计划和教育:为了确保营养均衡,纯素饮食者需要更多的计划和教育,以确保他们能够从植物性食品中获得所有必需的营养素。
纯素饮食可以是一种健康的饮食方式,特别是当它被精心规划以确保足够的营养摄入时。然而,它也需要对食物选择和营养需求有更深入的了解,以避免潜在的营养不足。
对于那些选择纯素饮食的人,定期咨询营养专家或评估营养状况并提供个性化建议是非常重要的。
热量限制饮食的健康益处
最严格的CR随机试验来自国家老龄化研究所资助的CALERIE(减少能量摄入长期效应综合评估)联盟。CALERIE研究的发现显示,短期和长期CR都可以减少体重、皮下脂肪、内脏脂肪和肝内脂肪含量。
改善了代谢灵活性,降低了血压、低密度脂蛋白胆固醇和甘油三酯水平,并提高了高密度脂蛋白胆固醇水平。
心血管疾病的10年风险降低了29%,这归因于氧化应激和炎症的减少,以及CR过程中维持的内皮一氧化氮功能的保护。
热量限制饮食减少了微生物表达的酶
这些酶能够使脂多糖A生物合成,从而限制了脂多糖(LPS)的产生,并以药理学上已知能刺激脂肪细胞褐化和减少内脏脂肪的方式抑制了LPS-TLR4途径。
热量限制饮食可能存在的不足?
营养不足:如果热量限制不当,可能会导致某些营养素的摄入不足,影响身体健康。
难以持续:长期的热量限制可能会导致饥饿感和食欲增加,使得饮食计划难以持续。
可能的肌肉损失:如果热量限制过于严格,可能会导致肌肉质量的损失,影响身体的代谢率和整体健康。
社会和心理压力:严格的饮食限制可能会影响社交活动和心理健康,造成压力和焦虑。
综上所述,热量限制饮食在实施时需要综合考虑个人的营养需求、生活方式和健康状况,以确保既能达到减肥目标,又能维持健康。
思考
传统饮食与新兴饮食个性化饮食的兴起
地中海饮食长期以来一直被广泛认为是一种有效且均衡的减肥方法,可改善肥胖、2型糖尿病和非酒精性脂肪肝等代谢疾病患者的代谢状况。
个性化饮食结合各种因素和不同人群,提高预测准确性
最近的研究表明,地中海饮食在人际间存在差异,即使个体食用同质饮食,依赖微生物组的代谢物的变异系数也不会显著下降。因此,营养学领域——与医学的许多其他领域一样——正朝着采用“个性化方法”的方向发展,以满足不同患者群体的特殊需求。因此,在100名糖尿病前期患者中,将地中海饮食的有效性与机器学习系统开发的个性化餐后目标饮食(PPT)进行了比较。
PPT饮食基于一种人工智能算法,该算法整合了临床和微生物组特征来预测个人餐后血糖反应。
PPT饮食的饮食建议以菜单的形式提供,餐点从研究生成的餐食库中选择。菜单设计有各种食物和餐食选项,以实现多样性,确保均衡饮食,并满足参与者的个人口味和喜好。
PPT饮食平均总能量摄入量为1881.0kcal/天,碳水化合物、蛋白质和脂肪平均摄入量分别为182.7、85.9和84.9克/天。
这些研究结果表明,虽然像地中海饮食这样的传统饮食评分依赖于将微量营养素、食物和慢性病风险联系起来的研究,在预测一般人群的结果方面相当有效。但较新的评分系统正在出现,它们考虑到各种因素和不同人群的独特特征,从而提高预测准确性。
其他的例子如:
黑色素瘤患者研究
以瘤胃球菌科为主的微生物群患者相比拟杆菌科为主的患者反应更佳。纤维和omega-3脂肪酸减少摄入可能导致免疫疗法反应不佳。
溃疡性结肠炎管理
一项研究将标准治疗与从多名农村捐赠者获得的新鲜粪便微生物群移植(FMT)以及抗炎饮食相结合,发现这种组合能显著提高轻度至中度溃疡性结肠炎患者的临床反应和缓解率。
这些发现强调了个性化方法在增强肠道微生物的多样性和变化组成方面的潜在益处,这反过来可以在影响心血管健康标志物、癌症治疗反应和炎症性肠病缓解方面发挥关键作用。
个性化饮食离不开好的营养筛查工具
20多年来,营养风险筛查一直被认为是营养护理过程中的关键步骤。在临床营养领域,营养风险筛查被定义为“一种快速识别营养风险个体并分类进行营养干预的过程”。
在过去的几十年里,全球范围内为将营养风险筛查纳入议程付出了巨大的努力。这些努力取得了显著成效,最终促使许多国家的医院将营养风险筛查作为常规实践。然而,国际指南对于如何选择筛查工具缺乏明确规定。目前,不同人群和医疗保健环境中使用了多种筛查工具。
人工智能与机器学习在临床营养决策中的应用前景
近年来,医学领域见证了人工智能和机器学习的兴起。机器学习是人工智能的一个分支,涉及计算机(“机器”)从数据中学习的方式。这些技术不依赖于预先编程的规则,而是通过接触实例进行学习和改进,旨在帮助临床决策并提高护理质量和效率。随着患者病情和医疗技术的日益复杂,机器学习在医学中的重要性日益凸显。
机器学习可以通过广泛筛查、促进诊断、个性化治疗、预测临床结果、提供早期预警和评估患者对治疗的反应性等多种方式改善临床决策。
谷禾健康多年来一直在积累和构建不同人群样本数据库,利用机器学习技术,结合大量的肠道菌群数据和粪便代谢组学数据,以及人体测量、生化和临床数据和饮食习惯,获得了数十万独特的数据特征。这些数据被用来创建机器学习模型,实现预测不同的营养需求。根据肠道菌群和代谢数据,使用机器学习算法可以给出个性化的饮食建议,干预后的临床结果表现出了显著的改善。
通过对训练队列进行子采样,发现随着队列规模的增加,预测准确性也随之提高。模型方法旨在对出现特定可诊断症状之前检测出整体健康的潜在不利变化。这种检测可以指导饮食或生活方式的改变,以防止轻微问题升级为严重的健康问题,或促使进一步的诊断测试。
与现有的疾病特定指数不同,我们的指数涵盖多种疾病和多种营养,强调了泛疾病(或者说,一般健康)肠道微生物组特征。这种广泛的适用性在临床场景中可能特别有用,例如在选择粪菌移植(FMT)捐赠者时,肠道健康可以作为整体健康状况的反映。
主要参考文献
BestDiabetesDiets2024,U.S.NEWsWorldReport
GBD2017DietCollaborators.Healtheffectsofdietaryrisksin195countries,1990-2017:asystematicanalysisfortheGlobalBurdenofDiseaseStudy2017.Lancet.2019May11;393(10184):1958-1972.
WillettWC,StampferMJ.Currentevidenceonhealthyeating.AnnuRevPublicHealth.2013;34:77–95.
WorldCancerResearchFund/AmericanInstituteforCancerResearchDiet,nutrition,physicalactivityandcancer:aglobalperspective.ContinuousUpdateProjectExpertReport.2018.
GBD2015RiskFactorsCollaboratorsGlobal,regional,andnationalcomparativeriskassessmentof79behavioural,environmentalandoccupational,andmetabolicrisksorclustersofrisks,1990–2015:asystematicanalysisfortheGlobalBurdenofDiseaseStudy2015.Lancet.2016;388:1659–1724
在生命早期,分娩方式、喂养、饮食和环境等因素会塑造肠道微生物群。在成年期,虽然微生物群趋于相对稳定,但外界因素,尤其是饮食,会大大影响其组成和功能。营养素、微生物群和免疫系统之间的这种复杂相互作用是维持体内平衡和防御外部病原体的重要调节机制。
精准营养承认每个人对饮食的代谢反应会有所不同,因此针对人群健康的广泛饮食指南在个人层面上并不理想。一些大规模研究已开始将微生物组概念纳入精准营养,发现纳入肠道微生物组组成的预测模型远远优于仅基于宿主、饮食和身体活动因素的预测模型。
微生物组研究成果的迅速扩展使多种长期营养原则变得复杂,同时也为干预提供了新的机会。更深入地了解饮食、宿主和微生物之间的因果关系,可以为开发精准营养和基于微生物组的疗法提供新的视角。
饮食对肠道微生物群的组成和功能有相当大的有益或负面影响。
下图是常见饮食方式对肠道菌群的影响,这在后面我们会详细展开阐述。
全膳食的常量营养素组成及其对肠道菌群的影响
doi.org/10.1038/s41579-024-01068-4
当膳食纤维到达肠道时,会经过肠道微生物群的发酵,产生如乙酸盐、丙酸盐和丁酸盐等短链脂肪酸(SCFA)。这些短链脂肪酸随后进入门脉循环,对宿主健康产生一系列积极影响。
激活GPCRs
短链脂肪酸激活G蛋白偶联受体GPCRs41和43,这是它们发挥作用的初步机制。
触发肠道激素分泌
激活的受体进一步触发胰高血糖素样肽(GLP)和肽YY(PYY)等肠道激素的分泌。
注:GLP1和PYY在调节食欲、减缓胃排空和促进饱腹感方面起着关键作用。
增强肠道屏障功能
SCFAs通过增加粘液分泌和降低肠腔pH值来增强肠道屏障功能,保护肠道内壁,防止有害病原体进入血液。
抗炎与免疫调节作用
SCFAs具有抗炎和免疫调节作用,有助于维持整体肠道健康,并降低胃肠道疾病的风险。
肠道微生物群对纤维的分解及其对屏障功能和免疫力的影响
在肠道中,膳食蛋白质经过肠道微生物群的代谢,这与拟杆菌属的增加有关。这导致产生各种代谢产物,包括短链脂肪酸、支链脂肪酸(BCFAs)和吲哚。
支链脂肪酸可以激活GPCR41和GPCR43,从而触发GLP1和PYY等肠道激素的分泌。此外,BCFAs可以增加粘液分泌并降低腔内pH值,从而增强肠道屏障功能并保护肠道内壁。
肠道微生物群对蛋白质的代谢以及SCFA和吲哚对人类健康的后续影响
SCFAs、BCFAs、GLP1和PYY等肠道激素、粘液分泌和腔内pH对人体健康的影响,包括改善胃肠功能、调节食欲、减少炎症、改善胰岛素敏感性和脂肪酸氧化,从而促进整体肠道健康。
当膳食PUFAs到达肠道时,它们会被肠道微生物群代谢。这一过程增加了特定细菌的丰度,如双歧杆菌属和产丁酸菌。因此,产生了各种代谢产物,如短链脂肪酸,例如丁酸盐。
PUFAs可以减少促炎的肠杆菌属(Enterobacterium)的丰度,从而减少炎症并改善肠道屏障功能。这可能导致内毒素和IL-17的产生减少,进而减少炎症并改善对人类健康的影响。由PUFA代谢产生的未代谢SCFAs进入系统循环,在其中发挥免疫调节作用。它们可以通过改善胰岛素敏感性、减少炎症和改善肠道渗漏症内毒素血症来增强抵抗肥胖的能力。
多酚类物质被肠道细菌代谢,因此被分解成生物活性微生物代谢产物。多酚已被证明可以增加肠道腔中有益细菌的丰度,如双歧杆菌、Akkermansia、乳酸杆菌属。这些细菌在维持肠道屏障功能、调节免疫系统、促进肠道稳态和抑制病原菌生长方面起着至关重要的作用。
此外,多酚在肠道内表现出显著的抗炎和抗氧化作用。多酚代谢的副产物,缺乏酚类的代谢产物,在系统循环中被吸收,在那里它们发挥显著的免疫调节作用。例如,这些代谢产物已被证明可以通过减少炎症和氧化应激,以及改善内皮功能,从而改善肺部、大脑和心脏功能,增加周围血流。
肠道微生物组的差异性影响
遗传性肥胖小鼠及其瘦弱的同窝小鼠在肠道微生物组成上存在差异,从ob/ob供体获得的肠道微生物群受体增加的体脂,比从遗传性瘦弱供体获得的微生物群受体多。
将适应高脂高糖(HFHS)饮食的小鼠肠道微生物群与适应低脂高植物多糖饮食的小鼠肠道微生物群进行移植,一致地增强了接受控制饲料的无菌受体小鼠的脂肪积累。
这些研究表明,无论是由遗传还是饮食驱动的肥胖表型,都可以通过肠道微生物群传播。
肠道微生物组与营养不良
患有夸希奥科病(kwashiorkor)的儿童的肠道微生物群表现出发育不良的特征,并通过在无菌小鼠中定植后与健康对照相比,损害了营养吸收,从而在因果上对营养不良有所贡献。
肠道微生物群的变化也已被证明有助于极低热量饮食(VLCDs)和Roux-en-Y胃旁路手术后的快速减重。
例如,对超重或肥胖的绝经后妇女进行每天800千卡的极低热量饮食,导致肠道微生物群的变化和改善的代谢表型,如体重减轻和减少的脂肪量,这些变化可以在接受了节食前后肠道微生物群的无菌小鼠受体中重现。
肠道微生物组的能量缓冲作用
在这个宿主-微生物组生态共生的例子中,宿主的营养吸收较低被肠道微生物群衍生的代谢产物及其下游效应所部分缓冲,例如增加宿主的能量摄入。这样的能量缓冲在能量受限条件下可能有助于宿主的代谢健康,但在能量过剩条件下也可能妨碍体重管理。
肠道微生物组的环境和饮食依赖性
肠道微生物群对宿主能量平衡的贡献可能依赖于环境和饮食背景,即使不通过饮食操纵宿主能量平衡也是如此。
来自肥胖不一致的人类双胞胎的无菌小鼠受体通常模仿了它们供体的代谢表型,但是当差异性定植的受体动物共同饲养时,来自瘦弱供体的微生物群侵入了来自肥胖供体的微生物群,结果是两者都保持了瘦弱。
这些复杂的相互作用强调了饮食对宿主-微生物组代谢相互作用的影响有时可能难以追踪。
肠道微生物通过其代谢产物影响健康
短链脂肪酸可以被各种宿主组织转化为ATP,其中:
SCFAs具有多样的信号功能,影响能量平衡。
SCFA通过各种方法影响能量摄入,包括乙酸盐穿过血脑屏障,介导调节性神经肽的表达,丙酸盐和丁酸盐结合肠内分泌L细胞中的GPR41和GPR43受体,刺激GLP-1和PYY的释放,以及通过迷走神经的肠脑信号传导,乙酸盐与SCFA混合物可能不同地介导这些信号传导。
SCFA通过促进棕色脂肪组织的产热、白色脂肪组织的米色和骨骼肌的线粒体呼吸来影响能量消耗。SCFA还可以影响脂肪生成和脂肪分解的动力学,据报道,丁酸盐促进脂肪分解,而乙酸盐和丙酸盐促进脂肪生成。
此外,肠道微生物组可以使宿主肝脏分泌的牛磺酸或甘氨酸结合的初级胆汁酸(T/G-1°BA)脱偶联和脱羟基,产生调节宿主能量代谢各个方面的非偶联初级胆汁酸和次级胆汁酸。未结合的初级胆汁酸通过法尼醇X受体(FXR)发出信号,抑制CYP7A1,CYP7A1是初级胆汁酸合成的限速步骤,对饮食脂肪吸收具有潜在的下游影响。次级胆汁酸激活TGR5,促进棕色脂肪组织的产热、白色脂肪组织的米色和胰腺β细胞的胰岛素产生。
肠道微生物胆汁酸代谢也可能通过对厌食素GLP-1的对比作用来影响能量摄入,2°BA激活的TGR5信号促进L细胞分泌GLP-1,1°BA活化的FXR信号在小鼠中显示出抑制GLP-1活性。这些多效性效应强调了对SCFA和胆汁酸的看法正在发生变化,从能量收获的载体转变为能够对宿主能量状态产生净积极和净消极影响的代谢调节因子.
