三角形全等的判定(通用16篇)

(1)熟记角边角公理、角角边推论的内容;

(2)能应用角边角公理及其推论证明两个三角形全等.

2、能力目标:

(1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;

(2)通过观察几何图形,培养学生的识图能力.

3、情感目标:

(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.

教学重点:学会运用角边角公理及其推论证明两个三角形全等.

教学难点:sas公理、asa公理和aas推论的综合运用.

教学用具:直尺、微机

教学方法:探究类比法

教学过程:

1、新课引入

投影显示

这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”.于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案.

2、公理的获得

问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?

让学生粗略地概括出角边角的公理.然后和学生一起做实验,根据三角形全等定义对公理进行验证.

公理:有两角和它们的夹边对应相等的两个三角形全等.

应用格式:(略)

强调:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)

所以找条件归结成两句话:已知中找,图形中看.

(3)、公理与前面公理1的区别与联系.

以上几点可运用类比公理1的模式进行学习.

3、推论的获得

改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?

学生分析讨论,教师巡视,适当参与讨论.

4、公理的应用

(1)讲解例1.学生分析完成,教师注重完成后的总结.

注意区别“对应边和对边”

解:(略)

(2)讲解例2

投影例2:

学生思考、分析,适当点拨,找学生代表口述证明思路

让学生在练习本上定出证明,一名学生板书.教师强调

证明格式:用大括号写出公理的三个条件,最后写出

结论.

(3)讲解例3(投影)

例3已知:如图4△abc≌△a1b1c1,ad、a1d1分别是△abc和△a1b1c1的高.

求证:ad=a1d1

证明:(略)

学生分析思路,写出证明过程.

(投影展示学生的作业,教师点评)

(4)讲解例4(投影)

例4如图5,已知:ac∥bd,ea、eb分别平分∠cab、∠dba而交cd于e.

求证:ab=ac+bd

学生口述过程.投影展示证明过程.

学生思考、分析、讨论,教师巡视,适当参与讨论.

师生共同讨论后,让学生口述证明思路.

教师强调证明线段之间关系的常见方法:截长法或补短法.

5、课堂小结:

(1)判定三角形全等的方法:sas、asa、aas

(2)三种方法的综合运用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.

6、布置作业

a书面作业p68#1、2、3

b上交作业p71b组2

思考题:

如图,已知:ad是a的平分线,ab<ac,

求证:ac-ab>oc-ob

板书设计:

探究活动

要测量河两岸相对的两点a、b的距离,可以在ab的垂线bf上取两点c、d,

使cd=bc,再作bf的垂线de,使a、c、e在一条直线上,这时测得de的长就是ab的长,如图,写出已知、求证、并且进行证明.

课题:全等三角形的判定(一)

(1)熟记边角边公理的内容;

(2)能应用边角边公理证明两个三角形全等.

(1)通过“边角边”公理的运用,提高学生的逻辑思维能力;

(2)通过观察几何图形,培养学生的识图能力.

(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.

教学重点:学会运用公理证明两个三角形全等.

教学难点:在较复杂的图形中,找出证明两个三角形全等的条件.

教学方法:自学辅导式

1、公理的发现

(1)画图:(投影显示)

教师点拨,学生边学边画图.

(2)实验

让学生把所画的剪下,放在原三角形上,发现什么情况?(两个三角形重合)

这里一定要让学生动手操作.

(3)公理

启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)

作用:是证明两个三角形全等的依据之一.

应用格式:

1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.

2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.

3、平面几何中常要证明角相等和线段相等,其证明常用方法:

证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.

证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质.

2、公理的应用

分析:(设问程序)

“SAS”的三个条件是什么?

已知条件给出了几个?

由图形可以得到几个条件?

例2如图2,AE=CF,AD∥BC,AD=CB,

求证:

结论.(3)讲解例3(投影)

教师强调证明线段相等的几种常见方法.

(5)讲解例5(投影)

教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明.

3、课堂小结:

(1)判定三角形全等的方法:SAS

(2)公理应用的书写格式

(3)证明线段、角相等常见的方法有哪些?

a书面作业P56#6、7

b上交作业P57B组1

如图,A、B两地隔山相望,要测它们之间的距离,可先在平地上取一个可直接到达A和B的点C,连结AC并延长到D,使CD=CA;连结BC并延长到E,使CE=CB,最后再连结DE,这时量得DE长就是A、B的距离,说明为什么.

提示:利用三角形全等的判定(一)来说明.

课题:三角形全等的判定(三)

(1)掌握已知三边画三角形的方法;

(2)掌握边边边公理,能用边边边公理证明两个三角形全等;

(3)会添加较明显的辅助线.

(1)通过尺规作图使学生得到技能的训练;

(2)通过公理的初步应用,初步培养学生的逻辑推理能力.

(1)在公理的形成过程中渗透:实验、观察、归纳;

(2)通过变式训练,培养学生“举一反三”的学习习惯.

教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

教学用具:直尺,微机

教学方法:自学辅导

问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

问:通过上面问题的分析,满足什么条件的两个三角形全等?

让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

公理:有三边对应相等的两个三角形全等。

强调说明:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)

(3)、此公理与前面学过的公理区别与联系

(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

(5)说明AAA与SSA不能判定三角形全等。

3、公理的应用

(1)讲解例1。学生分析完成,教师注重完成后的点评。

例1如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架

求证:AD⊥BC

(1)要证AD⊥BC只要证什么?

