浅谈电动汽车智能充电桩的设计与应用电能充电站充电机新能源汽车

摘要:伴随着社会的迅速发展,人们逐渐开始重视生态文明建设,同时重视自然资源的保护,众所周知,自然资源可分为不可再生资源和可再生资源,而自从二次工业革命卡尔·弗里特立奇·奔驰发明出第一辆汽车后,市场上的动力交通工具全都采用燃烧石化燃料,即日常所讲的石油、煤炭等。但常规石化燃料是不可再生资源,消耗速速快、环境污染大。在这样的环境下,为对环境友好型社会进行全面构建,中国也开始研究了电动汽车,以便能为节约自然资源、促进高效、稳定进步做出贡献。

关键词:电动汽车智能充电桩设计与应用

0引言

现如今,汽车逐渐普及,但汽车的普及也为人们的生活环境带来了诸多影响。而电动汽车能减少对环境的污染程度,与此同时能便于人们出行,所以,电动汽车属于一种绿色出行方式,但因为电动汽车需实施续航,所以人们当前需要考量的问题就是如何实现智能化电动汽车续航的问题。

1充电桩的环境要求

电动汽车充电桩主要在户外使用,在设计时,需要考虑天气环境因素的影响。材质上应选择防腐防锈材料,不锈钢材料较好地做到防尘、防雨、防极端恶劣天气的影响,可选择作为结构材料。同时,电动汽车充电桩的显示区、刷卡区应采用PC材料,该材料具有很强的抗腐蚀性,并具有阻燃、自熄等优点,其韧性和强度都较好,满足功能区材料要求。国家电网Q/GDW485-2010《电动汽车交流充电桩技术条件》标准中对环境要求有明确具体的规定。充电桩的设计应满足户外使用环境要求,环境温度:-20℃~+50℃;湿度:5%~95%(无凝结);海拔高度不大于2000m。IP防护设计上应满足《GB4208-1993外壳防护等级(IP代码)》IP54等级的防护等级要求,并满足GB/T4797.6-1995中《电工电子产品自然环境

条件尘、沙、盐雾》的要求,以保证充电桩能在户外潮湿、含盐雾的环境下正常运行。考虑到移动安装布置的需要,在充电桩的底部可设计移动装置。

2充电桩能耗评价标准

中国新能源汽车评价规程建立了一个关于能效的指标“30min快速充电效能”,即在车辆行驶的过程中,电池电量接近“无”的状态时,用功率为120kW的充电桩对电动汽车进行30min的持续充电,检测充入的电量换算为一般工况下可以行驶的里程数。该“充电效能”的评分标准如表1所示。

3智能充电桩设计应用

3.1软件系统设计

3.1.1主控模块

在设计主控模块的过程中,可将用户的实际用电需求作为主要依据,制定服务策略。当服务策略满足用户实际需求时,明确该模块,之后向其他硬件模块输送相应的数据信息,进而给电动汽车充电。

表1充电效能的评分标准

3.1.2安全模块

在整个软件系统中,安全模块属于安全储存单元,安全储存单元由多个单元构成,如密匙管理单元、解密单元及数据加密单元等。当使用者驾驶电动汽车时,需要利用IC卡或者二维码进行付费操作。在此期间,此单位会对使用者信息进行自动加密。充电桩系统软件使用了密匙管理,能对黑客入侵现象进行高效防止,对使用者系统的安全性进行提升。然而,在此期间必须要注意的是,解密单元可以在二维码付款及刷卡支付时对使用者信息进行自动识别并将交易工作完成。

3.1.3电气设计

在设计软件电路时,防静电设计对通信电路起到重要的作用,是双向瞬态抑制二极管接地。在设计方面,在内控板和外部各功能模块的连接中使用了各种形式如电能计量、无线通信传输及触屏显示等。

3.1.4环境模块设计

在设计充电桩的过程中,需要特别注意的是环境模块设计,因为充电装置一般放置在室外,所以高温暴晒、严寒冰冻等天气会对充电桩的正常运行造成一定程度地影响,除此之外,还应特别注意的是电磁干扰问题,唯有如此才可以为用户提供更加专业的充电服务。另外,