地中海饮食(MD)强调摄入大量未加工的全植物性食品、橄榄油、乳制品、适量家禽和鱼类,以及少量红肉。
增加产丁酸菌
两项干预研究将地中海饮食与特定分类特征联系起来,增加Faecalibacteriumprausnitzii、Roseburia丰度,减少Ruminococcusgnavus、Collinsellaaerofaciens、Ruminococcustorques丰度。这些因饮食而导致的微生物组变化与短链脂肪酸产量的增加和代谢副产物(如乙醇、对甲酚和二氧化碳)产量的减少有关。
地中海饮食与特定功能途径有关
膳食纤维对人类健康至关重要,它有助于降低长期体重增加,低纤维摄入量会增加患2型糖尿病和结肠癌的风险。
高纤维饮食会改变肠道微生物的组成,包括显著增加乳酸杆菌属和双歧杆菌属的丰度。
断奶后饮食变化,引起代谢复杂多糖的菌增加
不同的膳食纤维组分对肠道微生物的影响各不相同。例如,母乳喂养的婴儿表现出更高丰度的适应于利用人乳寡糖(HMOs——母乳中大量存在的不可消化的益生元糖类)的双歧杆菌。断奶后,肠道微生物组成会发生明显变化,这主要归因于饮食组成的改变。这导致能代谢更复杂多糖的拟杆菌门和厚壁菌门的扩张。
超重个体:改善菌群预防代谢疾病
在超重的个体中,阿拉伯木聚糖低聚糖的干预增加了普雷沃氏菌和直肠真杆菌(Eubacteriumrectale)的丰度,伴随着代谢组学特征的有利变化,可能有助于预防代谢性疾病。
全谷物和小麦麸皮:双歧杆菌、乳杆菌↑↑
在31名志愿者中补充全谷物和小麦麸皮,导致双歧杆菌属和乳酸杆菌属的水平增加。全谷物消费者中的增加更为明显;两组都经历了总胆固醇的降低。
燕麦:厚壁菌门↑拟杆菌门↓心血管疾病风险↓
来自燕麦的高分子量β-葡聚糖减少了厚壁菌门,增加了拟杆菌门,并伴随着心血管疾病风险标志物的减少。
抗性淀粉:影响短链脂肪酸产生
以IV型抗性淀粉形式的膳食纤维对肠道微生物群的组成和功能以及丁酸盐或丙酸盐的产生了不同的影响。
短链脂肪酸的健康益处
包括前面文中提到过的,通过GPCRs传递信号,以及刺激肠道内分泌细胞分泌饱腹感激素(GLP-1和肽YY)。这影响了食欲调节,并调节了调节性T细胞的功能,以及脂质和葡萄糖代谢,在调节宿主能量代谢和结肠稳态中发挥关键作用。
短链脂肪酸与GPCRs及其他细胞的作用和互动不仅限于肠道,还扩展到外周组织、器官和免疫细胞。在小鼠模型中的报告表明,SCFAs和高纤维饮食可能在降低1型糖尿病、2型糖尿病、哮喘和压力的风险,减少脂肪酸合成和脂肪分解方面发挥作用,从而减轻体重并增强神经认知发展。SCFA的吸收导致肠腔pH值降低,这抑制了对pH敏感的病原体如梭菌纲和肠杆菌科的生长,并增加了营养素吸收。
全谷物中的不可溶纤维影响肠道传输速率和细菌发酵
微生物群与人类健康之间的相互作用强调了采取整体方法和更大规模的人类研究的必要性,以便深入认识饮食碳水化合物、肠道微生物群组成和疾病易感性之间复杂的关系。
植物性饮食富含多酚类、宿主可消化和不可消化的碳水化合物,并发挥益生元和后生元的双重效应。素食饮食导致形成独特的细菌环境,这一点从细菌功能能力的转变中得到证实。
素食者:拟杆菌↑普雷沃氏菌属↑
例如,素食者表现出低肉碱降解但增加氮同化。与杂食者饮食相比,这些饮食促进了拟杆菌门和普雷沃氏菌属的丰度,尽管由于微生物个体差异和研究方法的不一致性,研究结果有时会出现矛盾。
植物性饮食的这些特性使其在预防和管理慢性疾病,如心血管疾病、2型糖尿病和某些癌症方面显示出潜力。然而,需要更多的研究来充分理解植物性饮食对肠道微生物组的具体影响,以及这些变化如何影响宿主的健康和疾病风险。
多酚类物质的吸收:少量在小肠,大量在结肠
多酚类物质,分为类黄酮和非类黄酮,是植物的次级代谢产物,存在于水果、蔬菜、谷物、葡萄酒、茶、咖啡等食物中。
少量的多酚类物质(5%~10%)在小肠中被吸收,主要是那些具有单体和二体结构的多酚。吸收后,苷元在肠细胞内经历生物转化,然后在肝细胞内继续转化。这些代谢产物通过循环系统运输到肾脏和肝脏等器官,并最终随尿液排出。
大部分多酚类物质(90%-95%)在回肠和结肠中与肠道微生物发生作用,它们促进双歧杆菌、Akkermansia、乳杆菌等物种的丰度,从而提供显著的抗炎和抗病原体特性,以及心血管保护作用。
最近一项涉及超过2万名成年人的随机对照试验表明,食用富含多酚的可可提取物减少了心血管疾病导致的死亡。然而,心血管疾病的发生并没有减少。
多酚类物质的抗菌和抗病原体特性
多酚类物质可以通过几种机制抑制细菌生长,包括结合并改变细胞膜的功能特性。它们还展现出对食源性病原体的抗菌活性,并以剂量依赖性方式作为群体感应抑制剂和抗菌剂。
肠道微生物群代谢多酚
肠道微生物群双向调节并代谢多酚类物质,将它们转化为更具生物活性的微生物代谢产物,并提高其相对于原始化合物的吸收。
代谢产物的健康益处
研究表明,食用生物活性微生物代谢产物对人类健康有益处。例如:
多酚类物质对肠道微生物群的调节
多酚类物质可以通过改变肠道微生物群的组成和影响各种微生物酶的功能,调节肠道微生物代谢产物,包括短链脂肪酸、TMAO、多巴胺、脂多糖、胆汁酸。
这最终可以通过多种方式引起多酚类物质诱导的宿主反应,例如,作为调节肠道酸碱平衡的调节器。多酚类物质对肠道微生物群的调节已被证明支持肺功能、中枢神经系统功能和肠道屏障完整性的稳态。
植物和动物源食物类型不同,对菌群影响有差异
植物和动物源性食物中蛋白质和脂肪类型的不同导致了肠道微生物组成和代谢组的差异。例如,基于动物的饮食导致耐胆汁细菌种类的丰度增加,如Alistipes、Bilophila,同时减少了厚壁菌门的丰度,降低了支链氨基酸(BCAAs)的水平,并增加了SCFAs和二甲基硫化物。
其他植物化合物,如纤维、萜类和类胡萝卜素,也已显示出健康益处。个体在从饮食多酚中产生酚类衍生代谢产物的量上的差异归因于每个人肠道微生物组的独特组成。
因此,分析多酚代谢产物可以作为一种有价值的方法,以更深入了解生物活性化合物效应,并为理解个体间的显著多样性提供全面的认识。
每日蛋白质摄入量超过1.5克/千克体重的饮食通常被认为是高蛋白饮食。这种饮食通常用于运动员或为超重人群减肥时所推荐。
蛋白质的消化和吸收
饮食中的蛋白质主要由宿主的蛋白酶分解,但每天有12-18克的蛋白质可到达大肠并被微生物群代谢。
不同类型的复杂蛋白质具有不同程度的可消化性,以及不同的氨基酸组成。
参与蛋白质分解的菌群
一些细菌物种参与蛋白质分解,并在高蛋白饮食者的肠道微生物群中富集,主要是拟杆菌属、芽孢杆菌属(Bacillus)、梭菌属(Clostridium)、Phocaeicola、丙酸杆菌属(Propionibacterium)、梭杆菌属(Fusobacterium)、乳杆菌属、链球菌属。
其他细菌可以直接利用氨基酸,并从蛋白质分解中受益,形成交叉喂养的相互作用。
蛋白质分解细菌使用多种酶
蛋白质分解细菌使用多种外肽酶、蛋白酶(包括金属、丝氨酸、半胱氨酸、天冬氨酸、苏氨酸、谷氨酸和天冬酰胺蛋白酶)和内肽酶来释放短肽和游离氨基酸。
氨基酸代谢产生短链脂肪酸
大多数氨基酸被发酵成短链脂肪酸:
部分发酵产物可能带来的健康危害
其他发酵产物包括可能的炎症化合物,如来自芳香族氨基酸(例如色氨酸)的吲哚和酚类化合物,以及氨、胺、有机酸和气体(即由含硫氨基酸半胱氨酸和甲硫氨酸产生的硫化氢,以及二氧化碳)。
生酮饮食是一种极低碳水化合物、适量蛋白质和高脂肪的饮食模式,模拟了禁食期间的代谢反应,这种状态下循环酮体水平升高。
生酮饮食长期以来一直作为治疗癫痫的饮食疗法,并且越来越多的研究表明这种饮食在治疗阿尔茨海默症、肥胖症、癌症等各种疾病方面的益处。
注:传统的长链甘油三酯生酮饮食遵循脂肪(克)与蛋白质和碳水化合物总和的4:1比例。变体包括中链甘油三酯生酮饮食、改良阿特金斯饮食和低血糖指数治疗,每种方法都有稍微不同的宏观营养素比例。
在人类中,诱导生酮状态需要严格限制碳水化合物摄入(5%–10%千卡/天),适量蛋白质摄入(30%–35%),和高脂肪摄入(55%–60%)。
生酮饮食的潜在风险和副作用
生酮饮食(利于拟杆菌门)≠高脂饮食(利于厚壁菌门)
典型的高脂饮食通常会增加厚壁菌门的丰度并减少拟杆菌门;然而,生酮饮食的效果不同。
生酮饮食对肠道微生物组的影响
酮体βHB↑双歧杆菌↓
来自人类、啮齿动物和细胞培养的数据支持β-羟基丁酸抑制NLRP3炎症体的能力。高水平的酮体可以降低血压并增加血管功能。循环酮体水平的增加还可以减少心脏炎症和心力衰竭的可能性。酮体也可能通过刺激胰岛素受体,通过诱导AMP激活蛋白激酶(AMPK)和下调mTOR来改善胰岛素敏感性。高水平的酮体可能减少食欲,从而使体重减轻。
生酮饮食→双歧杆菌↓→减少诱导Th17→促炎降低
将生酮饮食者的粪便微生物群移植到无菌小鼠中,研究揭示了肠道TH17细胞的变化。
注:Th17细胞是一种辅助性T细胞亚群,其主要特征是能够产生多种促炎细胞因子,如IL-17、IL-21和IL-22等。
双歧杆菌属对肠道TH17细胞的有强烈诱导作用,而生酮饮食改变肠道菌群(双歧杆菌降低)也减少了诱导Th17的能力,可能导致这些细胞的促炎性降低,从而影响肠道和脂肪组织的炎症状态,
然而,由于有益的肠道微生物群的减少和促炎性及病原性肠道细菌的促进,需要进一步的研究来了解生酮饮食对宿主健康的长期影响。
西方饮食的特点是高热量含量,富含动物蛋白、饱和脂肪、简单糖和超加工食品,同时纤维、水果和蔬菜的摄入量不足。
西方饮食:多样性下降,拟杆菌为主
加工食品和添加剂的影响
加工食品包含各种添加剂、防腐剂和乳化剂,能够直接或间接与肠道微生物群相互作用。
非营养性人造甜味剂,如低热量或饮食食品和饮料中的糖精、三氯蔗糖和阿斯巴甜,对微生物组多样性和组成的潜在长期影响尚不清楚。
其他添加剂,如卡拉胶(一种从红海藻中提取的增稠剂或凝胶剂,存在于许多加工食品中,如乳制品),已知会促进肠道炎症和破坏粘液层,导致肠道微生物组的变化。
人工食品色素,如糖果和烘焙产品中的AlluraRedAC,赋予颜色并通过与肠道细菌的相互作用改变硫的稳态。
一些防腐剂,如加工肉类中的硝酸钠,也可以调节肠道微生物组的组成,而乳化剂,如羧甲基纤维素(一种存在于酱汁中的增稠剂)和聚山梨醇酯-80(一种存在于酱汁和烘焙食品中的乳化剂和稳定剂),直接冲击肠道微生物组的组成和功能。
你的焦虑可能与食品添加剂有关,警惕食品添加剂引起的微生物群变化
食品添加剂:健康还是危险?——从肠道微生物角度分析
糖,功能糖,代糖,如何从健康角度看这些肠道菌群的“甜蜜伙伴”
最严格的CR随机试验来自国家老龄化研究所资助的CALERIE(减少能量摄入长期效应综合评估)联盟。CALERIE研究包括CALERIE第一阶段(三项为期6至12个月的CR小规模试点研究)和CALERIE第二阶段(一项大型、多中心、为期2年的CR随机试验)。
注:这些研究招募了体重正常且健康状况良好的成年人。每项试验中实施的CR程度不同,但通常涉及日常能量摄入量减少10%至30%,同时确保其他关键营养素的充足摄入。
CR的健康益处
CALERIE研究的发现显示,短期和长期CR都可以减少体重、皮下脂肪、内脏脂肪和肝内脂肪含量。
CR减少了微生物表达的酶
将经过CR调节的与对照肠道微生物群移植到未经处理的无菌小鼠中,导致体重和体脂肪的增加减少,胰岛素敏感性提高,UCP1+(即褐/产热)脂肪细胞增加,这表明CR诱导的肠道微生物组变化在这些效应中起到了因果作用。
Dorea弱预测了CR诱导的体重减轻
人类的CR研究报道了肠道微生物组组成和功能的多种变化,但据所知,还没有研究表明这些变化是代谢益处的基础。
最近一项随机对照试验比较了147名超重或肥胖成年人中12周间歇性与持续性CR的效果,发现体重减轻与细菌相对丰度、群落α多样性或循环微生物代谢产物(例如短链脂肪酸)的变化之间没有关联。尽管如此,基线微生物组组成——特别是Dorea的相对丰度——弱预测了CR诱导的体重减轻。
微生物组特征与特定代谢健康标志物之间的关联
如Akkermansia和Christensenellaceae与基于HOMA-IR的胰岛素敏感性之间的关系。需要额外的功能研究来测试这些微生物组特征与代谢反应之间的联系是因果关系还是其他生理状态的共线性结果。
解决开始和维持饮食模式重大转变挑战的一个潜在解决方案来自于一组数据,即间歇性禁食可以导致显著的体重减轻。
TRE的做法
在进食窗口期间,个人不需要计算卡路里或以任何方式监测食物摄入,这种简单性可能解释了近期TRE受欢迎度的上升。在禁食窗口期间,个人被鼓励大量饮水,也可以消费无能量饮料,如不加添加剂的茶和咖啡。当肥胖成年人将进食窗口限制在每天4-10小时时,他们通常会将能量摄入减少200-550千卡/天,这种能量限制程度与日常CR(热量限制)相当。
TRE的减重效果
随机对照试验显示,TRE在降低体重和改善一些心血管健康标志物方面是有效的。体重通常在2-12个月的TRE后减少3%-5%,减少主要来自脂肪质量和内脏脂肪质量的减少,而不是瘦体重。
然而,并非所有关于人类TRE的研究都报告了体重减轻。有研究表明,3个月的8小时TRE(下午12点至晚上8点的进食窗口)对肥胖成年人的体重与无干预对照组相比没有影响。
注:然而,这项研究是在自由生活的参与者中进行的,他们在试验期间与研究团队的接触很少。
当进食窗口较早时,降血压效果才较为明显
即使实现了减重,也不是所有受试者都表现出代谢改善。血压通常在2-12个月的TRE后降低5-10毫米汞柱,但这些效果通常只有在进食窗口设在一天中较早的时候(即下午2点前)才会被注意到。早期进食窗口可能通过促进钠尿(通过肾脏在尿液中排泄钠)来降低血压,因为当盐分摄入转移到一天中较早的时候,由昼夜节律系统调节的钠排泄会增加。TRE似乎并不影响低密度脂蛋白胆固醇、高密度脂蛋白胆固醇或甘油三酯水平。循环炎症标志物,如C反应蛋白(CRP)、白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α),也不受TRE影响,尽管数据有限。
临床试验发现,TRE在改善前驱糖尿病和肥胖个体的空腹胰岛素和胰岛素敏感性方面表现出相当一致的效果。TRE还改善了葡萄糖耐受性并减少了血清葡萄糖波动。这些改善更常见于早期进食窗口(即在下午3点前吃完所有食物)和较短的进食窗口(4-6小时)。
在2型糖尿病成人中,TRE改善了糖化血红蛋白水平,与每日CR相当,并且没有增加低血糖的风险。
TRE如何改善糖调节?
