初中七年级数学教案(通用13篇)

作为一位无私奉献的人民教师,常常要根据教学需要编写教案,编写教案助于积累教学经验,不断提高教学质量。如何把教案做到重点突出呢?以下是小编精心整理的初中七年级数学教案,仅供参考,欢迎大家阅读。

教学目标

1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

2.初步培养学生观察、分析和抽象思维的能力.

教学重点和难点

重点:列代数式.

难点:弄清楚语句中各数量的意义及相互关系.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1、用代数式表示乙数:(投影)

(1)乙数比x大5;(x+5)

(2)乙数比x的2倍小3;(2x-3)

(3)乙数比x的倒数小7;(-7)

(4)乙数比x大16%((1+16%)x)

(应用引导的方法启发学生解答本题)

2、在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式本节课我们就来一起学习这个问题

二、讲授新课

例1用代数式表示乙数:

(1)乙数比甲数大5;

(2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7;

(4)乙数比甲数大16%

分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数

解:设甲数为x,则乙数的代数式为

(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x

(本题应由学生口答,教师板书完成)

最后,教师需指出:第4小题的答案也可写成x+16%x

例2用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的与乙数的的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式

解:设甲数为a,乙数为b,则

(1)2(a+b);(2)a-b;(3)a2+b2;

(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)

此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律但a与b的差指的是(a-b),而b与a的差指的是(b-a)两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序

例3用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数

分析本题时,可提出以下问题:

(1)被3整除得2的数是几被3整除得3的数是几被3整除得n的数如何表示

(2)被5除商1余2的数是几如何表示这个数商2余2的数呢商m余2的数呢

解:(1)3n;

(2)5m+2

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)

例4设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;

(2)这个数与1的差的;

(3)这个数的5倍与7的和的一半;

(4)这个数的平方与这个数的的和

分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

解:(1)3(a+5);

(2)(a-1);

(3)(5a+7);

(4)a2+a

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)

例5设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位

(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢

(3)通过上述问题的解答结果,你能找出其中的规律吗(总座位数=每行的座位数×行数)

解:(1)m(m+6)个;

(2)(m)m个

三、课堂练习

1、设甲数为x,乙数为y,用代数式表示:(投影)

(1)甲数的2倍,与乙数的的和;

(2)甲数的与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;

(4)甲乙的差除以甲乙两数的积的商

2、用代数式表示:

(1)比a与b的和小3的数;

(2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数;

(4)比a除b的商的3倍大8的.数

3、用代数式表示:

(1)与a-1的和是25的数;

(2)与2b+1的积是9的数;

(3)与2x2的差是x的数;

(4)除以(y+3)的商是y的数

四、师生共同小结

首先,请学生回答:

1、怎样列代数式

2、列代数式的关键是什么

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备要求学生一定要牢固掌握

五、作业

1、用代数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少

(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多

2、已知一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;

(2)这个长方形的面积.

学法探究

已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律.

当圆环为三个的时候,如图:

此时链长为,这个结论可以继续推广到四个环、五个环…直至100个环,答案不难得到:

解:=99a+b(cm)

一、教学内容分析

这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。

二、学生学习情况分析

(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;

(2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;

(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

三、设计思想

从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的'点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

四、教学目标

(一)知识与技能

1、掌握数轴的三要素,能正确画出数轴。

2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

(二)过程与方法

1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

2、对学生渗透数形结合的思想方法。

(三)情感、态度与价值观

2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

五、教学重点及难点

1、重点:正确掌握数轴画法和用数轴上的点表示有理数。

2、难点:有理数和数轴上的点的对应关系。

六、教学建议

1、重点、难点分析

本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

2、知识结构

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下:

定义规定了原点、正方向、单位长度的直线叫数轴

三要素原点正方向单位长度

应用数形结合

七、学法引导

1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。

2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。

八、课时安排

1课时

九、教具学具准备

电脑、投影仪、三角板

十、师生互动活动设计

讲授新课

(出示投影1)

问题1:三个温度计.其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

师:三个温度计所表示的温度是多少?

生:2℃,-5℃,0℃.

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作)

师:我们能否用类似的图形表示有理数呢?

师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题).

师:与温度计类似,我们也可以在一条直线上画出刻度,标上读

数,用直线上的点表示正数、负数和零.具体方法如下

(边说边画):

1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

师问:我们能不能用这条直线表示任何有理数?(可列举几个数)

让学生观察画好的直线,思考以下问题:

(出示投影2)

(1)原点表示什么数?