求,要耐寒、耐高温,以免受到天气因素的影响,尽可

能选择磁环、磁柱等设备,保护充电桩,为充电桩的常

规运行提供保障。

3.2硬件框架组成

主要的构成部分在于充电池监控系统。日常的直流电不能直接使用电动汽车,需处理和转化电动汽车可以承受的直流电源,一般为380V。直接接入的380V电网电源为AC交流电源,然后经过中央处理。为能让使用者全面掌握且应用智能充电柱,需将IC卡配置给智能充电柱使用者,用户在智能化充电桩操作界面上放置IC卡,进行识别,就可以看到自己的信息,用户可根据自己情况选择智能充电桩,充电时也可获得锂离子电池及电流大小的充电情况信息。中央主控板、显示屏、IC读卡器、显示电表及键盘等是硬件系统主要的构成部分。硬件系统的心脏是中央主控板,中央主控板是用来完成充电过程的开启、运行、实时监控及停止,同时可以各种通信方式向后台传输数据。中央主控板的功能优势在于:拥有的串口总计7个,下位机检测及数据收集办卡经过串行总线和上位机CUP模块通信,与此同时上位机需具有显示作用。对以太网口、NAND控制器、多路口、动态SDRAM控制器、工业级温度范围等进行配备。对汽车充电桩进行修建需对多项因素进行考量,例如:因为我国

幅员辽阔,不同地区的温度和气候差异很大。这也是智能充电桩建设期间需要注意的事项,比如南方的阴雨天气,因此,有必要选择具有防潮、防水性能的镀锌钢板,以减少对充电柱的损坏。此外,因为当前电子设备的越来越多,可能会引起电磁干扰。因此,为了保证远程通信的常规运行,必须对屏蔽其他电磁干扰的通信线进行选择。

4智能充电桩互联互通设计方案

4.1系统实现

4.1.1设备实现

智能充电桩在市场上,不但要具备外围设备的输出电压可以控制,以此来符合设备的通用性要求,同时满足对外接设备的管理要求,甚至还需符合多功能应用要求,例如身份认证功能、人机交互功能、计量收费功能、信息储存功能及远程信息交互功能等。所以,基于其结构设计层面,硬件层面能够使用的微处理器具有低功耗及速度快的特征。此次研究选择基于ARM架构的32位处理器,与串行接口如UART、SPI等及继电器控制电路相配合,以此来构成电路。在软件层面,重点使用如Linux、WindowsCE等嵌入式操作系统,提升开发效率及系统的稳定性。

4.1.2安全性

4.1.3后台管理

对于后台管理人员通过同一服务器实时监测各个设备的要求,智能充电桩互联互通设计可以全面满足这一要求。在对统一通信协议进行应用时,在平台注册信息以后,后台管理人员能够应用云平台账号进行在线管理平台注册的信息,与此同时,实现对设备的异地化管理,

4.2产品验证

法,那么能够实现多个智能充电桩服务于多个云平台。对用户而言,可以不用对智能充电桩生产厂家的App进行下载,这样一来,提升了使用者的体验;针对生产厂家来说,对使用者粘性进行了增加,能够引来大量的使用者对其产品进行使用。

5安科瑞充电桩收费运营云平台

5.1概述

5.2应用场合

适用于住宅小区等物业环境、各类企事业单位、医院、景区、学校、园区等公建、公共停车场、公路充电站、公交枢纽、购物中心、商业综合体、商业广场、地下停车场、高速服务区、公寓写字楼等场合。

5.3系统结构

现场设备层:连接于网络中的各类传感器,包括多功能电力仪表、汽车充电桩、电瓶车充电桩、电能质量分析仪表、电气火灾探测器、限流式保护器、烟雾传感器、测温装置、智能插座、摄像头等。

网络通讯层:包含现场智能网关、网络交换机等设备。智能网关主动采集现场设备层设备的数据,并可进行规约转换,数据存储,并通过网络把数据上传至搭建好的数据库服务器,智能网关可在网络故障时将数据存储在本地,待网络恢复时从中断的位置继续上传数据,保证服务器端数据不丢失。

5.4平台功能描述

5.4.1充电服务

充电设施搜索,充电设施查看,地图寻址,在线自助支付充电,充电结算,导航等。

5.4.2首页总览

总览当日、当月开户数、充值金额、充电金额、充电度数、充电次数、充电时长,累计的开户数、充值金额、充电金额、充电度数、充电次数、充电时长,以及相应的环比增长和同比增长以及桩、站分布地图导航、本月充电统计。