来自人类试验的数据显示,身体在TRE期间经历了代谢转换。
肠道微生物群发挥作用
这些变化在远端小肠(回肠)最为明显,并与促胰高血糖素基因Gcg的表达增加和GLP-1的血浆水平升高相对应。
经抗生素处理和无菌小鼠的研究支持肠道微生物群在昼夜GLP-1释放中发挥因果作用,但具体的微生物效应因子仍不清楚。
一个概念验证来自于肠道共生菌Akkermansiamuciniphila的研究,它分泌一种84kDa的蛋白质(P9),足以通过与细胞间粘附分子2(ICAM-2)相互作用诱导GLP-1的分泌。
TREplus版:肠道菌群变化更显著
双歧杆菌和拟杆菌利用HMOs,因此占主导地位
HMOs被双歧杆菌属(包括Bifidobacteriumbreve、Bifidobacteriumbifidum、B.longum、B.infantis、Bifidobacteriumpseudocatenulatum)以及拟杆菌属物种利用,导致这些物种在母乳喂养的婴儿肠道中占主导地位。
HMOs作为益生元发挥作用
乳铁蛋白和溶菌酶具有抗菌特性,能够调节对感染的保护。
非母乳喂养的肠道菌群
非纯母乳喂养的配方奶喂养婴儿拥有更高丰度的链球菌属、肠球菌属、韦荣球菌、梭菌属,并表现出在更多碳水化合物代谢途径上的功能能力差异,这证明了饮食对肠道微生物组的重要性。
母乳中的HMOs调节婴儿肠道微生物群,并提供若干健康益处,如长期保护免受过敏、特应性皮炎和肥胖的影响,以及增强肠道屏障功能。同样,引入辅食会导致肠道微生物群的变化,这些变化促进了碳水化合物的利用、维生素的合成和外源性物质的降解,结果是厚壁菌门和拟杆菌门中的微生物水平增加。
最近的研究报道,涉及脂肪和糖摄入的孕妇饮食干预改变了婴儿肠道微生物组的功能,而另一项研究则报告没有关联。
小鼠实验:母亲孕期低纤维饮食,幼鼠呼吸感染的严重程度增强
最近的研究显示,在怀孕期间接受低纤维饮食的小鼠在后代中经历了延迟的浆细胞样树突状细胞和调节性T细胞扩增的扰动,导致呼吸感染的严重程度增强。同样,在无纤维饮食的小鼠中,幼崽中的比例较低的Akkermansiamuciniphila、固有淋巴细胞和TH17细胞,而缺乏AKK菌属且被喂食纤维的小鼠显示出减少的固有和适应性RORγt‐阳性免疫细胞亚群。
小鼠实验:富含发酵食品,减少新生儿结肠炎症
另一项在母猪和小鼠上进行的研究表明,富含发酵食品的母亲饮食影响了新生儿肠道微生物群的发展,并通过p38丝裂原激活蛋白激酶和c-Jun氨基末端激酶激活的caspase3的磷酸化减少了结肠炎症。母亲饮食对婴儿长期健康影响的程度需要进一步研究。
肠道微生物群在调节宿主代谢方面发挥着关键作用,微生物组成的某些变化和多样性的减少与多种代谢性疾病发病率的上升有关。
肥胖与肠道菌群有关
利用无菌啮齿动物模型,研究人员已经建立了肠道微生物群与肥胖之间的联系。将肥胖小鼠的肠道微生物群定植到无菌小鼠体内,导致体重和胰岛素抵抗显著增加,而当无菌小鼠被喂食西式饮食时,肥胖的发展则不存在,这突显了肠道微生物群在肥胖中的作用。然而,其他几项同意微生物群在能量稳态中的作用的研究未能显示其在肥胖发展中的决定性作用,并指出需要更多的研究来探索这种复杂的关系。
2型糖尿病和肥胖的个体的肠道菌群特征
注:二甲双胍,一种常见的2型糖尿病药物,与肠道微生物群相互作用,可能通过调节葡萄糖稳态和短链脂肪酸的产生来介导其抗糖尿病效应。
饮食、肠道微生物组、代谢性疾病
注:红色箭头表示饮食脂肪可以通过何种作用机制对宿主健康产生下游影响,最终导致CVD风险。此外,蓝色箭头显示了主要存在于动物产品中的胆碱如何引起CVD风险。
心血管代谢疾病的个体的肠道菌群变化
特征是增加的肠杆菌科(Enterobacteriaceae)物种和减少的拟杆菌属以及抗炎的F.prausnitzii。肠道微生物群的这些变化与更具炎症性和较少发酵性的肠道环境有关。
TMAO
三甲胺-N-氧化物(TMAO),一种由肠道细菌从饮食化合物产生的代谢产物,与动脉硬化、血小板聚集和血栓形成有关。
增加的饮食脂肪可以影响FXR和TGR5等胆汁酸受体的激活,它们在脂质和葡萄糖代谢中发挥重要作用。这些途径的调节失常可能导致心血管疾病的发展。
由于微生物组改变导致的能量稳态的微小变化可能具有长期效应,在代谢性疾病中发挥作用,既是因果因素也是促成因素。此外,它们可以作为使用微生物组靶向治疗改善这些状况的目标。
饮食在肠道疾病的病理生理学中起着关键作用,特别是炎症性肠病、肠易激综合症和结肠癌。
肠易激综合征
过敏、食物不耐受、微生物群组成的转变、轻度粘膜炎症和肠道通透性的增加可能促成了肠易激综合症的表现。
饮食成分与炎症性肠病风险
饮食也可以改变炎症性肠病(包括克罗恩病和溃疡性结肠炎)的肠道微生物群落组成,影响短链脂肪酸和纤维等物质的代谢,这反过来又可能促成疾病的发生。
动物蛋白、乳制品、碳水化合物和多不饱和脂肪酸等食物成分与发生炎症性肠病的风险有关。
动物蛋白与炎症性肠病的机制
一个将炎症性肠病与动物蛋白联系起来的机制涉及小肠中的氨基酸和血红素吸收不良,导致产生酚类和氢气等有害副产物。这通过抑制丁酸盐的产生和减少肠道屏障中的二硫键,促成了炎症性肠病的发病机制。
在实验模型中,高脂肪饮食可以破坏肠细胞间的结合蛋白功能,从而改变粘液层的组成和肠道微生物群。
注:增加的动物蛋白(绿色箭头)和低纤维(紫色箭头)饮食可能对生理功能和宿主健康产生下游影响。
增加红肉消费可导致胆碱水平升高,由于血红素吸收不良,在小肠中产生更多的氢气和苯酚。这反过来可以减少胃肠道中的丁酸盐生产,导致炎症增加。同样,饮食中纤维摄入减少可能通过增加TH17的产生,同时减少Treg和短链脂肪酸产生,对肠道健康产生负面影响。这种不平衡最终导致胃肠道内慢性炎症加剧。肠道内长期的慢性炎症可能大幅增加发展成炎症性肠病的风险。
饮食在散发性结直肠癌中的作用
研究发现,低纤维、高脂肪饮食与Fusobacteriumnucleatum有关。拟杆菌属通过激活E-钙粘蛋白-β-链球蛋白信号、表观遗传变化和改变肿瘤微环境等机制与结直肠癌有关,从而促进恶性转变。同样,诸如产毒脆弱拟杆菌(Bacteroidesfragilis)等致癌细菌被假设通过直接与结肠上皮细胞相互作用和改变局部微生物群组成来触发结直肠癌的发病。
人类肠道是真菌和病毒群的栖息地,分别称为肠道真菌组和病毒组。尽管这些群落只占肠道中总微生物的0.1%-1%,但它们都受到饮食的影响。
婴儿肠道真菌组中,酿酒酵母(Saccharomycescerevisiae)是优势物种,断奶后被其他酵母属(丝孢酵母属Cystofilobasidium、曲霉属Ascomycota、单孢子酵母属Monographella)取代。
城市居民的肠道真菌组成包括酿酒酵母和较少的产短链脂肪酸菌,农村居民则有更多样化的真菌物种。
母乳喂养和配方奶喂养婴儿的肠道病毒组组成差异由肠道微生物群变化和母乳垂直传递病毒引起。
高脂饮食与Siphoviridae病毒丰度减少和Microviridae噬菌体丰度增加有关。
无麸质饮食则与相反的变化有关,Siphoviridae在Microviridae之上,占主导地位。
肥胖和1型及2型糖尿病患者的病毒组成也发生变化,高脂饮食喂养小鼠的粪便病毒移植降低肥胖风险。
肠道耐药组,赋予微生物抗微生物药物耐药性的所有基因或遗传物质的集合,随着细菌微生物组和病毒组的变化而变化。
一些研究报告γ-变形菌纲(Gammaproteobacteria)属拥有丰富的抗生素抗性基因(ARG)储备。
配方奶喂养的婴儿ARG负荷更高,与细菌组成有关。
纯素和鱼素食饮食个体肠道中的微生物组成不同,但他们的耐药组档案并没有显著差异,表明耐药组主要由抗微生物药物暴露而非饮食塑造,可能的例外是含有特定防腐剂的食物。
需要进行详细的饮食干预研究,以了解饮食是否可以减少ARG的负担。
地中海饮食在缓解和管理多种疾病方面已被证明是有效的,包括心血管疾病、2型糖尿病、炎症性肠病、肠易激综合症、认知能力下降和抑郁症。此外,对这种饮食的调整,如MIND饮食,已成功降低阿尔茨海默病的风险并减缓认知能力下降。同样,DASH(阻止高血压的饮食方法)饮食已证明在治疗高血压方面有效。
对于肠易激综合症的治疗,通常使用低发酵性低聚糖、二糖、单糖和多元醇(低FODMAP)饮食,有50%~80%的患者有积极的临床反应。
同样,研究表明,坚持低FODMAP饮食,双歧杆菌(Bifidobacteriumadolescentis)方面表现出显著降低,这种细菌会破坏肠道屏障功能并改变紧密连接的完整性,从而支持低FODMAP饮食的积极效应是通过肠道微生物群介导的假设。
无麸质饮食目前是治疗乳糜泻的方法,研究已证实这种饮食在缓解胃肠道症状方面的有效性。采用这种饮食方案与肠道微生物组成和肠道微生物途径的改变有关。
最近一项研究分析了乳糜泻患者的小RNA和宏基因组测序数据,研究结果显示,采用无麸质饮食改变了miRNA和微生物群落的轮廓。该研究还揭示了乳糜泻患者中的miRNA-细菌关系和特定的分子模式,表明可能存在用于监测无麸质饮食依从性和评估肠道炎症状态的生物标志物。
对于慢性肾病的管理,推荐采用低蛋白饮食,目的是减缓进入终末期肾病的进展,并推迟对肾脏替代治疗的需求。
综述表明,极低蛋白饮食可能有效减少4期或5期肾病的发生。然而,仅采用低蛋白饮食并未影响终末期肾病的发展。
这种饮食包括消耗低血糖指数的碳水化合物(例如,豆类、燕麦和小麦),促进血糖水平逐渐且持续上升。尽管关于这种饮食对肠道微生物群影响的研究有限,但小鼠研究表明,它与因摄入大麦而增加的乳酸杆菌属、普雷沃特氏菌属和纤维降解S24-7细菌的丰度有关,或因摄入全谷物燕麦而增加的双歧杆菌属和乳酸杆菌-肠球菌属(Lactobacillus-Enterococcus)有关。
肠道微生物组在人体生理学中的中心作用彻底改变了我们对健康的看法,并日益渗透到营养研究和建议中。
目前,全球饮食指南普遍达成共识,但不幸的是,这种均质性也延伸到了微生物组,只有少数几个国家(例如美国和南非)明确考虑了饮食-微生物组相互作用。
几乎所有方面的人类营养最终都需要根据饮食-微生物组相互作用对人类健康的直接和间接后果重新评估。
这里强调微生物组知识挑战营养科学的三个原则:
宿主卡路里≠宿主-微生物组卡路里
由美国化学家威尔伯·奥林·阿特沃特(WilburOlinAtwater)在19世纪末提出的阿特沃特系统,用于估算食物中各种营养成分的热量值,反映了食物中的平均化学能量减去粪便、尿液、分泌物和气体中排泄的平均分数。
阿特沃特系统估算热量含量的方法存在三个关键疏漏:
1、食物基质效应
没有捕捉到更广泛食物基质的效果,如植物性宏观营养素在细胞壁或亚细胞结构中的封装。
2、饮食诱导的热生成
没有捕捉到消化的代谢成本,这基于宏观营养素含量、餐食的可口性和食物加工而变化。
3、宿主与微生物组的卡路里区分
只在很小程度上区分了对人类可利用的卡路里和对肠道微生物组可利用的卡路里。
未吸收营养素的重要性
与被吸收的营养素不同,未吸收的营养素可靠地到达结肠中最密集的微生物群落。此外,随着消化液在胃肠道内向下推进,未吸收的营养素会因为被吸收的营养素和水分的消失而浓缩。因此,可以预期,未吸收的营养素在塑造肠道微生物组及其对健康和疾病的下游影响方面,可能比被吸收的营养素具有更大的影响力。
饮食与肠道微生物组的相互作用
虽然历史上对回肠消化性的描述依赖于体外模型或复杂的体内模型,例如插管动物、回肠造口术后的人类患者、健康人体中的侵入性鼻-回肠或结肠插管,以及在血浆中检测同位素标记的营养素,但受微生物组启发的新方法可能证明是有希望的。
深入理解饮食-微生物组相互作用的新视角
例如,基于DNA的饮食底物表征——一种称为DNAmetabarcoding的技术,可能与基于DNA的微生物组分析相结合,研究特定排泄样本中直接的饮食-微生物组相互作用。可以在动物模型中或使用新的可吞咽装置在人体中执行对饮食和微生物组信号的双重表征,这些装置能够在由pH变化确定的胃肠道间隔处采样消化液。
许多食品物质已根据美国食品药品监督管理局(FDA)基于动物毒理学试验和/或过去在人类中广泛使用且未产生已知有害影响的基础上,被授予“通常认为安全”(GRAS)的认定。
潜在健康影响
然而,GRAS评估通常并未考虑这些物质对肠道微生物组的影响,或者通过微生物组介导的间接健康效应的潜力。
牛磺胆酸可能通过菌群与肠道病理的关联
GRAS化合物牛磺胆酸及其化学成分,GRAS化合物牛磺酸和胆酸,可能与肠道微生物组相互作用,促进肠道病理。具体来说,由Bilophilawadsworthia细菌在牛磺胆酸的脱结合过程中释放的牛磺酸产生遗传毒性的硫化氢,同时释放的胆酸作为微生物产生促炎的次级胆汁酸脱氧胆酸的基质。因此,补充牛磺胆酸的饮食导致了B.wadsworthia的增长和易感基因型(IL-10/)小鼠中结肠炎的发展。
肠道微生物组可能转化为更有害的形式:杂环胺的肠肝循环
此外,肠道微生物组可能使用其广泛的酶库将饮食化合物或宿主代谢产物转化为更具有害的形式。例如,细菌β-葡萄糖醛酸酶有助于致癌的杂环胺(如IQ,2-氨基-3-甲基咪唑[4,5-F]喹啉)的肠肝循环,这些物质通过肝脏的葡萄糖醛酸化被解毒。
在暴露于IQ时,常规小鼠比无菌小鼠显示出更多的DNA加合物和DNA损伤。单核子大肠杆菌携带功能性与非功能性uidA基因(编码β-葡萄糖醛酸酶)的大鼠表现出增加的结肠遗传毒性,与这种化合物排泄的多个峰值相结合,这与肠肝循环一致。
三聚氰胺污染+肠道微生物组→肾脏病理
肠道微生物组还与由饮食污染物三聚氰胺引起的肾脏病理有关,三聚氰胺是一种用于许多食品制备工具的塑料添加剂。体外和体内实验表明,存在于一些婴儿肠道中的克雷伯菌可以将三聚氰胺转化为三聚氰酸,三聚氰酸现在已知与三聚氰胺形成不溶性的肾脏聚集体。
有益效应
对抗乳腺癌的保护作用
