车联网通信技术是指在交通环境中,实现车辆内部、路侧单元、行人、云端服务之间的信息交互和协同的技术。根据连接范围的不同,在此将车联网通信技术分为三类讨论,分别是:车内互联、车际互联和车云互联。这三种互联的应用范围和特点分别是:
车云互联:用于连接车辆与云端
车际互联:用于连接车辆与周边车辆、路侧单元、行人
车内互联:用于实现车内多种多样的灵活互联
图:车联网中的部分通信技术
以下就对这三种互联技术展开介绍。
车云互联
车云互联是指将汽车和云端服务器连接起来,这样就可以实现对车辆状态、位置、行驶数据等信息的采集和传输,并提供基于云端计算和大数据分析的各种信息服务。
与云端互联之后,车辆就可以实现很多丰富的功能。比如:
智能交通/智能城市管理:通过将车辆连接至云端,就可以实现城市车辆的统一管理,实现更好的资源配置以及交通智能优化
与云端互联有诸多好处,也成为车联网必须实现的功能之一。目前车联网主要是通过与蜂窝网络的连接,实现与云端服务器的互联,实现数据传输。
蜂窝结构:通过将服务区域划分为多个相邻的正六边形小区,可以简化网络规划和管理,降低干扰和成本
移动性管理:通过在小区之间进行切换,可以保持移动用户与网络之间的通信连接,实现无缝漫游
频率复用:通过将同一组频率在不同的小区中重复使用,可以提高频谱利用率和系统容量
蜂窝通信所用到的基站一般只覆盖几百米或数公里,通过全球数千万个这样的基站,就可以实现整个地球上主要地区的全球通信。基站不动,手机只要连接到任何一个基站,都相当于连接到了整个世界。蜂窝通信是全球人类共同的大工程。
图:蜂窝移动通信示意图
在4G之前,蜂窝网络主要给“人”用,其重要的通信载体是手机。但这一现象在5G到来之后迎来改变,5G的网络定义将“物”的使用也考虑进来,力争实现万物互联的网络。
图:蜂窝网络的三次重要变革,力争实现万物互联
对于车云互联,最简单的方法就是让汽车可以接入蜂窝网络。根据ABI的统计,2020年全球出售的新车中,41%的汽车具备联网功能[2]。这些车辆的联网功能基本均是由蜂窝网络接入车云互联来实现的。
车际互联
尽管蜂窝网络覆盖范围广、产业链成熟,是汽车实现最初联网功能的首选通信技术。但蜂窝网络用作车际互联使用的时候也有一些弊端。比如:
连接蜂窝网络必须要基于基站建设,这就限制在车辆只能在有基站的地方使用
所有汽车都连接蜂窝网络(接入网-核心网)进行通信,导致更大的时延
车辆直接互联的创新场景,如车队编队、路侧感知等功能无法有效实现
于是,业界就开始开发专门给汽车使用通信技术,这其中的代表技术就是3GPP组织所推动的C-V2X技术。C-V2X是一种为车辆设计的专门网络,C-V2X的特点是:
C-V2X可以让车辆与其他车辆、路侧基础设施和行人直接通信,从而提高道路安全和交通效率
C-V2X不依赖于网络覆盖,可以在没有基站的情况下实现低时延、高可靠的直接通信
C-V2X可以与现有的蜂窝网络和生态系统兼容,降低部署成本和复杂度
图:C-V2X技术实现的车际互联
如C-V2X名称所示,C-V2X期待实现基于蜂窝网络的汽车与任何物体的互联(Cellular-Vehicle-to-everything),这里大家可能会有疑问,如果车与人要互连,来感受车旁边的人的话,那是不是每个人都需要带一个支持C-V2X的手机?如果没有这部手机,是不是车辆就感受不到了呢?