(2)原点右方表示什么数?原点左方表示什么数?

(3)表示+2的点在什么位置?表示-1的点在什么位置?

(4)原点向右0.5个单位长度的A点表示什么数?

原点向左1.5个单位长度的B点表示什么数?

根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.

师:在此基础上,给出数轴的定义,即规定了原点、正方向和单

位长度的直线叫做数轴.

进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.

【教法说明】

通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.

师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习

尝试反馈,巩固练习

(出示投影3).画出数轴并表示下列有理数:

1、1.5,-2.2,-2.5,,,0.

2.写出数轴上点A,B,C,D,E所表示的数:

请大家回答下列问题:

(出示投影4)

(1)有人说一条直线是一条数轴,对不对?为什么?

(2)下列所画数轴对不对?如果不对,指出错在哪里?

此组练习的目的是巩固数轴的概念.

十一、小结

本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.

十二、课后练习

习题1.2第2题

十三、教学反思

2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

一、教学目标

1、知识目标:掌握数轴三要素,会画数轴。

2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

3、情感目标:向学生渗透数形结合的思想。

二、教学重难点

教学重点:数轴的三要素和用数轴上的点表示有理数。

教学难点:有理数与数轴上点的对应关系。

三、教法

主要采用启发式教学,引导学生自主探索去观察、比较、交流。

四、教学过程

(一)创设情境激活思维

意图:吸引学生注意力,激发学生自豪感。

2.联系实际,提出问题。

问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

师生活动:学生思考解决问题的方法,学生代表画图演示。

学生画图后提问:

1.马路用什么几何图形代表?(直线)

3.学校大门起什么作用?(基准点、参照物)

4.你是如何确定问题中各地点的位置的?(方向和距离)

设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

师生活动:

学生思考后回答解决方法,学生代表画图。

1.0代表什么?

2.数的符号的实际意义是什么?

3.-75表示什么?100表示什么?

设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

问题3:生活中常见的温度计,你能描述一下它的结构吗?

设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

问题4:你能说说上述2个实例的共同点吗?

设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

(二)自主学习探究新知

学生活动:带着以下问题自学课本第8页:

1.什么样的直线叫数轴?它具备什么条件。

2.如何画数轴?

3.根据上述实例的经验,“原点”起什么作用?

4.你是怎么理解“选取适当的长度为单位长度”的?

学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

至此,学生已会画数轴,师生共同归纳总结(板书)

①数轴的定义。

②数轴三要素。

练习:(媒体展示)

1.判断下列图形是否是数轴。

2.口答:数轴上各点表示的数。

3.在数轴上描出下列各点:1.5,-2,-2.5,2,2.5,0,-1.5。

(三)小组合作交流展示

问题:观察数轴上的点,你有什么发现?

数轴上表示3的点在原点的哪一侧?与原点的'距离是多少个单位长度?表示-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和-a的点进行同样的讨论。

设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

(四)归纳总结反思提高

师生共同回顾本节课所学主要内容,回答以下问题:

1.什么是数轴?

2.数轴的“三要素”各指什么?

3.数轴的画法。

设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

(五)目标检测设计

1.下列命题正确的是()

A.数轴上的点都表示整数。

B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

C.数轴包括原点与正方向两个要素。

D.数轴上的点只能表示正数和零。

2.画数轴,在数轴上标出-5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

3.画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有XXXXXXX个。4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是XXXXXXXX。

五、板书

1.数轴的定义。

2.数轴的三要素(图)。

4.性质。

六、课后反思

附:活动单

活动一:画一画

钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

活动二:读一读

带着以下问题阅读教科书P8页:

1.什么样的直线叫数轴?

2.画数轴的步骤是什么?

3.“原点”起什么作用?

练习:

1.画一条数轴

2.在你画好的数轴上表示下列有理数:1.5,-2,-2.5,2,2.5,0,-1.5

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;

2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

教学难点

正确分析实际问题中的不等关系,列出不等式组。

知识重点

建立不等式组解实际问题的数学模型。

探究实际问题

出示教科书第145页例2(略)

问:(1)你是怎样理解“不能完成任务”的数量含义的

(2)你是怎样理解“提前完成任务”的.数量含义的

(3)解决这个问题,你打算怎样设未知数列出怎样的不等式

师生一起讨论解决例2.