例如,植物衍生的饮食木脂素(如全谷物、种子、豆类和坚果中发现的)的肠道微生物生物转化被认为是它们对抗乳腺癌的保护作用的基础。一组肠道细菌类群(例如,Eggerthellalenta、Blautiaproducta、Gordonibacterpamelaeae和Lactonifactorlongoviformis)将饮食木脂素松香转化为具有抗癌作用的雌激素模拟物enterodiol和enterolactone。
因此,与无菌动物相比,在化学诱导乳腺癌时,能够从饮食木脂素前体产生enterodiol和enterolactone的细菌群落定植的无菌大鼠显示出较少的肿瘤数量和较小的肿瘤大小。
扩展阅读:
植物木脂素的肠道微生物代谢:对人类健康的影响
肠道菌群有助于饮食解毒改变疾病风险
例如,肠道细菌Oxalobacterformigenes参与草酸盐的分解,草酸盐是一种螯合饮食毒素,通过结合游离金属阳离子,有助于肾结石和肾衰竭。缺乏O.formigenes与高草酸尿症的风险增加有关,其在大鼠中的施用以剂量依赖性的方式减少了饮食诱导的高草酸尿症。
在探索肠道微生物群与饮食之间错综复杂的关系后,我们不难发现,这个微小的生态系统对我们的健康有着深远的影响。从调节能量平衡到影响免疫功能,从塑造情绪到预防疾病,肠道微生物群的作用远远超出了我们的想象。
当然,饮食也只是众多生活方式因素之一,例如身体活动、环境暴露和睡眠,这些因素都会影响宿主的能量平衡和肠道微生物群。此外,药物的广泛使用已经显著改变了饮食干预的背景。例如,GLP-1激动剂延迟胃排空,这对消化有着深远的影响,包括肠道微生物代谢可用底物的变化。
实现基于微生物组的精准营养方法需要对人类进行实验研究,以测量整个生物体水平的综合影响,涵盖地理、性别、种族和年龄等各种因素,以及更大规模的横断面研究,针对饮食成分、肠道微生物组结构和功能以及宿主健康之间的特定联系。
这些数据将受益于机器学习的快速发展并将人工智能与实施精准医疗方面的结合起来。随着技术的进步和数据的积累,肠道菌群检测有望成为精准营养和个性化医疗的重要组成部分,帮助我们更好地管理健康,预防疾病,并提升生活质量。
CarmodyRN,VaradyK,TurnbaughPJ.Digestingthecomplexmetaboliceffectsofdietonthehostandmicrobiome.Cell.2024Jul25;187(15):3857-3876.
RossFC,PatangiaD,GrimaudG,LavelleA,DempseyEM,RossRP,StantonC.Theinterplaybetweendietandthegutmicrobiome:implicationsforhealthanddisease.NatRevMicrobiol.2024Jul15.
AhmadS,MoorthyMV,LeeIM,RidkerPM,MansonJE,BuringJE,DemlerOV,MoraS.MediterraneanDietAdherenceandRiskofAll-CauseMortalityinWomen.JAMANetwOpen.2024May1;7(5):e2414322.
McEvoyCT,JenningsA,StevesCJ,MacgregorA,SpectorT,CassidyA.DietpatternsandcognitiveperformanceinaUKFemaleTwinRegistry(TwinsUK).AlzheimersResTher.2024Jan23;16(1):17.
LinkVM,SubramanianP,CheungF,HanKL,StacyA,ChiL,SellersBA,KorolevaG,CourvilleAB,MistryS,BurnsA,AppsR,HallKD,BelkaidY.Differentialperipheralimmunesignatureselicitedbyveganversusketogenicdietsinhumans.NatMed.2024Feb;30(2):560-572.
StaudacherHM,MahoneyS,CanaleK,OpieRS,LoughmanA,SoD,BeswickL,HairC,JackaFN.Clinicaltrial:AMediterraneandietisfeasibleandimprovesgastrointestinalandpsychologicalsymptomsinirritablebowelsyndrome.AlimentPharmacolTher.2024Feb;59(4):492-503.
一听到高脂饮食,很多人就会想到会增加患心脏病和其他慢性疾病的风险。然而,低碳水化合物、高脂肪的生酮饮食却在各个方面越来越受欢迎,从减肥到自身免疫疾病等。
生酮饮食的支持者认为,通过减少碳水化合物的摄入,可以帮助控制血糖和胰岛素水平,从而降低患糖尿病和肥胖的风险。甚至有人选择生酮饮食是为了提高生产力、精力和思维清晰度。
一些研究表明,生酮饮食可能会对肠道健康产生积极影响,如减少肠道炎症、改善肠道通透性和促进有益菌群的生长。然而,也有研究认为生酮饮食会减少肠道菌群多样性,可能引发代谢紊乱等情况,这是为什么呢?
这些研究之间是否相互矛盾?
许多人对这种饮食方法可能对肠道及肠道微生物组健康产生的影响有担忧。
有一种普遍的观念认为,唯一能为有益肠道微生物提供营养的物质是复合碳水化合物,如果我们没有膳食纤维,我们的肠道屏障也会受到影响。
但事实真的如此吗?
生酮饮食真的会给肠道带来很大危害吗?
生酮饮食对肠道菌群的影响是快速的吗?
生酮饮食中的高脂肪不会增加LPS吸收吗?
为什么说生酮饮食对一些疾病具有保护作用?
生酮饮食到底是促炎多还是抗炎多?
什么人群更适合生酮饮食呢?
在本文中,我们将深入探讨生酮饮食对肠道健康的影响,并对证据进行完整的讨论,包括目前知道什么和不知道什么,更全面地了解这种饮食方法,可以更好地选择适合自己的饮食方式。
我们与肠道微生物的关系是数千代共同进化的产物。数百万年来,进化不仅作用于我们23,000个人类基因,还作用于我们体内和体表的近400万个基因(包括人类和微生物)。之所以成为今天的我们,是因为我们是与微生物一起进化的。
什么是代谢灵活性?
我们进化的环境需要定期适应不断变化的条件。我们的祖先并不能总是稳定地获得食物,当食物匮乏时,他们会偶尔禁食。因此,当食物充足时,我们的身体有能力燃烧和使用碳水化合物,而当食物或碳水化合物稀缺时,我们的身体有能力将膳食脂肪或储存的身体脂肪转化为酮以获取能量。这种根据饮食摄入量变化而改变新陈代谢的能力称为代谢灵活性。
那么问题来了:为什么我们的身体具有代谢灵活性来应对食物供应的变化,而我们的肠道微生物群却没有同样的代谢灵活性?
当淀粉类碳水化合物变得稀缺时,我们的祖先真的会产生“患病”的微生物组吗?
不一定。
我们可以考虑一下因纽特人等传统文化。
因此,所谓“健康”微生物组,就是你个人健康时所拥有的微生物组,对你来说健康的东西可能对其他人来说并不健康。
我们在肠道菌群检测的时候,并不能以单一的指标去武断地认为这个人就是不健康,而是要结合他自身其他指标来综合判断是否需要采取某些干预措施。
我们继续来看研究数据。
很多项研究表明,给动物喂养“高脂肪饮食”会导致严重的肠道菌群失调、肠道通透性增加和全身炎症,表明高脂肪饮食可能对人类肠道微生物群不利。
不过仔细观察会发现,大多数动物研究中使用的“高脂肪饮食”,更准确地说是富含精炼大豆油、猪油和精制糖且纤维含量极低的饮食。
加州大学戴维斯分校教授CraigWarden博士称其为“相当于小鼠吃猪皮、排骨、可乐”。换句话说,经典的动物“高脂肪饮食”比任何精心设计的生酮饮食更能反映标准美国饮食换句话说,典型的动物“高脂肪饮食”其实更多地反映了标准西方饮食,而不是精心设计的生酮饮食。
进化来说:人易适应高脂饮食,小鼠适应低脂
低碳饮食下,经过基因筛选的小鼠容易代谢紊乱
最常用于此类研究的小鼠品系C57Bl/6小鼠经过基因筛选,因其能够响应“高脂肪饮食”而增加体重和升高血糖。
RichardFeinman等人写道:
“结果表明,肥胖的啮齿动物模型,在理解代谢机制如何以与人类效应不同的方式工作方面可能最有价值。”
因此,我们不能简单地将针对经过选择性育种、喂食高度精炼“高脂肪饮食”的小鼠的研究结果,直接应用到具有健康意识的人类身上,这是对基础科学的严重误解。
那么,我们来看看人类研究。
2014年在《自然》杂志上发表了一项研究,研究人员让健康的人类志愿者短期接受植物性饮食或动物性饮食。他们发现独特的肠道微生物群在短短三天内就出现了。
那么他们发现了什么?
动物性生酮饮食的参与者微生物α多样性没有变化。他们发现耐胆汁微生物相对丰度有所增加,如Bilophila、Alistipes、Bacteroides。已知代谢复杂膳食植物纤维的微生物的相对丰度减少,如Roseburia、Eubacteriumrectale、Ruminococcusbromii。
该文作者写道:
研究结果表明,人类肠道微生物组可以在草食性和肉食性功能特征之间快速切换,这可能反映了人类进化过程中过去的选择压力。
我们的祖先吃动物食品可能是不稳定的,依赖于季节和随机的觅食成功;
注意:生酮饮食可能会加剧一些菌过度生长——稍后会详细介绍。
那么,更长期的研究呢?
2017年《微生物学前沿》杂志上发表的一项研究检查了生酮饮食对25名多发性硬化症患者粪便微生物群的长期影响。
多发性硬化症(MS)是一种影响神经系统的自身免疫性疾病,与肠道病变有关。事实上,一些研究人员怀疑肠道菌群失调和肠道通透性可能先于自身免疫的发展。因此,如果生酮饮食可以显著改善多发性硬化症的症状,它可能不太会损害肠道,甚至可能改善肠道健康。
与健康个体相比,多发性硬化症患者在基线时的Roseburia、拟杆菌属和普拉梭菌属数量往往减少。然后他们进行了六个月的生酮饮食。
作者写道:
生酮饮食的影响是双向的。短期内,细菌浓度和多样性进一步降低。他们在第12周开始恢复,并在生酮饮食23-24周后显著超过基线值。
最近发表的一项研究证实,生酮饮食可以改变肠道微生物群的结构和功能。
该小组招募了17名超重和肥胖男性参与研究的第一部分。让他们吃基线控制饮食四个星期,然后再吃四个星期规定的生酮饮食。生酮饮食最显着的变化是,几种双歧杆菌物种丰度的显著减少。
研究人员接下来对小鼠进行了控制喂养研究。相对于传统的高脂肪饮食,生酮小鼠饮食对肠道微生物组具有独特的影响,随着碳水化合物限制的增加,双歧杆菌的丰度减少。进一步的实验发现,生酮饮食或酮酯补充剂都会导致肠腔和结肠组织中β-羟基丁酸的增加。
酮体直接抑制双歧杆菌的生长
有趣的是,这与小肠Th17细胞的减少有关。Th17细胞是T辅助细胞的一个亚群,可产生促炎细胞因子IL-17,作为适应性免疫反应的一部分。这些细胞在维持肠粘膜屏障方面发挥着重要作用,并有助于清除粘膜表面的病原体。然而,Th17细胞也与自身免疫和炎症性疾病有关,包括类风湿性关节炎、多发性硬化症和牛皮癣。
为了完善这个发现,他们将在基线饮食或生酮饮食期间收集的人类捐赠者的粪便,移植到无菌小鼠体内,以确定Th17细胞的变化是否依赖于酮诱导的微生物群变化。接受酮类微生物群的小鼠肠道Th17细胞显著降低。
doi.org/10.1016/j.cell.2020.04.027
有趣的是,与生酮饮食相比,基线饮食的总体胆汁酸池没有变化。
生酮饮食不会破坏肠道粘液层
之前的研究表明,喂食无纤维饮食的小鼠结肠粘液层有显著破坏。然而,在生酮饮食中却没有看到这一点。
尽管缺乏可发酵碳水化合物,生酮饮食仍能保持强健的粘液层。
这是一个关键发现。低碳水化合物者可以放心,如果处于酮症状态,肠道粘液层可能不会破坏。生酮饮食不仅维持了粘液宽度,还维持了肠道粘液主要成分Muc2的表达。
我们现在已经在人类身上看到了大量关于生酮饮食引起肠道微生物组变化的证据,并且看到了生酮饮食如何影响小鼠的肠道微生物群和粘液层。
让我们看看其他一些设计良好的动物研究。
生酮饮食经常用于治疗对药物治疗无反应的癫痫症。虽然生酮饮食非常有效,但几十年来,生酮饮食到底如何给大脑活动带来好处仍然难以捉摸。
然而,ElaineHsiao团队于2018年5月在《细胞》杂志上发表的一项研究表明,生酮饮食对癫痫的有益作用是通过肠道微生物组介导的。换句话说,如果生酮饮食不能改变微生物群,它就不能有效预防癫痫发作。
这项研究是在小鼠癫痫模型中进行的。与之前的研究一样,他们能够证明给小鼠喂食生酮饮食可以保护它们免受癫痫发作。
然而,他们进一步证明,用广谱抗生素治疗小鼠会消除对癫痫发作的保护作用。同样,在无菌培养箱中饲养且没有肠道微生物组的无菌小鼠,即使在食用生酮饮食时也无法预防癫痫发作。
doi.org/10.1016/j.cell.2018.04.027
有趣的是,本研究中的生酮饮食降低了微生物多样性,但增加了Akkermansiamuciniphila(简称AKK菌)和副拟杆菌(Parabacteroides)丰度。
Nature|AKK菌——下一代有益菌
研究人员想知道这两种微生物是否负责癫痫发作保护,并尝试用阿克曼氏菌和副杆菌来治疗喂食正常高碳水化合物食物的小鼠。令人惊讶的是,这可以防止癫痫发作。
进一步的机制实验发现了一条细菌途径,该途径提高了大脑中抑制性神经递质GABA与兴奋性神经递质谷氨酸的比例。GABA可以镇静大脑的活动,因此这可以解释癫痫发作的减少,也可以解释为什么许多人发现生酮饮食有助于减少焦虑。
兴奋神经递质——谷氨酸与大脑健康
癫痫中的微生物群-肠-脑轴
DingM,etal.FrontImmunol.2021
你可能会问,如果没有任何可发酵碳水化合物,肠道如何生存?