5.4.3交易结算

5.4.4故障管理

故障管理故障记录查询、故障处理、故障确认、故障分析等管理项,为用户管理故障和查询提供方便。

5.4.5统计分析

统计分析支持运营趋势分析、收益统计,方便用户以曲线、能耗分析等分析工具,浏览桩的充电运营态势。

5.4.6运营报告

按用户周期分析汽车、电瓶车充电站、桩运行、交易、充值、充电及报警、故障情况,形成分析报告。

5.4.7APP、小程序移动端支持

5.4.8资源管理

充电站档案管理,充电桩档案管理,用户档案管理,充电桩运行监测,充电桩异常交易监测。

5.5选型配置

类型

型号

图片

功能

安科瑞汽车充电桩收费运营云平台

AcrelCloud-9000

(一)资源管理

充电站档案管理,充电桩档案管理,用户档案管理,充电桩异常交易监测

(二)交易结算

(三)用户管理

(四)充电服务

充电设施搜索,充电设施查看,地图寻址,在线自助支付充电,充电结算,导航等

扫码充电,账单查询、充电信息监测等功能

(六)数据服务

数据采集,数据存储和解析

(七)收益隔天结转到帐

安科瑞电瓶车充电桩收费运营云平台

AcrelCloud-9500

IC卡汽车充电桩管理系统(本地单价版)

Acrel-AVMS

输入输出:AC220V

1个充电接口,充电线长5米;输出功率7KW;扫码刷卡支付;标配

无线通讯:4G、WIFI、蓝牙三选一

(下单备注规格,无备注默认4G通讯)

10路电瓶车智能充电桩

ACX10A系列

10路最大承载电流25A,单路最大输出电流3A,单回路最大功率1000W,总功率5500W。充满自停、断电记忆、短路保护、过载保护、空载保护。故障回路识别、远程升级、功率识别、独立计量、告警上报。

可选配:K(进线漏保)

C(每回路测温)

J(进线计量,单相电能表)

L(进线漏电监测,超限跳开所有回路)

ACX10A-TYHN户内使(IP21),支持投币、刷卡,扫码、免费充电

ACX10A-TYN户内使用(IP21),支持投币、刷卡,免费充电

ACX10A-YHW户外使用(IP65),支持刷卡,扫码,免费充电

ACX10A-YHN户内使用(IP21),支持刷卡,扫码,免费充电

ACX10A-YW户外使用(IP65),支持刷卡、免费充电

ACX10A-MW户外使用(IP65),仅免费充电,不能刷卡扫码

20路电瓶车智能充电桩

ACX20A系列

20路最大承载电流50A,单路最大输出电流3A,单回路最大功率1000W,总功率11kW。充满自停、断电记忆、短路保护、过载保护、空载保护、故障回路识别、远程升级、功率识别,报警上报。可选配

K(进线漏保)

ACX20A-YHN户内使用(IP21),支持刷卡,扫码,免费充电

ACX20A-YN户内使用(IP21),支持刷卡,免费充电

2路智能插座

ACX2A系列

2路最大承载电流20A,单路最大输出电流10A,单回路最大功率2200W,总功率4400W。充满自停、断电记忆、短路保护、过载保护、空载保护。故障回路识别、远程升级、功率识别,报警上报。

ACX2A-YHN户内使用(IP21),支持刷卡、扫码充电,单路最大电流10A

ACX2A-HN户内使用(IP21),支持扫码充电,单路最大电流10A

ACX2A-YN户内使用(IP21),支持刷卡充电,单路最大电流10A

落地式电瓶车智能充电桩

ACX10B系列

10路最大承载电流25A,单路最大输出电流3A,单回路最大功率1000W总功率5500W,充满自停、断电记忆、短路保护、过载保护、空载保护。故障回路识别、远程升级、功率识别、独立计量、告警上报可选配

7KW交流充电桩

AEV-AC007D

额定功率7kW,单相三线制,防护等级IP65,具备防雷保护、过载保护、短路保护、漏电保护、智能监测、智能计量、远程升级,支持刷卡、扫码、即插即用。

通讯方式:4G/WIFI/蓝牙

支持刷卡,扫码、免费充电

可选配触摸显示屏(LCD)

30KW直流桩

AEV-DC030D

额定功率30kW,三相五线制,防护等级IP54,具备防雷保护、过载保护、短路保护、漏电保护、智能监测、智能计量、恒流恒压、电池保护、远程升级,支持刷卡、扫码、即插即用

通讯方式:4G/以太网

60KW直流桩

AEV-DC060S

额定功率60kW,三相五线制,防护等级IP54,具备防雷保护、过载保护、短路保护、漏电保护、智能监测、智能计量、恒流恒压、电池保护、远程升级,支持刷卡、扫码、即插即用

120KW直流桩

AEV-DC120S

额定功率120kW,三相五线制,防护等级IP54,具备防雷保护、过载保护、短路保护、漏电保护、智能监测、智能计量、恒流恒压、电池保护、远程升级,支持刷卡、扫码、即插即用

