农业遥感应用中,作物精准分类与识别是进行农业灾害监测和产量评估的重要环节。多时相高光谱数据能区分作物更细微的光谱差异,探测作物在更窄波谱范围内的变化,从而能够准确地对作物进行详细分类与信息提取。目前最流行、应用最广的高光谱作物分类方法有光谱角分类SAM.、决策树分层分类等。
中科院遥感所熊桢2000.基于PHI航空高光谱影像对常州水稻生长期进行监测,利用混合决策树法对水稻的品种进行了高光谱图像的精细分类,该决策树分为三层、五个子集,通过4次最大似然法和一次最小距离完成了11种地物,其中包括6个水稻品种的划分,其测试样本的分类精度达到94.9%。张兵2002.充分考虑自然界地物分布的一般性规律,针对高光谱遥感海量数据的特征,利用光谱特征优化的专家决策分类方法,用PHI航空高光谱影像对日本南牧农作物进行精细分类。结果表明,这种分类模式一方面可以提高像元分类精度,另一方面也大大减少了分类结果图像上的误判噪声。
图1高光谱农作物精细分类识别结果
作物长势是作物生长发育状况评价的综合参数,长势监测是对作物苗情、生长状况与变化的宏观监测。构建时空信息辅助下的高光谱遥感信息与作物生理特性及作物长势之间的关系模型便于作物长势监测,高光谱监测作物长势可分为植被指数以及结合GIS技术动态监测等方法。高光光谱遥感可以利用植被指数NDVI、DVI等.进行农田地表覆盖类型分类和作物长势监测分析。例如,可以利用高光谱数据,通过分析NDVI和DVI,建立农田区域性覆盖指数模型,反映出区域性作物覆盖分异状况和随季节变化规律。此外,海量高光谱遥感数据,结合GIS技术、GPS技术、网络技术和计算机技术,建立服务于农业领域的农情监测系统,对作物长势实现动态的监测,对农情灾害以及粮食产量进行快速预报。
作物高光谱遥感产量预测是通过搭载在卫星上的高光谱遥感器,来获取作物各生长时期光谱特征数据,对其反映的产量进行预测。多数研究集中于作物种植面积遥感预测和单产预测。作物种植面积遥感预测算法分为直接算法和间接算法两种。直接算法一般是通过建立作物指数与面积之间回归模型进行求解,如目前单产估算应用较多的是回归分析法,其基本原理为:
y=b0+b1x1+b2x2+b3x3+…+bixi+e
而间接算法是利用绿度-麦土比模式求出麦土比值作为已知值,然后利用土地面积乘上已知值求解作物种植面积。
在农作物生产中,水肥是影响作物生长的最主要因素之一,水分是作物的主要组成成分,水分亏缺将直接影响作物的生理生化过程和形态结构,从而影响作物生长。因此,及时准确地监测作物的水分状况对提高作物水分管理水平、指导节水农业生产具有重要意义。利用高光谱成像技术对作物矿质营养和水分胁迫进行监测,进而估算作物的营养和需水状况,从而指导施肥灌溉,是近年来发展起来的一门新技术。
常用的遥感农业干旱监测方法分为植被指数-地表温度法、热惯量法等。植被指数-地表温度法是综合利用可见光、近红外和热红外波段信息提取表征农业干旱的生态物理参数如植被指数、地表温度等,构建这些参数组成的光谱特征空间模型监测干旱,其中Sandholt提出的温度植被干旱指数TVDI.就是基于此方法构建的。刘良云、张兵等利用OMIS图像数据中8个热红外波段和归一化发射率反演地表温度LST.,以高光谱导数植被指数DVI.表征植被覆盖度,在DVI-LST二维空间中反映了地物覆盖度和水分含量差异:土壤含水量较低、需要灌溉的旺盛小麦地和稀疏小麦地位于DVI-LST三角形右侧;而水分充足、生长旺盛的小麦位于三角形左侧。植被指数-地表温度法虽然简单、灵活,但是经验性太强,监测精度受到一定的限制。
图2高光谱农田地物覆盖和水分含量图
热惯量法利用不同物质之间热惯量不同的特性,以土壤水分与土壤温度变化的关系为指导思路建立干旱监测模型。早在1986年Carlson等利用遥感数据得到热惯量计算土壤有效水分,可以方便用于干旱监测。田国良等提出用表观热惯量ATI.代替真实热惯量,使模型简化,得到了广泛的应用。热惯量法虽然精度较高,但是所需参数较多,只能适用于裸土或者很低植被覆盖区域。并且作物缺水指数CWSI.等方法在农田干旱监测中也越来越得到重视。
利用高光谱成像技术可以对作物的营养状况和水分含量进行比较准确的分析和检测,为变量施肥和灌溉提供参考,从而节省农业资源的投入。高光谱水分诊断模型在农业生产中具有较高的应用价值和广阔的应用前景。