丁酸盐对免疫功能的调节作用
我们需要定期供应丁酸盐来维持肠道屏障功能吗?
如何通过喂养菌群产生丁酸调节人体健康
有三种分子可以替代丁酸:异丁酸、乙酰乙酸、β-羟基丁酸。
异丁酸替代丁酸,刺激肠道受体
异丁酸是蛋白质发酵的代谢产物,其产生量通常低于丁酸。当丁酸较少时,异丁酸可以被肠上皮细胞从肠腔吸收并代谢为能量。前面提到的2014年研究发现,食用动物性生酮饮食的人类粪便异丁酸含量升高。
此外,异丁酸可以刺激肠道中与丁酸相同的受体(GPR41、GPR43和GPR109a),从而刺激粘液分泌、抗菌肽释放和免疫调节。
异丁酸浓度不足,效力来补
虽然中等高蛋白饮食中产生的异丁酸水平可能低于高碳水化合物饮食中产生的丁酸水平,但异丁酸已被证明是GPR41(FFAR3)的更强效刺激剂,这是丁酸的主要受体之一。换句话说,异丁酸在浓度上的不足,但在效力上可能弥补了这一不足。
乙酰乙酸和β-羟基丁酸(βHB)
是肝脏产生的两种主要酮体。与丁酸盐一样,βHB也可以刺激GPR109a,减少肠道炎症。然而,最值得注意的是,βHB和乙酰乙酸都是丁酸代谢途径中的中间体。
换句话说,当丁酸盐被肠道上皮细胞吸收时,它实际上首先转化为βHB,然后转化为乙酰乙酸,然后进一步分解为能量。参考下图:
编辑
已知肠道上皮细胞在基底外侧表面(最靠近血流的细胞一侧)表达单羧酸转运蛋白MCT1。MCT1可以转运酮,并且特别在使用酮体获取能量的细胞中表达。几篇论文表明,肠道上皮细胞确实能够利用血管床中的酮体。
酮体与丁酸盐在肠道健康中的角色
使用酮代替丁酸盐的能力可能看起来没有优势,但考虑到许多肠道发炎的人都存在粘膜损伤,丁酸盐的吸收受损。
那么这意味着什么呢?如果你有一个健康的微生物群和肠黏膜,丁酸可能足以应对你肠道的所有需求,不需要酮体。
但是,如果你:
尝试治疗性营养生酮来支持肠道上皮细胞代谢,至少在治疗潜在的肠道病理和治愈肠道粘膜之前是这样。
生酮饮食在治疗肠道疾病中的应用
可惜,很少有研究是针对克罗恩病、溃疡性结肠炎或肠易激综合症的生酮饮食。
一份病例报告发现,旧石器时代的生酮饮食使一名患有严重克罗恩病的小男孩完全缓解。
第二份病例报告发现,补充酮酯的低碳水化合物饮食可显著减少克罗恩病患者的炎症并提高生活质量。
另一项针对13名腹泻型肠易激综合征(IBS-D)患者的研究发现,10名患者在4周生酮饮食期间症状得到缓解。
有趣的是,许多溃疡性结肠炎的患者发现生酮饮食可以缓解症状。
目前极少有研究评估酮或生酮饮食对肠道屏障功能的影响,在这方面可进一步研究。
鉴于生酮饮食相当严格,许多人开始使用酮酯或盐来实现酮症。其他人可能会在生酮饮食的基础上使用酮酯或盐来达到更深层次的酮症状态。
酮酯或酮盐对肠道微生物和丁酸盐水平的潜在影响
有趣的是,一些体外数据表明,至少在某些个体中,酮酯或酮盐可能会增加肠道丁酸盐水平。《科学报告》2020年发表的一项研究调查了体外发酵室中12种人类粪便微生物群样本的β-羟基丁酸盐的动态。
在其他五个粪便样本(βHB非利用者)中,只有不到19%的BHB被代谢,并且粪便丁酸盐没有变化。
作者推测:
微生物正在将βHB转化为丁酸盐
另一种可能的机制是通过激活PPAR-γ并维持肠道低氧状态,这反过来又会支持肠道中的产丁酸菌。
一项由麻省理工学院的一组研究人员在2019年末发表在《细胞》杂志上的研究发现:
酮体信号调节了肠干细胞的正常功能及其对伤害的响应能力
肠道上皮广泛折叠,上皮表面有峰(绒毛)和谷(隐窝)。肠道干细胞(ISC)位于每个隐窝的底部,负责每隔几天更新整个肠道上皮或修复损伤。
肠道干细胞受到许多影响其发育的不同生长因子的严格控制。之前的研究表明,膳食营养素在决定肠道干细胞功能方面发挥着重要作用,但尚未有人研究酮体及其潜在作用。
ChengCWetal.,cell,2019
酮体生产酶HMGCS2对肠道健康的影响
研究小组首先发现,生成酮体的酶HMG-CoA合成酶2(HMGCS2)在小肠干细胞中富集。HMGCS2存在于许多不同的组织中,已知可以限制酮的形成速率。
消除肠道中的Hmgcs2基因会降低隐窝中的β-羟基丁酸水平,并损害干细胞功能以及后肠道上皮的再生。给予外源性(补充)βHB可挽救干细胞功能并部分恢复肠道再生。
生酮饮食对肠道干细胞和上皮再生的影响
他们接下来研究了生酮饮食的影响,发现它增加了HMGCS2表达、ISC数量、功能和损伤后再生。相比之下,补充葡萄糖的饮食抑制了肠道干细胞的生酮作用,并使干细胞向杯状细胞和潘氏细胞倾斜分化。
值得注意的是,一旦干细胞分化为成熟的上皮细胞并迁移出隐窝,它们就表达很少的HMGCS2。这表明成熟的上皮细胞不具备通过经典生酮途径(通过两个乙酰辅酶A分子的缩合)产生大量酮的能力,尽管我们了解到它们确实有能力利用酮。
因此,如果我们在生酮饮食中看到成熟肠上皮细胞中存在高水平的酮,并且这些酮不是在成熟的上皮细胞中产生的,那么酮几乎肯定来自循环。
沿着这些思路,作者写道:
避免高脂肪饮食的另一个常见论点是,它们会增加肠道对脂多糖(LPS)的吸收。LPS是一种存在于革兰氏阴性细菌细胞壁中的分子。如果它进入循环,可能会引起低度的全身炎症。
要真正理解这一机制,我们需要了解一下:
脂肪是如何消化和吸收的?
当我们吃脂肪时,小肠中的特殊细胞会释放一种叫胆囊收缩素(CCK)的激素。胆囊收缩素刺激胆囊分泌胆汁进入小肠。在这里,胆汁酸包围脂肪分子,帮助它们变成水溶性的(就像洗洁精有助于乳化油一样)。
人体胆汁酸的肠肝循环
CollinsSL,etal.NatRevMicrobiol.2023
LPS的肠道吸收与运输
事实证明,LPS对这些称为胶束的水溶性包裹具有很高的亲和力。胶束最终扩散到肠上皮,在那里它们的内容物(包括LPS)被肠上皮细胞吸收。上皮细胞将脂质和脂多糖重新包装成乳糜微粒,然后乳糜微粒可以通过淋巴管(携带免疫系统淋巴的血管)输送到肝脏。
关于高脂饮食增加LPS吸收的思考
当我们摄入更多的长链脂肪酸时,我们的身体就会产生更多的乳糜微粒,因此更多的脂多糖可以以这种方式搭便车。事实上,富含脂肪的膳食已被证明可以适度增加小鼠和人类的血清LPS水平。
虽然这绝对是一个真实的现象并且值得考虑,但其实这个问题不大,原因如下:
LPS吸收的增加可以减少肠道粘膜的炎症
首先,一些研究表明,乳糜微粒运输LPS可能具有优势,因为它有利于肝脏清除LPS,从而降低LPS的毒性。此外,乳糜微粒还具有灭活LPS的先天能力。总而言之,LPS吸收的增加可以减少肠道粘膜的炎症。
乳糜微粒诱导的LPS吸收与肠漏相比——小巫见大巫
这一点尤其重要,因为全身接触LPS的主要方式不是通过脂肪吸收,而是通过肠漏。当肠道具有渗透性时,大量脂多糖会渗漏到粘膜下层和血液中,引起局部肠道免疫反应和全身炎症。
换句话说,与完全的肠道通透性相比,乳糜微粒诱导的LPS吸收可能只是杯水车薪。事实上,对于那些患有严重肠道渗透性的人来说,乳糜微粒诱导的LPS解毒甚至可以减少炎症,足以促进肠道上皮的愈合。
生酮饮食的受试者全身炎症减轻
反过来说,如果脂肪诱导的LPS吸收是一个问题,那些食用高脂肪生酮饮食的人会出现全身炎症增加?
实际上相反,接受生酮饮食的受试者几乎普遍出现全身炎症减轻的情况。
不必担心高脂肪饮食缺乏丁酸盐或增加LPS的吸收。在下一节中,我们将了解胆汁酸如何促进肠道健康。
一些人还认为,高脂肪饮食可能对肠道微生物群和肠道屏障有害,因为它会刺激胆汁酸分泌增加。一般来说,吃的脂肪越多,释放到小肠的胆汁就越多。
事实上,一些研究表明,肠道屏障持续暴露于高浓度胆汁酸会导致肠道通透性增加。然而,生理剂量的胆汁酸已被证明可以支持屏障功能,诱导杯状细胞分泌粘液,促进上皮细胞迁移,并增强肠道先天免疫防御。
胆汁酸介导的肠道屏障功能调节
LarabiAB,etal.GutMicrobes.2023
胆汁酸还具有抗菌特性,有助于调节肠道微生物群,尤其可以防止小肠菌群失调。多项研究还表明,胆汁酸可激活肠内分泌细胞释放血清素,从而有助于促进肠道蠕动。
篇幅有限,每种类型的结合和解结合胆汁酸的来龙去脉就不详细阐述了,总的来说,没有足够的证据表明,生酮饮食中胆汁酸的生理增加对肠道微生物群或肠道屏障功能有害。
肉食动物饮食有时候被吹捧为治疗多种疾病的灵丹妙药。虽然全肉饮食作为短期治疗饮食可能是有益的,而且许多人的症状得到改善,但有关这种饮食方法的长期安全性的数据有限。
理论上,假设你从鼻子到尾巴吃遍动物的所有部分,从动物性饮食中获取所有营养素是可能的。有趣的是,上面提到的研究中的短期动物性饮食与维生素生物合成细菌基因表达的增加有关。作为低残渣饮食,肠道炎症的减少也可能在短期内改善营养状况。然而,我们对肉食动物饮食如何长期影响营养状况、激素、生育能力和甲状腺功能知之甚少。
此外,没有证据表明任何祖先只吃肉类或植物为生。即使是因纽特人和生活在极北纬度地区的其他人群,也会不遗余力地采集植物,或以其他方式提高他们的生育能力。
韦斯顿·普莱斯(WestonA.Price)在他的著作《营养与身体退化,原始与现代饮食及其影响的比较》中写道:
在北极圈附近驼鹿国家的印第安人中,六月份出生的孩子比例最高。
这是通过父母双方在雄性驼鹿从高山地区下来进入交配季节时,大量食用雄性驼鹿的甲状腺来实现的,此时喉咙下方携带甲状腺的大突起大大增大。
换句话说,这些文化有传统智慧,可以用其他动物的甲状腺进行自我用药,以弥补由于缺乏植物性食物而导致的生育能力下降。大多数现代“肉食动物”并没有这样做,许多人只吃肌肉。
话虽如此,相信在大多数情况下,治疗性生酮饮食可能同样有效,并且需要完全食肉来缓解症状,这是潜在肠道感染的一个迹象。一旦解决了这个问题,理想的饮食可能包括某种形式的植物性食物。
看到这里,希望你已经感觉到生酮饮食对于肠道健康来说一般没有什么可担心的。但这里确实有一个潜在的警告要聊,那就是硫化氢过度生长的个体。
硫化氢(H2S)是一种无色气体,通常在体内产生,在低浓度下可作为重要的信号分子。
哺乳动物细胞硫化氢的生物合成
doi.org/10.3390/microorganisms3040866
然而,某些肠道细菌也会产生硫化氢,这些细菌的过度生长会导致硫化氢过量。H2S与腹泻、肠道过敏、IBS、IBD和结直肠癌有关。
人类肠道中最常见的H2S产生者是Desulfovibrio、Bilophilawadsworthia和Fusobacternucleatum。这些细菌往往在富含动物蛋白和脂肪的饮食中大量繁殖。
因此,如果有H2S过度生长,最好避免食用生酮饮食,解决了这个问题肠道重新平衡之后再尝试。
注:营养食品多酚(浆果提取物)可将H2S氧化为有效的抗氧化多硫化物,从而引发细胞保护作用。该机制表明,多酚会自动氧化为相应的半醌类物质,然后与H2S反应生成巯基,最终形成多硫化物和硫代硫酸盐。
那H2S过度生长的人适合什么饮食呢?一般来说,高纤维、以植物为主的地中海饮食实际上可能最适合。
肠道气体带来什么影响,饮食如何对其产生作用?