IC充值卡

ACX10A-IC02

充电桩配套购电卡

充值机

ACX10A-CZJ01

电瓶车充电桩开卡读卡器

7kw交流充电桩立柱

AEV-AC007LZ

用于AEV-AC007D立柱安装

30kw直流充电桩立柱

AEV-DC030LZ

用于30kw充电桩AEV-DC030D专用立柱套件,可实现落地式安装安装

汽车充电桩IC卡

M1射屏卡

通过刷卡控制电动汽车充电桩的启停并扣费

汽车充电桩读卡器

读卡器

汽车充电桩开卡读卡器

电气防火限流式保护器

ASCP200-40B

壁挂式安装,可实现短路限流灭弧保护、过载限流保护、内部超温限流保护、过欠压保护、漏电监测、线缆温度监测等功能;1路RS485通讯,1路NB无线通讯(选配);额定电流为0~40A,额定电流菜单可设。

导轨式电能表

ADL200

单相U、I、P、Q、S、PF、F等全电参量测量,有功无功电能统计;LCD显示;可选配RS485通讯功能,方便用户电瓶车充电桩汽车充电桩进行用电监测计量。

导轨式直流电能表

DJSF1352-RN

直流电压、电流、功率测量及正反向电能计量,复费率电能统计,SOE事件记录;红外通讯,电压最大输入1000V,电流外接分流器接入(75mV)或霍尔元件接入(0-5V)导轨式安装,电能精度1级,8位LCD显示,标配2路开关量输入,2路开关量输出,1路RS485通讯,1路直流电能计量,AC/DC85-265V,供充电桩直流计量。

6结语

在建设智能充电桩的过程中,始终存在一些亟待处理的问题,即因为供电量大,造成充电时产生较高热量,处理不正确会对智能充电桩自身系统及电动汽车造成损坏,存在巨大安全隐患,为此,需要对散热系统进行配备,从而实现散热目的。但总体来说电动汽车智能充电桩的设计应用,将电动汽车续航能力大幅度提升,为电动汽车充电提供了便利条件,能够推广和使用电动汽车,实现环保目标。

参考文献

[1]杨晶.电动汽车智能充电桩的设计[J].电子技术与软件工程2019

[2]邵朝喜,马智杰.电动汽车智能充电桩的设计探究[J].电视技术2019

THE END
1.新能源汽车的充电基础设施建设随着新能源汽车市场的迅速扩张,充电基础设施建设的重要性日益凸显。充电桩的布局、充电速度以及充电标准直接影响着新能源汽车的普及和使用体验。 然而,目前的充电基础设施建设仍存在不少挑战和瓶颈,亟需通过技术创新、政策引导和市场合作构建一个完善、高效的充电网络,以满足日益增长的新能源汽车需求。 https://www.yoojia.com/article/9321954640073178522.html
2.行业洞见新能源汽车充换电基础设施行业现状及趋势新能源汽车充电设施分类 按照使用场景,充电设施包括私人充电设施、公共充电设施、专用充电设施以及换电设施,按照建设规模,充电设施可分为分散式充电桩与集中式充电站[2]。见表1。 表1 充换电基础设施分类 充电设施利益相关者 充电设施产业链的现有核心利益相关者由政府、电网公司、充电设施运营商和用户组成,其中政府在http://www.360doc.com/content/22/1206/21/11677680_1059229775.shtml
3.新能源车下乡获力挺充电设施布局热记者注意到,今年以来,从中央到地方都加大力度支持新能源汽车下乡,充电设施投资布局火热。目前,陕西、云南等多地已经启动2023年新能源汽车下乡活动。业内人士认为,农村新能源汽车市场空间广阔,有望达到数千亿规模,需要进一步破解充电设施建设用地、用电、服务等难题,满足新能源汽车发展中的补能需求。 https://m.jnnews.tv/guanzhu/p/2023-05/10/973010.html
4.山东省发文规范电动汽车充电基础设施建设运营为落实省委、省政府加强污染源头防治、推进“四减四增”的工作部署,加快提升全省电动汽车充电基础设施建设运营管理水平,满足人民群众绿色出行需求,根据《国家发展改革委、国家能源局、工业和信息化部、财政部关于印发〈提升新能源汽车充电保障能力行动计划〉的通知》(发改能源〔2018〕1698号),我局牵头拟定了《关于进一步加https://newenergy.in-en.com/html/newenergy-2352777.shtml