图:C-V2X实现的对道路周边信息感知
以上汽车与路侧单元共同实现车辆对环境感知的方式叫“车路协同”。车路协同是C-V2X一大优势,通过车路协同,汽车不再是一个单独的个体,通过与路侧的协同、感知、控制,可以完成更智能、更安全、更可控的网联汽车。
如《车联网,需要什么样的射频芯片?》所述,目前C-V2X的设计规划及商业应用已经清晰,主要分为以下四个主要阶段:
阶段一:2020年之前,市场起步
阶段二:2022至2022年,辅助驾驶
阶段四:2025年以后,无人驾驶阶段2(完全无人驾驶)
现阶段,中美两大市场都明确了发展方向为C-V2X,专门用于短距离通信PC5接口的具体频谱资源暂定为[7][8]:
美国:5.850-5.925GHz
中国:5.905-5.925GHz
日本:5.850-5.925GHz
车内互联
目前车内所使用到的近距离无线通信技术主要有:
在车内设备通信中,一般采用多种通信技术结合的方式。下图为部分车内设备使用到的通信技术。
图:部分车内设备使用到的通信技术
在车内互联上,一般采用多种通信技术灵活互联的方式进行,可以根据场景的传输速率、成本、距离等,综合选取最为合适的传输技术。另外,也可以使用多种技术相结合。
车载通信的技术实现
汽车通信功能是依靠T-Box或智能网联模组来实现的。
T-Box全称是TelematicsBox(远程通信盒子),T-Box与智能网联模组中负责通信的主要功能模块是“通信模块”,而通信模块中实现无线互联的是射频前端芯片。
以下就针对T-Box/智能网联模组、通信模块、射频前端进行介绍。
T-Box/智能网联模组的功能
图:T-Box及通信模块
智能网联模组一般设计成SoC+通信模块集成的模组形式,直接与智能座舱系统集成,其功能与T-Box功能类似。
通信模块的功能
通信模块是T-Box/智能网联模组中负责无线通信的单元。
虽然射频技术复杂,工作量巨大,但其完成的功能却极其简单:射频就是把终端想要发射的信息,通过一定的形式,发射出去;再把需要接收的信息,想办法接收并把信息提取出来即可。
图:物联网模块公司:将物联网无线通信功能实现方式专业化的公司
目前物联网模块行业已经发展较为成熟,根据Counterpoint的统计,2022年全球物联网模块出货将超6亿片。其中根据2022年Q1的统计,移远、广和通、日海等厂商是此市场主要供应商[10]。
射频前端的功能
通信模块中的射频连接功能是靠射频前端芯片来实现。
射频前端是无线通信模块的核心组件,它负责信号的发射和接收,由于位于整个系统的最前端,所以称为“射频前端”。
图:射频前端的构成部分,及主要模块
功率放大器(PA,PowerAmplifier):是指在给定失真率条件下,能产生最大功率输出的放大器。功率放大器的输出功率能力,决定了系统能输出的最大信号强度;
低噪声放大器(LNA,LowNoiseAmplifier):是指噪声系数很低的放大器,用于放大可能非常弱的信号。低噪声放大器的能力,决定了系统接接收到的最小信号强度;
滤波器(Filter):是指能够根据信号频率的不同,选择性地通过或衰减信号的电路。主要用做滤除对其他频段的干扰,或者从众多干扰信号中抽取有用信号;
开关(Switch):是指能够控制通路通断的器件。主要功能是铺路架桥,为射频信号提供必要的通路。
车联网的芯片需求
汽车对芯片的需求也和消费类有大的不同。为了保证汽车的安全、可靠和高效运行,同时也要适应恶劣的环境条件和多样的应用场景,针对车载应用的芯片,专门进行了车规级芯片需求。
车规级芯片和商用芯片在规格上有很大的不同,主要体现在以下几个方面:
工作温度范围:车规级芯片需要能够在极端的高温和低温下正常工作,一般要求在-40℃到85℃之间,甚至到125℃之间工作。而商用芯片一般只能在0℃到70℃之间工作;
工作稳定性:车规级芯片需要能够抵抗汽车运行过程中产生的各种干扰,如电磁干扰、电压波动、振动冲击等,而商用芯片一般只能在相对稳定的环境下工作;
不良率:车规级芯片需要有很低的不良率,目标达到0DPPM(DefectPartPerMillion,每百万失效数),而商用芯片一般要求为100DPPM左右;
正是因为以上原因,车规芯片的价格也会高于商规芯片。成本提升的主要原因来自于应用于车载时,所做的必要的质量控制与标准认证。
车联网芯片的未来
车联网后,智能汽车可以利用先进的信息通信技术,实现车与车、车与路、车与人、车与云等多方面的网络连接,提高交通安全、效率和智能化水平。车联网将是未来智能汽车发展的大势所趋。
在车联网发展中,车联网芯片也会随之演进、优化,在未来车联网芯片的发展中,我们看到有以下趋势:
车联网芯片的市场需求将持续增长,随着5G、C-V2X等技术的推广和应用,车联网芯片需要支持多模双通、高速率、低时延、高可靠性等特性,同时还需要满足车规级的可靠性和安全性要求;
芯片厂与整车厂将有更多协同,随着车联网技术的发展,以及对车联网技术的提升,目前“整车-T-Box-物联网模块-射频前端芯片”的车联网产业链条太过冗长,未来可能出现整车厂与射频前端芯片厂商直接协同,推进车载射频连接技术快速发展的情况;
标准化将逐步完善,车联网芯片需要遵循统一的标准和规范,以保证兼容性和互操作性,同时也需要支持标准的前向演进能力,以适应未来的技术变化和业务需求。目前车联网芯片的标准在伴随行业发展逐步演进中,车联网芯片的标准也将逐步完善。
总结
汽车也不例外,自发明之日起,汽车就是一个已经实现“移动”的大家伙,但如何让汽车也实现“互联”却是通信从业者过去几十年不断努力的方向。
因为应用环境、功能需求、可靠性需求的不同,车联网对用于通信的射频芯片也提出了更多不一样的要求,射频芯片厂商也在不断地学习与提升,为车载应用提供更可靠、更便捷、更优性能的通信芯片。