总而言之,没有明确的证据表明精心设计的高脂肪或生酮饮食对肠道微生物群或肠道屏障功能有害。事实上,生酮饮食带来的肠道微生物群和肠道屏障的变化甚至可能是我们从生酮饮食中看到如此多益处的原因。
此外,我们并不真正知道健康的肠道微生物群是由什么构成的,而酮和异丁酸酯可以取代丁酸。一些病例报告表明,生酮饮食可以减少IBS和IBD患者的炎症并改善生活质量。
就肠道健康而言,生酮饮食也有正确和错误的方法。下面两种饮食为肠道带来的治疗效果不同:
就此而言,以下是在食用高脂肪或生酮饮食时遵循肠道健康的一些建议:
如牛油果、牛油果油、橄榄油、多脂鱼、椰子油、放牧酥油、黄油、牛脂等。尽量摄入单不饱和脂肪、多不饱和脂肪和饱和脂肪的混合物。避免高度脂肪加工和精炼油,如菜籽油、玉米油和大豆油。
如果计划长期保持生酮饮食,建议在采用生酮饮食1-2个月后检查一下完整的心血管概况。一小部分人的低密度脂蛋白LDL数量会增加,可能需要调整脂肪摄入量或考虑改良生酮饮食,以确保他们不会增加心血管风险。
2)吃非淀粉类蔬菜
不一定需要丁酸盐并不意味着应该减少蔬菜的摄入量。尝试购买各种类型和颜色的生蔬菜和熟蔬菜。
3)多吃浆果
4)喝咖啡,吃可可
多酚可促进有益细菌的生长,可以适量饮用咖啡和可可。具有严重肠漏或自身免疫性疾病的患者最初可能需要避免这些食物。
5)考虑营养密度,从头到尾吃
食用内脏、贝类、海鲜,并确保富含蛋氨酸的肌肉与富含甘氨酸的动物食品(如胶原蛋白和骨头汤)之间的平衡。
6)亲自实践找到最佳方案
了解生酮是否适合自己的最佳方法是尝试几周,看看感觉如何。特别注意自身能量、皮肤、情绪、生产力、消化、排便等方面。
7)灵活选择生酮饮食
没有必要无限期地处于生酮饮食状态。通过保持20-120克的碳水化合物摄入量(取决于自身活动水平),可以轻松地进入和退出生酮状态。实际上,这可能有助于肠道和微生物组保持最高的代谢灵活性。
全面的粪便测试是指除了标准粪便培养之外还可以提供有关肠道健康的更详细信息的任何测试。通常提供以下信息:
而肠道菌群检测使用更彻底的DNA测序来更细微地了解到菌属层面的肠道细菌的整体平衡。
谷禾肠道菌群检测还通过复杂的模型构建及大数据分析等方式解读人体健康状况,除了菌群详情之外,还包括疾病风险,营养构成,药物代谢等综合信息。
全面的粪便测试和肠道菌群检测都很有用,它们通常可以相互补充。
哪些人需要全面的粪便或肠道菌群检测?
如果感觉自己有以下症状或一些健康小问题,可能会需要肠道菌群检测:
消化问题、胃酸反流、胀气或腹胀、腹痛、便秘、腹泻、肠易激综合症、炎症性肠病、憩室炎、体重快速增加或减轻等。
患有肠道外其他症状的人也可以进行粪便和/或微生物组检测,例如:
食物不耐受、湿疹或荨麻疹、粉刺、情绪紊乱、抑郁或焦虑、疲劳、失眠、脑雾、关节疼痛、慢性鼻窦问题或过敏、哮喘、痛风等。
这些检测可以帮助自己了解肠道菌群的状况,为制定个性化的治疗方案提供重要参考。
SinghSB,LinHC.HydrogenSulfideinPhysiologyandDiseasesoftheDigestiveTract.Microorganisms.2015Nov12;3(4):866-89.
AustinGL,DaltonCB,HuY,MorrisCB,HankinsJ,WeinlandSR,WestmanEC,YancyWSJr,DrossmanDA.Averylow-carbohydratedietimprovessymptomsandqualityoflifeindiarrhea-predominantirritablebowelsyndrome.ClinGastroenterolHepatol.2009Jun;7(6):706-708.e1.
CignarellaF,CantoniC,GhezziL,SalterA,DorsettY,ChenL,PhillipsD,WeinstockGM,FontanaL,CrossAH,ZhouY,PiccioL.IntermittentFastingConfersProtectioninCNSAutoimmunitybyAlteringtheGutMicrobiota.CellMetab.2018Jun5;27(6):1222-1235.e6.
Zambrano-ZaragozaJF,Romo-MartínezEJ,Durán-AvelarMdeJ,García-MagallanesN,Vibanco-PérezN.Th17cellsinautoimmuneandinfectiousdiseases.IntJInflam.2014;2014:651503.
OlsonCA,VuongHE,YanoJM,LiangQY,NusbaumDJ,HsiaoEY.TheGutMicrobiotaMediatestheAnti-SeizureEffectsoftheKetogenicDiet.Cell.2018Jun14;173(7):1728-1741.e13.
DavidLA,MauriceCF,CarmodyRN,GootenbergDB,ButtonJE,WolfeBE,LingAV,DevlinAS,VarmaY,FischbachMA,BiddingerSB,DuttonRJ,TurnbaughPJ.Dietrapidlyandreproduciblyaltersthehumangutmicrobiome.Nature.2014Jan23;505(7484):559-63.
ClemensZ,KelemenA,FogarasiA,TóthC.Childhoodabsenceepilepsysuccessfullytreatedwiththepaleolithicketogenicdiet.NeurolTher.2013Sep21;2(1-2):71-6.
SasakiK,SasakiD,HannyaA,TsubotaJ,KondoA.InvitrohumancolonicmicrobiotautilisesD-β-hydroxybutyratetoincreasebutyrogenesis.SciRep.2020May22;10(1):8516.
嗜胆菌属
嗜胆菌属(Bilophila)是变形菌门,脱硫弧菌科的一种厌氧、革兰氏阴性、耐胆汁、过氧化氢酶阳性杆菌。目前通过数据库发现在越来越多的人群,尤其男性,甚至低龄儿童中检出了高丰度的该菌。
该菌被认为是“喜欢动物脂肪喜欢胆汁”的微生物——在以动物为基础的饮食,尤其富含肉类和乳制品脂肪时,其肠道中Bilophila丰度会增加和积累。
目前为止,该属下研究最多和证据充分的菌种是沃氏嗜胆菌(Bilophilawadsworthii,B.wadsworthii),它是从穿孔和坏疽性阑尾炎患者的临床材料中回收的第三大最常见的厌氧菌。
Bilophila是机会致病菌,其丰度的增加的负面影响对肠道炎症的影响已经得到证实,B.wadsworthia与高脂肪饮食协同促进更高炎症反应、肠屏障功能障碍和胆汁酸代谢异常,导致更高的葡萄糖代谢异常和肝脂肪发生。
2021年《Cell》子刊最新研究发现生酮饮食会加剧间歇性缺氧引起的认知障碍,并认为这是由肠道菌群介导的。在生酮饮食和间歇性缺氧的双重条件下,Bilophila大量繁殖富集,进而对海马体功能造成损伤,增加认知障碍风险。
此外,证据显示Bilophila在便秘,白赛病,重症感染,脑脓肿,帕金森,结直肠癌,卵巢癌患者中增加。
但是Bilophila属中的一些物种是有用的共生细菌,促进宿主新陈代谢并有利地塑造免疫反应。来自mSystems上发表的一项最新研究,发现Bilophila的基因组中存在遗传密码扩张现象,使三甲胺(TMA)甲基转移酶中的一个终止密码子可编码吡咯赖氨酸,从而导致嗜胆菌属可代谢TMA且不产生氧化三甲胺(TMAO)。该研究提示,嗜胆菌属可能通过“绕行”TMAO的生成,以降低动物性饮食诱导的心血管疾病风险,但是这一结论需要更多的样本支持和验证。
Bilophila作为正常菌群存在于人类粪便中,偶尔也存在于唾液和阴道中。来自人类的分离物通常是β-内酰胺酶阳性,因此该菌对某些β-内酰胺抗生素具有抗药性。部分的菌株也对克林霉素有抗药性。
本文基于文献调查和谷禾数据库讨论和介绍肠道重要菌属——嗜胆菌属(Bilophila)。
嗜胆菌属(Bilophila)是变形菌门,脱硫弧菌科除了脱硫弧菌属(Desulfovibrio)的第二类重要菌属。一种革兰氏阴性厌氧菌,包括B.wadsworthia,可引起腹腔内和其他感染。
Bilophila属下代表物种是:Bilophilawadsworthia。该菌最初从坏疽和穿孔性阑尾炎患者的感染中分离出来。后来在包括来自阴囊脓肿、下颌骨髓炎和腋窝化脓性汗腺炎的胸水、关节液、血液和脓液的临床组织样本中也逐渐发现。
Bilophilawadsworthia是一种革兰氏阴性、专性厌氧、过氧化氢酶阳性、耐胆汁和解酶杆菌。单独或成对出现;偶尔观察到长丝。没有观察到孢子形成。菌落宽度约为0.7μm,长1.0-10.0μm,细胞呈多形性,细胞壁不规则,约75%的菌株为脲酶阳性。DNAG+C含量约为59.2。
已鉴定菌种:
Bilophilawadsworthia
Bilophilasp.4_1_30
基于核糖体RNA的系统发育研究表明Bilophila与脱硫弧菌科另外一个成员脱硫弧菌属(Desulfovibrio)物种关系最密切。
基于数据库和文献Bilophila和其他肠道菌属的关系如下图:
代谢牛磺酸,嗜好胆汁
该菌具有呼吸型新陈代谢,化学有机异养和非发酵。代谢蛋白底物,但不代谢碳水化合物。蛋白底物的主要产物是乙酸,含有少量至痕量的琥珀酸。能将硝酸盐还原为亚硝酸盐。
硫化物由含硫氨基酸和亚硫酸盐产生,有时由硫代硫酸盐产生,但Bilophila不会还原硫。过氧化氢酶强阳性。在甲酸盐存在的情况下,B.wadsworthia利用牛磺酸作为电子受体产生乙酸盐并将磺酸盐硫还原为硫化物。
Bilophila是机会致病菌,培养实验等得出硫,蛋白胨,L-牛磺酸,丙酮酸以及胆汁酸是B.wadsworthia扩张的基础。其代谢产物主要为硫化物,硫化氢,乙酸盐,琥珀酸等。
胆汁酸是胆固醇在肝脏分解以及肠肝循环中的一组代谢产物。在肝脏中,牛磺酸与甘氨酸一起用于结合胆汁酸以产生初级胆汁酸。胆汁酸经历肠肝循环,并被微生物群转化为次级胆汁酸。饱和动物源性脂肪先前已被证明可促进牛磺酸结合胆汁酸的产生。至少在高脂环境中,已经提出增加牛磺酸结合胆汁酸的产量是B.wadsworthia扩张的基础。
所有高脂肪喂养小鼠脂多糖(LPS)生物合成和牛磺酸代谢途径的活化显着提高,而涉及氨基酸、糖、淀粉和氮代谢的许多途径显着减少。
B.wadsworthia进一步加剧了高脂饮食情况下的胆汁酸失调,也表明该菌可能加强了高脂饮食诱导的代谢障碍和宿主功能障碍,特别是炎症和屏障功能障碍的一种机制。
喜欢动物脂肪和乳脂
小鼠和人类实验表明以动物脂肪和乳源性饱和脂肪为基础的饮食可以增加耐胆汁菌Bilophilawadsworthia.
研究人员称并没有刻意去衡量Bilophila的丰度,但当比较哪种细菌含量增加最快时,Bilophila排在首位。
不同的饮食可以快速且可重复地改变肠道微生物群的组成和功能。
《CellMetabolism》发表了一项研究,发现经常伴随红肉的饱和脂肪,还可能让人变肥胖,脂肪还会出现炎症。与之相反,以鱼肉为代表的白肉所包含的不饱和脂肪则健康很多。线性判别分析(LDA)表明,拟杆菌,Turicibacter和嗜胆菌(Bilophila)属细菌在猪油组小鼠肠道中显著增多,而在鱼油组小鼠中,主要是双歧杆菌和另一种菌(Bifidobacterium,Adlercreutzia),乳酸菌(lacticacid)等增加。
当前西方化饮食(低纤维、高糖、高脂肪和高动物蛋白)饮食持续增加粪便中Bilophila丰度,所以在越来越多的人群水平中发现Bilophila的富集。研究表明Bilophila可以将亚硫酸盐还原为硫化氢(H2S气体),诱发炎症以及免疫和代谢障碍。这对那些尝试许多流行的“品牌”饮食(例如生酮、旧石器时代、食肉动物等)的个体具有临床意义。
产生硫化氢
硫代喹诺酮糖是葡萄糖的磺酸衍生物,在菠菜和生菜等所有绿色蔬菜中都能找到。专门的细菌配合利用磺基糖产生硫化氢(H2S)。
这种气体以臭鸡蛋味著称,也对人类健康有不同的影响:在低量的情况下,硫化氢可以对肠黏膜产生抗炎消炎作用。另一方面,肠道微生物产生的硫化氢增多,与慢性炎症性疾病和甚至癌症有关。
Bilophilawadsworthia最终会通过一种新陈代谢途径从二羟基丙烷磺酸盐中产生硫化氢,这种途径也是最近才发现的。
病原菌,与肠道炎症有关
为了解决这些问题,研究用广泛使用的免疫抑制剂环孢素抑制了喂食高脂饮食(HFD)的小鼠的炎症。
发现环孢素(Ci)有效地消除了高脂饮食喂养小鼠的炎症反应,无论它们是否含有低密度或高密度的B.wadsworthia,因此,可以清楚地推断出B.wadsworthia的直接代谢作用。
高脂饮食——B.wadsworthia过度积累
为了更好地确定更高密度的B.wadsworthia是否会影响代谢功能,特意通过灌胃将B.wadsworthia给予小鼠。
结果强调高脂饮食不是B.wadsworthia在宿主肠道中茁壮成长所必需,但却是B.wadsworthia的持续增长必不可少的。这个结果比较有意义,表明B.wadsworthia的过度积累离不开高脂饮食的喂养。
因此,一个关键问题是:
B.wadworthia如何影响两种相反的病理?