归纳小结

1、教科书146页“归纳”(略).

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗

在讨论或议论的基础上老师揭示:步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

【知识与技能】

了解数轴的概念,能用数轴上的点准确地表示有理数。

【过程与方法】

通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

【情感、态度与价值观】

在数与形结合的过程中,体会数学学习的乐趣。

【教学重点】

数轴的三要素,用数轴上的点表示有理数。

【教学难点】

数形结合的思想方法。

三、教学过程

(一)引入新课

提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

(二)探索新知

学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢

学生活动:画图表示后提问。

提问2:“0”代表什么数的符号的实际意义是什么对照体温计进行解答。

教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

提问3:你是如何理解数轴三要素的

师生共同总结:“原点”是数轴的'“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

(三)课堂练习

如图,写出数轴上点A,B,C,D,E表示的数。

(四)小结作业

提问:今天有什么收获

引导学生回顾:数轴的三要素,用数轴表示数。

课后作业:

课后练习题第二题;思考:到原点距离相等的两个点有什么特点

1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

3,体验分类是数学上的常用处理问题的方法。

正确理解分类的标准和按照一定的标准进行分类

正确理解有理数的概念

教学过程(师生活动)

探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来。

“统称”是指“合起来总的名称”的意思.

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与。学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练:

1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2、教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的'说明.

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

小结与作业

课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

教学目标:

1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

2、使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

教学重点:

初步认识正数和负数以及读法和写法。

教学难点:

理解0既不是正数,也不是负数。

教学具准备:

多媒体课件、温度计、练习纸、卡片等。

教学过程:

一、游戏导入(感受生活中的相反现象)

1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)

②向前走200米(向后走200米)

③电梯上升15层(下降15层)。

2、下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。

②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。

④零上10摄氏度(零下10摄氏度)。

说明什么是相反意义的量(意义正好相反)

3、谈话:周老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

二、教学例1

(1)认识温度计,理解用正负数来表示零上和零下的温度。

课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

B、现在你能看出南京是多少摄氏度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)负号能不能省略不写?为什么?

②北京的气温比0℃低,是零下4摄氏度。我们可以用—4℃来表示零下4摄氏度(板书—4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用—4这样的.数可以表示零下温度。

2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。

4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)

1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

吐鲁番盆地的海拔可以记作:—155米。(板书)

(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,—155米这样的数可以表示海平面以下的高度。

四、小组讨论,归纳正数和负数。

1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?

2、学生交流、讨论。

3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)

①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?

②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。

4、小结:什么是正数、负数?

师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0。5、+8844。43等这样的数叫做正数;象—4、—155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)

五、联系生活,巩固练习

1、练习一第2、3题

2、你知道吗:水沸腾时的温度是xxxx。水结冰时的温度是xxxx。地球表面的最低温度是。

3、讨论生活中的正数和负数

(1)存折:这里的—800表示什么意思?(以原来的钱为标准,取出了800元记作—800;存入了1200元记作1200元,还可以记作+1200元)

(2)电梯:这里的1和—1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,—1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?

六、课堂小结

这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。

【教学目标】

引导学生通过常规分析,得出解题思路,经历提出问题,自探问题,应用知识的过程,自主总结出解题办法;

找出题目中的可有可无的已知条件,说一说为什么可以这样认为

【教学过程】

出示例题:甲、乙两地公路全长352千米。汽车原来从甲地到乙地要11小时,建成高速公路后,汽车每小时速度是原来的2.5倍。现在汽车从甲地到乙地需要多少小时

学生写出解答过程:汽车原来的速度:352÷1=32(千米);汽车现在的速度:32×2.5=80(千米)

问:用比例的思路该怎么样理解这道题目呢

【我们来探索】

一批零件有240个,王师傅单独做需要6小时,李师傅的'工作效率是王师傅的1.5倍,那么如果让李师傅单独做这批零件,需要几小时

【总结】

在解答应用题时要善于应用不同的思路和技巧,巧解问题

【作业】

丁阿姨打一份稿件需4小时,王阿姨的速度是丁阿姨的,那么如果由王阿姨打这份稿件,需要几小时

丁阿姨打一份稿件需要4小时,王阿姨的速度与丁阿姨的速度比是4:5,那么如果由王阿姨打这份稿件,需要几小时

知识整理

1、回顾本单元的学习内容,形成支识网络。

2、我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

复习概念

1、什么叫比?比例?比和比例有什么区别?