通过药理学抑制炎症,揭示了B.wadsworthia直接诱导对宿主代谢功能的负面影响的能力。
具体来说,不同的代谢障碍,即葡萄糖清除率降低和脂肪肝表型,受B.wadworthia的影响,它们并不完全依赖于其促炎特性。
尽管如此,B.wadworthia驱动的炎症仍然是一个重要因素,它进一步使平衡向更强的代谢功能障碍倾斜。因此,这可以解释为什么B.wadworthia能够在两种截然不同的环境中发挥病态作用。
导致认知障碍
2021年cell最新研究,喂食生酮饮食并间歇性缺氧的小鼠的肠道微生物群中,嗜胆菌属(Bilophila)的细菌浓度急剧增加。他们还发现,沃氏嗜胆菌(Bilophilawadsworthia)沃氏嗜胆菌损害海马体,导致小鼠的认知能力下降。
减轻心血管疾病
目前导致心血管疾病(CVD)发生的心血管风险因素并没有减少,反而在增加。因此,想要防止这种疾病发生,仅靠控制传统风险因素是不够的。虽然许多二级预防患者的传统风险因素控制较好,但仍会出现新的心血管事件。
已证实肠道菌群导致胆汁酸功能性改变,决定了其与法尼酯X受体或G蛋白偶联胆汁酸受体(TGR5)等潜在受体的结合。
来自mSystems上发表的一项最新研究,发现嗜胆菌属(Bilophila)的基因组中存在遗传密码扩张现象,使TMA甲基转移酶中的一个终止密码子可编码吡咯赖氨酸,从而导致嗜胆菌属可代谢TMA且不产生TMAO。
该研究提示,嗜胆菌属可能通过“绕行”TMAO的生成,以降低动物性饮食诱导的心血管疾病风险。这个结果让临床看到了机会,后续这一机制希望能尽快完成临床实验验证。
饮食-肠道微生物群对心血管疾病的相互作用
结直肠癌
根据已有报道发现结直肠癌患者中生成硫化物的细菌增加:
美国黑人的结肠直肠癌发病率显著高于非西裔白人,研究假设:硫酸盐还原菌在结肠粘膜中的丰度可能是导致美国黑人结肠直肠癌发病风险较高的环境因素。
结直肠癌防治新策略——微生物群
白塞病(BD)
贝塞特氏病(Behctet,白塞病,BD)是一是一种顽固的多系统性炎症性疾病,可导致不可逆转的失明。
微生物因子被认为是造成这种疾病的原因,但其潜在机制仍不清楚。来自活动性BD患者的粪便样品富含Bilophilaspp,一种硫酸盐还原细菌(SRB)和一些机会病原体。活跃的BD患者的荚膜多糖转运系统,氧化还原过程,III型和IV型分泌系统也有所增加。
帕金森病进展
重症病人
脑脓肿:病例报告
研究报道了一例20年慢性中耳炎病史的患者并发胆脂瘤和脑脓肿的病例。使用对比材料的CT扫描显示右小脑半球有三个脓肿腔。
胆脂瘤标本的培养物和脑脓肿的脓液中分离出了大量的Bilophilawadsworthia、Bacteroidesfragilis和Prevotellaoris。不存在需氧菌。患者接受了开颅手术,最大的脓肿与胶囊一起被切除。抗菌治疗包括青霉素加甲硝唑和后来的增效素。治疗的结果是患者完全治愈并完全康复。这是在慢性中耳炎和脑脓肿中分离出B.wadsworthia的一个典型案例。
症状性手骨关节炎
降低
菊苣根纤维(低聚果糖和菊粉)是益生元营养素,可滋养有益的肠道微生物,尤其是双歧杆菌。众多人体临床研究表明,这些益生元增加了肠道内的有益双歧杆菌,同时可以减少Bilophila菌。
大枣与巴豆霜合用可减缓巴豆霜的快速利尿作用。研究发现大枣合用高剂量巴豆霜后Bilophila水平降低。巴豆霜为大戟科植物巴豆CrotontigliumL.(CT)的干燥成熟果实经去皮制霜后制得的炮制品,具有峻下冷积、逐水退肿、豁痰利咽、蚀疮的功效。因其有大毒,临床应用受到一定限制。
酵母β-葡聚糖(Y-BG)是一种以其免疫调节作用而闻名的膳食补充剂,在健康小鼠中进行了为期4周的膳食补充剂,发现2%的Y-BG颗粒物诱导强大的肠道微生物群落变化,包括粪便Bilophila丰度的显着减少。
水果和蔬菜富含纤维、维生素B、维生素C、β-胡萝卜素、钾和生物活性化合物,如番茄红素和白藜芦醇。食用水果可以在维持肠道菌群平衡和改善肠道生态方面发挥作用。健康成年人食用十字花科蔬菜(西兰花、花椰菜)显示出拟杆菌门与厚壁菌门的比例呈正变化,硫酸盐还原菌(SRB),包括嗜胆菌和脱硫弧菌丰度下降。
常见水果对肠道菌群、肠道蠕动和便秘的影响
在患有轻度便秘的健康成年人中,食用菊粉可能会导致厌氧菌、嗜胆菌和双歧杆菌的相对丰度发生变化。特别是,食用菊粉后Bilophila丰度的下降与较软的粪便和便秘特异性生活质量指标的有利变化有关。
排便困难?便秘反复?不要忽视肠道菌群
增强
NatividadJM,LamasB,PhamHP,MichelML,RainteauD,BridonneauC,daCostaG,vanHylckamaVliegJ,SovranB,ChamignonC,PlanchaisJ,RichardML,LangellaP,VeigaP,SokolH.Bilophilawadsworthiaaggravateshighfatdietinducedmetabolicdysfunctionsinmice.NatCommun.2018Jul18;9(1):2802.doi:10.1038/s41467-018-05249-7.PMID:30022049;PMCID:PMC6052103.
KivensonV,GiovannoniSJ.AnExpandedGeneticCodeEnablesTrimethylamineMetabolisminHumanGutBacteria.mSystems.2020Oct27;5(5):e00413-20.doi:10.1128/mSystems.00413-20.PMID:33109749;PMCID:PMC7593587.
YaziciC,WolfPG,KimH,CrossTL,VermillionK,CarrollT,AugustusGJ,MutluE,Tussing-HumphreysL,BraunschweigC,XicolaRM,JungB,LlorX,EllisNA,GaskinsHR.Race-dependentassociationofsulfidogenicbacteriawithcolorectalcancer.Gut.2017Nov;66(11):1983-1994.doi:10.1136/gutjnl-2016-313321.Epub2017Feb2.PMID:28153960;PMCID:PMC5575988.
SunY,MaY,LinP,TangYW,YangL,ShenY,ZhangR,LiuL,ChengJ,ShaoJ,QiT,TangY,CaiR,GuanL,LuoB,SunM,LiB,PeiZ,LuH.FecalbacterialmicrobiomediversityinchronicHIV-infectedpatientsinChina.EmergMicrobesInfect.2016Apr6;5(4):e31.doi:10.1038/emi.2016.25.PMID:27048741;PMCID:PMC4855070.
BaronEJ.Bilophilawadsworthia:auniqueGram-negativeanaerobicrod.Anaerobe.1997Apr-Jun;3(2-3):83-6.doi:10.1006/anae.1997.0075.PMID:16887567.
WeiJ,ZhangC,ZhangY,ZhangW,DohertyM,YangT,ZhaiG,ObotibaAD,LyuH,ZengC,LeiG.AssociationBetweenGutMicrobiotaandSymptomaticHandOsteoarthritis:DataFromtheXiangyaOsteoarthritisStudy.ArthritisRheumatol.2021Sep;73(9):1656-1662.doi:10.1002/art.41729.Epub2021Aug6.PMID:33760399;PMCID:PMC8457181.
LeiteG,PimentelM,BarlowGM,ChangC,HosseiniA,WangJ,ParodiG,SedighiR,RezaieA,MathurR.Ageandtheagingprocesssignificantlyalterthesmallbowelmicrobiome.CellRep.2021Sep28;36(13):109765.doi:10.1016/j.celrep.2021.109765.PMID:34592155.
MarinaM,IvanovaK,FichevaM,FichevG.Bilophilawadsworthiainbrainabscess:casereport.Anaerobe.1997Apr-Jun;3(2-3):107-9.doi:10.1006/anae.1997.0084.PMID:16887572.
ChenY,ZhangS,ZengB,ZhaoJ,YangM,ZhangM,LiY,NiQ,WuD,LiY.Transplantofmicrobiotafromlong-livingpeopletomicereducesaging-relatedindicesandtransfersbeneficialbacteria.Aging(AlbanyNY).2020Mar16;12(6):4778-4793.doi:10.18632/aging.102872.Epub2020Mar16.PMID:32176868;PMCID:PMC7138539.
WuYT,ShenSJ,LiaoKF,HuangCY.DietaryPlantandAnimalProteinSourcesOppositelyModulateFecalBilophilaandLachnoclostridiuminVegetariansandOmnivores.MicrobiolSpectr.2022Apr27;10(2):e0204721.doi:10.1128/spectrum.02047-21.Epub2022Mar14.PMID:35285706;PMCID:PMC9045121.
SoSY,WuQ,LeungKS,KundiZM,SavidgeTC,El-NezamiH.Yeastβ-glucanreducesobesity-associatedBilophilaabundanceandmodulatesbileacidmetabolisminhealthyandhigh-fatdietmousemodels.AmJPhysiolGastrointestLiverPhysiol.2021Dec1;321(6):G639-G655.doi:10.1152/ajpgi.00226.2021.Epub2021Oct13.PMID:34643089.
本篇涵盖了三大块内容,包括:
AlanJ.Kimetal.,CancerTreatmentReviews,2022
地中海饮食模式,其特点是大量摄入水果、蔬菜、豆类、橄榄、全谷物、不饱和脂肪、坚果和鱼类;适度饮酒;减少红肉和加工肉类以及高脂肪乳制品的摄入,对减少炎症,改善心血管健康,抗肥胖,改善血脂以及对肠道菌群和免疫调节有积极作用。
↓↓降低心源性猝死
在一项大型前瞻性研究中,调查了激素替代疗法、钙和维生素D或饮食调整对健康绝经后妇女的影响,发现地中海饮食模式与降低心源性猝死的风险有关。
↓↓减轻妇科肿瘤患者症状
一项对22名接受铂类化疗的妇科肿瘤患者的观察研究表明,坚持地中海饮食的患者胃肠道毒性较小,恶心、胃痛、腹胀和干扰日常活动的频率和严重程度差异有统计学意义。
↓↓延缓肿瘤进展
例如,在一项临床前研究中证明,禁食条件增加了对化疗药物的敏感性,并延缓了肿瘤的进展。还有人发现,在荷尔蒙受体阳性乳腺癌的小鼠模型中,周期性禁食或类似禁食的饮食(FMD)可增强激素治疗的活性(如他莫昔芬和氟维司群),并通过降低循环中胰岛素、瘦素和IGF1的水平以及抑制AKT-mTOR信号传导来促进长期的肿瘤消退。
↓↓提升生活质量
在一项针对131名HER2阴性的II/III期乳腺癌患者的II期临床研究证实了4天FMD的潜在益处。在新辅助化疗前3天和新辅助化疗当天,接受了植物性、低氨基酸替代饮食(包括肉汤、汤、液体、维生素片和茶)的患者报告称,与对照组(常规饮食)相比,总体幸福感有所提高,情绪、身体、认知和社会功能都有所改善。
据报道,FMD是安全可行的,可以减少脂肪量,降低循环中胰岛素生长因子1、胰岛素和瘦素的水平。禁食强烈影响新陈代谢和细胞途径,导致循环中类胰岛素一号生长因子(IGF-1)和葡萄糖水平下降。这些变化反过来影响几个癌基因,包括RAS和AKT信号通路,导致细胞生长和增殖的下调。
禁食和FMD(低卡路里、低蛋白质和低糖的饮食)可能与减少化疗副作用有关,即当营养素缺乏时,正常细胞,而不是肿瘤细胞,可以切换到抑制生长和增殖途径的保护模式,这一过程被称为差异应激抵抗。
↓↓增强免疫
此外,禁食和/或FMD已被证明可以增强免疫系统,减少炎症,减缓小鼠的骨密度损失,并减少HER2阴性的II期乳腺癌患者化疗引起的淋巴细胞DNA损伤。
生酮饮食的特点通常是碳水化合物消耗量低,占每日总热量摄入量的5%-10%,但其他产生能量的大量营养素,即脂肪和蛋白质的含量却不同。生酮比用来定义饮食的生酮能力,定义为脂肪克数与碳水化合物和蛋白质克数之和的比值。
在癌症中研究最多的生酮饮食包括经典生酮饮食(CKD),其特征是生酮比为4:1或3:1,每日87%-90%的热量来自脂肪)和中链甘油三酯生酮饮食[MCTKD,其中30%-60%的总热量来自中链脂肪酸,如己酸(C6)、辛酸(C8)、葵酸(C10)和月桂酸(C12)]。
↓↓血糖,体重更可控,生活质量高
在接受放化疗和辅助化疗的胶质母细胞瘤患者中,那些生酮饮食患者的血糖水平低于那些标准饮食的患者。有人研究发现,在接受放疗的非转移性乳腺癌患者中,以天然食物为基础的生酮饮食与未指定标准饮食相比,体重和脂肪减少得更多,生活质量水平更高。
↓↓注意高脂肪生酮饮食的副作用
因此,根据目前对营养的理解,接受癌症治疗的患者的饮食应该包括所有的常量营养素,以降低营养不良的风险。
膳食纤维还可以促进健康的肠道菌群,从而降低毒性并增强治疗效果,例如纤维与促进免疫的普拉梭菌和短链脂肪酸丁酸盐的有关。有人发现在黑色素瘤患者中,膳食纤维会影响肠道菌群,并与免疫检查点阻断反应的增强有关。
SpencerCN,etal.,Science.2021
tips
对于腹膜癌、肠癌进展或原发性胃肠癌的患者来说,可能需要低膳食纤维饮食,以降低肠梗阻的风险。
增加水果和蔬菜的摄入量与改善胃癌幸存者的身体和认知功能、减少疲劳和食欲不振有关。
水果和蔬菜含有过多的植物化学物质,并且已经检查了几种植物化学物质的影响,并在下表中进行了总结。
例如,葡萄产品的抗氧化和抗炎作用归因于它们的植物化学物质,即芪类、花青素和原花青素,包括白藜芦醇。
其他几种水果,包括黑醋栗、李子、石榴和苹果,已经被证明具有抗癌和细胞毒性作用,这归因于植物化学物质,特别是多酚和黄酮类物质的抗氧化和抗炎作用。
据报道,在70多种植物中发现的一种植物化学物质白藜芦醇可以增加结直肠癌细胞系对化疗药物的敏感性,包括阿霉素、索拉非尼、5-氟尿嘧啶、依托泊苷、丝裂霉素、奥沙利铂和姜黄素。
关于白藜芦醇在该文有详细介绍:
如何调节肠道菌群?常见天然物质、益生菌、益生元的介绍
注意:高剂量(每天>2.5克)会引起轻微的毒性(包括腹泻、胃肠道症状和前额头痛),即使在健康的人身上也是如此。
其他多酚也可能具有抗炎和抗氧化作用。
槲皮素是浆果中一种常见黄酮醇,它通过作用于炎症介质,包括白细胞介素6、白细胞介素8、干扰素γ、诱导型一氧化氮合酶、环氧合酶2和肿瘤坏死因子α来诱导抗炎作用,并在对促凋亡刺激敏感的癌细胞系中提供促凋亡作用。
非瑟素是一种存在于草莓、苹果和柿子中的类黄酮类化合物,在结构上与槲皮素相似,具有类似的抗炎和抗癌活性。
番茄红素是番茄和红色水果(包括木瓜和西瓜)中的一种植物化学物质,具有高抗氧化活性,并通过减少氧化应激以及染色体和膜的异常来减轻致癌损害。此外,番茄红素具有神经保护作用,并被认为可以通过减少氧化应激和神经炎症来预防神经毒性。
喝茶,尤其是绿茶,与抗癌作用、减轻药物引起的毒性以及对化疗药物的敏感性有关。
↓↓抑制继发性肿瘤
茶中存在的儿茶素在促进健康的作用中起着重要作用。表没食子儿茶素没食子酸酯在体外和体内乳腺癌模型中显示了抗氧化和抗炎活性(尤其是在他莫昔芬诱导的氧化应激情况下),能够抑制头颈部或盆腔癌症患者的放射性皮炎,并抑制继发性肿瘤的继发发展。
↓↓防止辐射带来的不良反应
据报道,表没食子儿茶素没食子酸酯还可用于预防暴露于γ辐射或以顺铂为基础的治疗后的唾液腺细胞功能障碍,防止辐射引起的不良血液学变化(如贫血、血小板减少),以及预防博莱霉素引起的肺纤维化。
↓↓减少药物引起的毒性
此外,表没食子儿茶素没食子酸酯可减少伊立替康治疗期间的胃肠紊乱、顺铂引起的肾毒性和耳毒性,以及阿霉素和柔红霉素治疗引起的心脏毒性。
在药物致敏方面,绿茶显示了许多与化疗的协同作用,其中一些包括与4-羟基他莫昔芬联合使用可以提高细胞毒性水平,通过降低大B细胞淋巴瘤(Bcl-xL)基因(编码抗凋亡蛋白)的表达使得MCF7细胞对5-氟尿嘧啶增敏,以及4只接种T1的Balb/c小鼠对紫杉醇的敏感性。这种致敏作用通过降低所需化学治疗药物的剂量有效地降低了药物引起的毒性的严重程度。
有研究表明,在被诊断患有早期浸润性乳腺癌的女性中,高脂牛奶与乳腺癌、全因和非乳腺癌死亡率的增加有关,以及与绝经前妇女乳腺癌进展的风险增加有关。
↓↓减少化疗引起的毒性
一项随机临床试验表明,在宫颈癌患者(n=40)中,补充鱼油可以减少化疗引起的毒性,如厌食、恶心、口干和味觉障碍。一项对88例癌症患者补充精氨酸、谷氨酸和鱼油的研究表明,补充精氨酸、谷氨酸和鱼油可显著减少3-4级血液毒性,并提高两年总生存率。
↓↓增强抗肿瘤作用
一些体外和体内研究表明,与单纯化疗相比,化疗期间给予EPA和DHA可以增强抗肿瘤作用,减少化疗对正常组织的毒性,抑制全身炎症,改善癌症患者的营养状况。同样,在紫杉醇和顺铂/卡铂治疗期间,在等卡路里饮食中添加EPA与非小细胞肺癌患者的疲劳减轻、食欲改善和化疗引起的神经病变减少有关。
↓↓omega-3脂肪酸减少化疗毒性
尽管omega-3脂肪酸在临床试验中显示出了益处,但在临床前模型中,omega-3脂肪酸十六碳-4,7,10,13-四烯酸已证明可以抑制铂化合物的肿瘤导向细胞毒性,这可能会对患者造成潜在的伤害。
因此,在建议临床食用鱼油之前,有必要进一步研究普通鱼油成分与纯化的EPA/DHA对特定化疗药物的细胞毒性的影响。
↓↓姜黄油降低化疗4级毒性发生率
姜黄油具有保肝作用,并缓解刀豆蛋白A诱导的氧化应激和炎症,从而减少人类患者的多种症状和毒性。同样,与其他草本物质:发酵大豆提取物、绿茶提取物、樟芝菌丝体、螺旋藻和葡萄籽提取物相结合,可显著降低接受亚叶酸钙/5-氟尿嘧啶化疗患者的4级毒性发生率。
↓↓姜黄/姜黄素减轻粘膜炎严重程度
一项评估的结论是,局部应用姜黄和姜黄素可以控制接受化疗和/或放疗的癌症患者的口腔粘膜炎,而接受姜黄/姜黄素治疗的患者报告称疼痛较轻,红斑强度较低,溃疡区域较少。一项评估32名接受放射治疗的头颈部癌症患者的临床试验也得出结论,口服纳米胶束姜黄素显著减轻了放疗引起的粘膜炎的严重程度。
一项针对绝经后乳腺癌患者的多中心临床试验(n=45)显示,联合应用羟基酪醇(一种在橄榄油中发现的具有强大抗氧化作用的酚类植物化学物质)、omega-3脂肪酸和姜黄素可以减轻患者报告的疼痛,并降低炎症生物标志物的水平。
↓↓姜黄与常见化疗药物的协同/拮抗作用
姜黄素在I期临床试验中协同增强化疗药物FOLFOX(5-氟尿嘧啶、亚叶酸钙、奥沙利铂)和达沙替尼对经FOLFOX处理的HCT116和HT-29细胞有抗增殖作用。
尽管这些结果提示了有希望的进一步研究领域,但对人乳腺癌细胞株(即MCF-7、MDA-MB-231和BT-474)的体外实验表明,姜黄素与以伊立替康或环磷酰胺为基础的化疗之间存在拮抗作用,饮食补充姜黄素可能会抑制基于化疗的肿瘤消退。这些发现表明,需要更多的研究来确定乳腺癌患者是否应该在化疗期间避免补充姜黄素。
↓↓化疗配合谷氨酰胺补充,降低血液学毒性发生率
一项针对接受同步放化疗的癌症患者的随机研究表明,除了常规饮食外,还接受精氨酸、谷氨酰胺和鱼油营养补充剂的患者与未接受补充剂的患者相比,发生3级或4级血液学毒性的发生率较低。
↓↓补硒改善免疫系统
据报道,补硒在脂质过氧化方面具有抗氧化作用,刺激自然杀伤细胞的细胞毒活性,减少肿瘤内血管生成,并在体外改善免疫系统。硒与重金属的解毒作用有关。这些影响的产生可能是因为硒是硒蛋白和酶的重要组成部分,这些硒蛋白和酶有助于抗氧化防御、减少炎症、甲状腺激素产生、DNA合成。
高剂量的硒(>400微克/天)会产生严重的副作用,像指甲变脆、脱发、胃肠功能障碍、皮疹、神经紊乱等。
例如,尽管许多研究表明维生素C补充剂具有潜在的抗癌作用和降低毒性作用,但对接受化疗的癌症患者的维生素C进行的系统审查发现,没有明确的证据表明服用维生素C补充剂可以减少毒性或改善治疗的抗癌效果。
同样,尽管维生素D补充剂已被证明可以预防癌症治疗引起的骨质流失,并恢复许多早期乳腺癌患者经历的维生素D不足,但在各种研究中报告的维生素D的抗肿瘤效果仍然很差。
由于维生素补充剂在癌症治疗期间的效果尚不清楚,强烈建议患者遵守饮食建议,通过水果和蔬菜等天然食物摄入维生素,而不是依赖膳食补充剂。
一个健康人体胃肠道中的各种复杂的微生物群已显示出显著的生理益处,如增强肠道功能和消化能力、抵御病原体和调节免疫力。
虽然“健康”肠道菌群的定义并不明确,但数据表明,具有高度功能冗余度的多样化和稳定的微生物群是健康状态的关键标志。
肠道菌群对癌症患者的治疗反应有显著影响。例如,白血病或淋巴瘤患者在造血干细胞移植后具有高水平的粘液真杆菌,其复发或肿瘤进展的可能性较低。
↓↓肠道菌群失调影响抗PD-L1治疗效果
进一步支持这些发现的是,从应答者和无应答者患者向有免疫活性小鼠的粪便转移导致小鼠对抗PD-L1抗体产生了与相应粪便移植供体相同的反应,从而证明了肠道菌群对抗PD-L1治疗的效果。
↓↓肠道菌群调节化疗的疗效和毒性
化疗药物环磷酰胺和阿霉素能诱导革兰氏阳性菌(约氏乳杆菌、鼠乳杆菌和海氏肠球菌)转移到小鼠的次级淋巴器官中。一旦转移到淋巴器官,微生物就会刺激17型和1型T辅助细胞反应的积累,从而增强免疫反应。
临床前和临床证据都表明,抗生素会降低化疗的疗效。例如,长期使用抗生素已被证明会降低环磷酰胺治疗荷瘤小鼠P815肥大细胞瘤的疗效,支持了肠道细菌易位的重要性。
一项对C57BL/6(B6)和129SvEv(129)小鼠化疗所致周围神经病变的临床前研究表明,肠道细菌在确定紫杉醇诱导的疼痛敏感性中起主导作用;在对紫杉醇诱导的疼痛敏感和抵抗的小鼠之间,观察到肠道微生物群组成的显著差异。
↓↓肠道菌群与胃肠道不良反应的发生率有关
同样,一项针对儿童急性淋巴细胞性白血病患者(n=51)的临床研究确定,化疗期间肠道微生物群的变化与胃肠道不良反应的发生率有关,如全身炎症和肠道粘膜炎。Toll样受体(TLRs)和肠道微生物之间的免疫调节相互作用可能调节结肠的炎症和愈合,防止甲氨蝶呤化疗的毒性。
粘膜炎是一种常见的胃肠道毒性,会导致腹泻、疼痛、体重减轻和剂量限制。例如,伊立替康是一种已知会引起严重腹泻的化疗剂。这种毒性的一种机制可能是某些细菌β-葡萄糖醛酸酶的作用,这些酶已被证明通过将伊立替康的活性代谢物SN-38释放到肠腔中来诱导腹泻。
与这一假设一致,通过喹诺酮类抗生素环丙沙星抑制此类酶可抑制伊立替康治疗小鼠的腹泻,从而证明肠道微生物群的调节可以降低伊立替康的毒性。
因此,相对健康的肠道微生物群可以改善癌症患者的健康,通过增强治疗效果和减少免疫疗法和化学疗法的副作用以及通过免疫调节等方式。
饮食影响肠道微生物种类的组成和多样性。膳食纤维的高摄入量有利于膳食纤维消化细菌的增加。作用机制是消化膳食纤维的细菌产生丁酸等短链脂肪酸,滋养肠道上皮细胞,从而加强肠道黏膜屏障,增强黏膜和全身免疫。
↓↓食品补充剂调节微生物群驱动的化学治疗毒性
从鱿鱼墨汁中提取的多糖在小鼠给药环磷酰胺后可富集双歧杆菌,并减少拟杆菌,从而改善肠道微生物群功能障碍。
人参化合物可以增强化疗药物5-氟尿嘧啶对结直肠癌细胞系的作用,特别是当这些化合物被肠道微生物群菌群代谢时。
鞣花酸,一种常见于草莓、葡萄和黑莓等蔬菜和水果中的多酚,被肠道菌群代谢释放尿石素,这对人类结肠癌具有抗增殖作用。
↓↓益生元和益生菌在癌症治疗中发挥作用
许多动物和人类研究表明,益生元、益生菌在预防化疗期间的粘膜炎方面具有强大的作用。
VSL#3(包括Streptococcusthermophiles,Bifidobacteriumbreve,B.longum,B.infantis,Lactobacillusparacasei,L.delbrueckiisubsp.bulgaricus,L.acidophilus,L.plantarum),在伊立替康治疗期间,减少大鼠腹泻和体重减轻。
L.casei,L.rhamnosus,B.bifidum通过抑制肿瘤坏死因子α、白细胞介素-1b和白细胞介素-6mRNA的表达减少化疗诱导的小鼠腹泻。
鼠李糖乳杆菌GG补充可减少人类大肠癌患者在5-氟尿嘧啶化疗期间的严重腹泻和腹部不适。
在接受化疗的儿童中使用养乐多的短双歧杆菌菌株可预防发烧并减少静脉注射抗生素的频率。
膳食补充益生元低聚果糖和菊粉可放大药物对小鼠的作用(5-氟尿嘧啶、多柔比星、长春新碱、环磷酰胺、甲氨蝶呤、阿糖胞苷),从而证明了益生元与化疗之间的协同作用。
人们对肠道菌群的性质和对癌症治疗的影响也越来越感兴趣。期待更大样本量的随机对照试验,进一步研究饮食干预措施。
最好的饮食是患者愿意并且能够坚持的饮食,因此在将这些策略引入临床时可能需要一定程度的个性化。
如果能开发出,通过调节肠道菌群来改善治疗效果的药物,其潜力是巨大的。
SpencerCN,McQuadeJL,GopalakrishnanV,McCullochJA,VetizouM,CogdillAP,KhanMAW,ZhangX,WhiteMG,etal.Dietaryfiberandprobioticsinfluencethegutmicrobiomeandmelanomaimmunotherapyresponse.Science.2021Dec24;374(6575):1632-1640.doi:10.1126/science.aaz7015.Epub2021Dec23.PMID:34941392;PMCID:PMC8970537.
YuZK,XieRL,YouR,etal.Theroleofthebacterialmicrobiomeinthetreatmentofcancer.BMCCancer.2021;21(1):934.Published2021Aug19.doi:10.1186/s12885-021-08664-0
KimAJ,HongDS,GeorgeGC.Dietaryinfluencesonsymptomaticandnon-symptomatictoxicitiesduringcancertreatment:Anarrativereview.CancerTreatRev.2022May13;108:102408.doi:10.1016/j.ctrv.2022.102408.Epubaheadofprint.PMID:35623220.
BaguleyBJ,SkinnerTL,JenkinsDG,WrightORL.Mediterranean-styledietarypatternimprovescancer-relatedfatigueandqualityoflifeinmenwithprostatecancertreatedwithandrogendeprivationtherapy:Apilotrandomisedcontroltrial.ClinNutr.2021Jan;40(1):245-254.doi:10.1016/j.clnu.2020.05.016.Epub2020May25.PMID:32534948.
他说自己,吃完饭就犯困↓↓↓
对于“饭后就困”这件事,网友们表示太真实,自己也一样↓↓↓
生活中,我们会发现很多人吃完就会感到疲倦,想睡觉,那么,
为什么吃完饭会想睡觉?
所有人都是这样的吗?
有没有可能通过一些方法改善?
本文将归纳整理“餐后疲劳”的一些原因,从而帮助预防和改善餐后疲劳。
关于人们饭后感到困倦的原因,科学家们有许多假设。
根据一项实验假设,困倦的原因之一与下丘脑有关。这个假设主要在动物身上进行了测试。
科学家认为几个下丘脑区域,例如视交叉上核(SCN)、外侧下丘脑(LH)和下丘脑腹内侧核(VMH),与睡眠、清醒和食物摄入的调节有关。
睡眠和进食之间有很强的双向互动。
我们知道,身体需要能量来运作和生存。人体从食物中获取能量,食物通过消化过程分解并转化为燃料或葡萄糖,然后大量营养素为身体提供能量。这个消化代谢过程触发体内的各种反应。
以下列举的每一种原因都可能与餐后疲倦有关,虽然每个原因都是不同的,但餐后疲劳可以由这些因素的任意组合引发。
01糖和精制碳水化合物
单糖和精制碳水化合物会迅速分解成葡萄糖,这可能会引发更突然和明显的疲劳。
研究表明,高血糖会抑制控制清醒的食欲素。食欲素在下丘脑中最为活跃。
这里要提到orexin/hypocretin(食欲素/下丘脑分泌素)。
食欲素是一种调节清醒和食欲的神经递质。大脑在下丘脑中包含大约10,000到20,000个神经元,但这些神经元的轴突延伸到整个大脑和脊髓,那里也有食欲素的受体。
它有什么作用?
科学表明,大脑食欲素神经元刺激清醒、警觉、进食、寻求奖励和健康的葡萄糖平衡。食欲素被认为是迄今为止最重要的唤醒刺激剂。
因此,将白面包等精制碳水化合物换成高纤维(低升糖指数)碳水化合物对整体健康更好。
02炎症和食物敏感性
研究人员认为,有些人饭后感到疲倦的另一个可能原因与炎症有关。TNF和IL-1b等炎性细胞因子似乎会抑制促进清醒的食欲素。