2、什么叫解比例?怎样解比例,根据什么?

3、什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

4、什么叫比例尺?关系式是什么?

基础练习

1、填空

六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。

小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的.周长比是()。

甲乙两数的比是5:3。乙数是60,甲数是()。

2、解比例

5/x=10/340/24=5/x

3、完成26页2、3题

综合练习

1、A×1/6=B×1/5A:B=():()

2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

3用5、2、15、6四个数组成两个比例():()、():()

实践与应用

1、如果A=C/B那当()一定时,()和()成正比例。当()一定时,()和()成反比例。

2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5。4它们的比是5:4,这块钢板的实际面积是多少?

板书设计:整理和复习

1、比例的意义

2、比例比例的性质

3、解比例

4、正反比例正方比例的意义

5、正反比例的判断方法

6、比例应用题正比例应用题

7、反比例应用体题

教学要求:

1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

2、使学生能正确理解正、反比例的意义,能正确进行判断。

3、培养学生的思维能力。

一、知识与技能

能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.

二、过程与方法

借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.

三、情感态度与价值观

培养学生积极思考,合作交流的意识和能力.

教学重、难点与关键

1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.

2.难点:正确理解负数的概念.

3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解.

教具准备

投影仪.

教学过程

四、课堂引入

我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数.

在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.

五、讲授新课

(1)像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+,…就是3,2,0.5,,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.

(2)中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.

(3)数0既不是正数,也不是负数,但0是正数与负数的分界数.

(4)0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。用正负数表示具有相反意义的量

(5)把0以外的数分为正数和负数,起源于表示两种相反意义的量.正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的'海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.

(6)请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.

(7)你能再举一些用正负数表示数量的实际例子吗

(8)例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.

六、巩固练习

课本第3页,练习1、2、3、4题.

七、课堂小结

为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.

八、作业布置

课本第5页习题1.1复习巩固第1、2、3题.

一、复习

看上面的题,回答下面的问题:

(1)各有哪三种量?

(2)其中哪一种量是固定不变的?

(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?

3、这节课,我们就应用比例的知识解决一些实际问题。

二、新授

1、教学例5

(1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的'水费是多少钱?

(2)学生读题后,思考和讨论下面的问题:

①问题中有哪两种量?

②它们成什么比例关系?你是根据什么判断的?

③根据这样的比例关系,你能列出等式吗?

(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(4)根据正比例的意义列出方程:

解:设李奶奶家上个月的水费是χ元。

12.8/8=χ/10

8χ=12。8×10

χ=128÷8

χ=16答:李奶奶家上个月的水费是16元。

(5)将答案代入到比例式中进行检验。

2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

3、教学例6

(1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?

(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。

(3)指名板演,全班评讲。

4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

三、巩固练习

1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。

2、完成练习九第5、6、7题。

四、总结

用比例知识解决问题的步骤是什么?

1、知道有理数加法的意义和法则

2、会用有理数加法法则正确地进行有理数的加法运算

3、经历有理数加法法则的探究过程,体会分类和归纳的数学思想方法

有理数加法则的探索及运用

异号两数相加的法则的理解及运用

一、创设情境

展示足球赛图片,你知道足球赛中“净胜球”是怎么回事吗

(学生口答,教师介绍净胜球的算法:只要把各场比赛的结果相加就可以得到,由此揭示课题。)

二、探求新知

1、甲、乙两队进行足球比赛,

(1)如果上半场赢了3球,下半场又赢了2球,那么全场累计净胜几球

(2)如果上半场赢了3球,下半场输了2球,那么全场累计净胜几球

足球比赛中赢球个数与输球个数是一对相反意义的量.若规定赢球为正,输球为负,例如赢3球记为“+3”,输2球记为“-2”,你能把上述结果用加法算式表示出来吗

(学生根据生活经验得到两种情况下的净胜球数,从而列出算式:(+3)+(+2)=+5;(+3)+(-2)=+1,教师板书。)

(3)除了上面所说的“赢了再赢”,“先赢后输”,你还能说出其它可能的几种情况并用加算式表示吗

(引导学生联系生活实际思考输赢球其它可能的情况,尽可能完整地说出所有的可能,由此感受两个有理数相加的各种情况,让学生自由发言,相互补充,教师板书算式:(-3)+(+2)=-1,(-3)+(-2)=-5,(-3)+0=-3,0+(+2)=+2,教师还可根据学生回答情况补充:上半场赢了3球,下半场输了3球;上半场打平,下半场也打平,最后的净胜球情况,由学生说出结果并列出算式:(+3)+(-3)=0,0+0=0)

2、你能举出一些运用有理数加法的实际例子吗

(学生列举实例并根据具体意义写出算式)

3、学生活动:

(1)把笔尖放在数轴原点处,先向正方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数你能用数轴和加法算式表示以上过程及结果吗

(2)把笔尖放在数轴原点个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数你能用数轴和加法算式表示以上过程及结果吗

(3)你还能再做一些类似的活动,并写出相应的算式吗

(教师示范活动(1)的操作过程,学生列出算式并完成(2)(3),得到一组算式,教师板书。这一活动目的`是让学生从“形”的角度,直观感受有理数的加法法则。)

4、归纳法则:

观察上述算式,和小学学过的加法运算有什么区别你能归纳出有理数的加法法则吗

(由前面所学的内容学生已经知道:有理数由符号和绝对值两部分组成,所以两个有理数的相加时,确定和时也需要分别确定和的符号和绝对值,教师可引导学生对照情境中输赢球的情况分别探索和的符号和绝对值如何确定,学生相互交流,自由发言,不断完善。通过探索有理数加法法则的过程,学生体会分类和归纳的数学思想方法。)

三、课堂小结:

学生回顾本节课所学内容,谈谈自己对有理数加法法则的理解及如何进行有理数加法运算。

四、布置作业:

1、课本p41第1题

2、列举一些生活中运用有理数加法的实际例子,并相互交流。

1.了解公式的意义,使学生能用公式解决简单的实际问题;

2.初步培养学生观察、分析及概括的能力;

教学建议

一、教学重点、难点

重点:通过具体例子了解公式、应用公式.

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的'数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例

公式

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

THE END
1.新手汽车知识入门大全汽车基础知识汇众我觉得大家都必须学习培训一下车辆基本知识,由于如今车辆早已是家家户户必不可少的代步工具。不管你是初学者或是高手,可以多把握一些汽车基础知识针对日后日常生活或是有十分大的协助。 汽车基础知识—初学者 1、汽车的构造 车辆并不是与生俱来一个总体,只是由每个构件构成的总体造型设计,在其中“汽车底盘”充分发挥http://www.chemoyuan.com/wenda_119268.html
2.汽车基础知识培训电气内燃机发动机柴油机蒸汽机老司机汽车术语解释 整车装备质量:包括各种润滑油、机油、随车工具、备胎等的质量。 最大总质量:汽车满载时的总质量。 轴距:汽车前轴中心到后轴中心的距离,影响车辆的稳定性。 最小离地间隙:汽车满载时,汽车最低点至地面的距离,影响车辆的通过性。 汽车历史简介 https://www.163.com/dy/article/JHRDRV770552NMBS.html
3.老司机都不一定全知道的汽车知识身为汽车博主三、保养小妙招 汽车保养可不只是换换机油。空气滤清器要定期检查更换,它脏了会让发动机进气不畅,动力下降还费油。空调滤清器也别忘,它关系到车内空气质量,太脏的话吹出来的风有异味,还可能滋生细菌。雨刮器刮不干净,可能是胶条老化,自己动手换个胶条很简单,成本也低。另外,定期检查刹车油、变速箱油的液位和https://www.dongchedi.com/article/7439772349752164879
4.汽车原理基础知识汽车原理基础知识 汽车原理简单的理解就是:发动机发力,通过 传动系统 ,带动四个车轮运动,进而带动整车运动。目前主流发动机有两种:涡轮增压发动机和自然吸气发动机。 汽车原理简单的理解就是:发动机发力,通过 传动系统 ,带动四个车轮运动,进而带动整车运动。目前主流发动机有两种:涡轮增压发动机和自然吸气发动机。 https://www.pcauto.com.cn/cxxj/3654/36542578.html
5.关于电池的100个知识点产业周边关于电池的100个知识点 电池基本原理及基本术语 ? ? 1.什么叫电池? 电池(Batteries)是一种能量转化与储存的装置,它通过反应,将化学能或物理能转化为电能。根据电池转化能量的不同,可以将电池分为化学电池和物理电池。 化学电池或化学电源就是将化学能转化为电能的装置。它由两种不同成分的电化学活性电极分别http://www.srkfq.gov.cn/srkfq/078/202101/413a4b1e0dca4505a03c529cc7e818c1.shtml
6.汽车100个常见小知识,每天汽车小常识大全集有趣的用车小贴士,今天正式上线“教你如何日常用车”程序。每周一、三、五更新。这个节目的初衷是在最短的时间内教你一点用车常识。 想了解更多汽车知识的朋友一定要收藏网站,及时查阅最新的汽车知识。 第七课:不是所有的车型都有后雨刷。 后雨刷常见于SUV或两厢车,但几乎所有两厢车都没有后雨刷。 https://www.yoojia.com/ask/5-11472524567179309007.html
7.百科知识100个常见车标大全,名车标志图片大全一览无遗常见豪华超跑主要有迈凯伦、布加迪、科尼赛克、帕加尼、阿斯顿马丁、西尔贝、法拉利、保时捷、兰博基尼,代表了速度与激情。 而迈巴赫、劳斯莱斯、宾利都是有名的豪华座驾。奔驰、宝马、奥迪则是十分常见且高销量的豪车品牌,即大家俗称的BBA。 此外豪华品牌还有雷克萨斯、玛莎拉蒂、林肯、悍马、阿尔法罗密欧、Jeep、MINI、捷豹https://www.meipian.cn/48yum62g
8.建议收藏!100篇必读论文大模型月报(2024.02)具体来说,研究团队从公开的 HD-VILA-100M 数据集中收集了 380 万个高分辨率视频。然后将它们分割成语义一致的视频片段,并应用多种跨模态教师模型来获取每个视频的字幕。接下来,在一小部分子集上对检索模型进行微调,人工选择每个视频的最佳字幕,然后在整个数据集中使用该模型选择最佳字幕作为标注。通过这种方法,他们https://hub.baai.ac.cn/view/35698
9.汽车基础知识——汽车常用术语简述计算机控制中心是由机动车管理部门授权和组建的,它负责随时观察辖区内指定监控的汽车的动态和交通情况,因此整个汽车导航系统起码有两大功能:一个是汽车踪迹监控功能,只要将已编码的GPS接收装置安装在汽车上,该汽车无论行驶到任何地方都可以通过计算机控制中心的电子地图上指示出它的所在方位;另一个是驾驶指南功能,车主http://www.360doc.com/content/10/1207/14/1252353_75811696.shtml
10.《我想问中医——100个实用中医小知识》(朱为康徐静)简介当当网图书频道在线销售正版《我想问中医——100个实用中医小知识》,作者:朱为康 徐静,出版社:上海科学技术出版社。最新《我想问中医——100个实用中医小知识》简介、书评、试读、价格、图片等相关信息,尽在DangDang.com,网购《我想问中医——100个实用中医小知识》,http://product.dangdang.com/29476218.html
11.创建国家卫生城市居民降知识常识一;创建国家卫生城市知识 1、为什么要创建国家卫生城市? 开展创建国家卫生城市活动,是在总结爱国卫生工作的基础上,把城市卫生工作纳入城市总体规划,逐步走综合治理、治本为主,分步实施,科学管理的轨道。这一转变标志着城市爱国卫生运动跨入了一个新的历史阶段,具有重要的现实意义和深远的历史意义。实践证明,开展创建国家http://www.ycjdgz.cn/Article/Details/425
12.农民科学素养100问农民科学素养100问 农民必备基础科学知识 1、为什么地心温度会那么高? 地球诞生之初产生了大量的能量,由于地球无法很快冷却下来,便造成了地球内部持续的高温。地球深处的热量有3个主要来源:地球形成时生成的热量;地核物质下沉至地心时磨擦产生的热量;放射性元素衰变产生的热量。地球热量的释放需要相当漫长的时间,结果是http://www.jzkx.org.cn/index.php?c=show&id=1144
13.100家国企数字化建设的组织部门设计白睿100家国企数字化建设的组织部门设计 关注公众号,与白睿老师链接,获取更多知识和朋友 全新升级,加入AI与出海案例的 《OD实战:组织设计与业务流程重组》 深圳:8月3-4日9:00-16:30 单人报价:4980元, 双人价和早鸟价4580元 含午餐、教材。 1. 中国国际技术智力合作集团有限公司,一级部门:科技与信息化部https://www.shangyexinzhi.com/article/21225417.html