(2)要证∠1=只要证什么?

(3)要证∠1=∠2只要证什么?

(4)△ABD和△ACD全等的条件具备吗?依据是什么?

第12页

(2)讲解例2(投影例2)

例2已知:如图AB=DC,AD=BC

求证:∠A=∠C

(1)学生思考、分析、讨论,教师巡视,适当参与讨论。

(2)找学生代表口述证明思路。

思路1:连接BD(如图)

证△ABD≌△CDB(SSS)先得∠A=∠C

思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

(3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

例3如图,已知AB=AC,DB=DC

(1)若E、F、G、H分别是各边的中点,求证:EH=FG

(2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。

让学生在练习本上写出证明,然后选择投影显示。

证明:(略)

说明:证直线垂直可证两直线夹角等于,而由两邻补角相等证两直线的夹角等于,又是很重要的一种方法。

例4如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,

求证:AC=2AE.

学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。

(1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)

在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。

(2)三种方法的综合运用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业:

a、书面作业P70#11、12

b、上交作业P70#14P71B组3

1.三角形全等的“边角边”的条件.

2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.

3.掌握三角形全等的“sas”条件,能运用“sas”证明简单的三角形全等问题.

能力训练要求:

1.经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.

2.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.

情感与价值观要求

通过对问题的共同探讨,培养学生的协作精神.

教学重点:

三角形全等的条件(sas).

教学难点:

寻求三角形全等的条件.

教学方法:探究式教学

教具准备:直尺,三角板,圆规,纸,剪刀

一、创设情境,复习提问

1.怎样的两个三角形是全等三角形?

2.全等三角形的性质?

3.三角形全等的判定ⅰ(sss)的内容是什么?

4.三个角对应相等的2个三角形是否全等?举例说明。

二、导入新课

1.交流探究

已知任意△abc,画△a'b'c',使a'b'=ab,a'c'=ac,∠a'=∠a.

把画好的△a'b'c',剪下放在△abc上,观察这两个三角形是否全等?

作法:(1)画∠da'e=∠a

(2)在射线a'd上截取a'b'=ab,在射线a'e上截取a'c'=ac

(3)连接b'c'

用上述方法画出的△abc与△a'b'c'全等

在纸片上按上述方法作图,做好后让学生剪下,观察这两个三角形是否重合。

2.交流对话,获得新知

从中你得到什么结论?

边角边定理:有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“sas”)

3.应用新知,体验成功

(1)如图,ab=ac,f、e分别是ab、ac的中点

求证:△abe≌△acf.

证明:∵f、e分别是ab、ac的中点

∴af=abae=ac(中点的定义)

∵ab=ac

∴af=ae

在△abe和△acf中

af=ae

∠a=∠a(公共角)

ab=ac

∴△abe≌△acf.(sas)

(2)例2如图有一池塘要测池塘两端a、b的距离,可先在平地上取一个可以直接到达a和b的点c,连接ac并延长到d,使cd=ca,连接bc并延长到e,使ce=cb.连接de,那么量出de的长就是a、b的距离,为什么

分析:如果能证明△abc≌△dec,就可以得出ab=de

证明:在△abc和△dec中

cd=ca

∠acb=∠dce(对顶角相等)

cb=ce

∴△abc≌△dec(sas)

∴ab=de(全等三角形的对应边相等)

总结:证明分别属于两个三角形的线段或者角相等的问题,常常通过证明这两个三角形全等来解决。

(3)再次探究,释解疑惑

我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗为什么

教师用直尺和圆规搭建一个简易模型,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等。

三.巩固练习

课本p10页练习第1,2题

四、课时小结:

1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.

2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.

THE END
1.(全优)初中数学专项练习《全等三角形》100道解答题包含答案.docx初中数学专项练习《全等三角形》100道解答题包含答案 一、解答题(共100题) 1、如图,已知 于,于,, .证明: . 2、如图,已知在四边形ABCD中,E是AC上一点,∠1=∠2,∠3=∠4,求证:∠5=∠6. 3、已知:如图,M是AB的中点,∠1=∠2,MC=MD.求证:∠A=∠B. 4、如图, ,点 在边 上, 与 交于点 ,已知https://m.book118.com/html/2023/0628/8076143003005105.shtm
2.浙江省湖州市长兴县2019本题考查等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型. 人教版八年级数学上册期中试卷及答案 八年级数学试卷 (全卷满分100分,考试时间120分钟) 一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,共24分) 1、若等腰https://m.360docs.net/doc/d4be79c6af02de80d4d8d15abe23482fb5da02da.html
3.初中数学同步训练必刷题(北师大版七年级下册4.5利用三角形全等答案解析部分 1.【答案】A 【知识点】全等三角形的应用 【解析】【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形. 故选A. 【分析】根据图示,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出. http://zy.21cnjy.com/15251631
4.人教版初中数学中考专项练习人教版初中数学中考专项练习-全等三角形精选200道中考题含详细解析 使用下载券免费下载 立即下载 加入资料篮 还剩148页未读, 继续阅读 下载需要10学贝1学贝=0.1元 使用下载券免费下载 加入资料篮 立即下载人教版初中数学中考专项练习-全等三角形精选200道中考题含详细解析 展开 https://www.51jiaoxi.com/doc-13172039.html
5.全等三角形的应用题目答案解析,初中数学试题题目答案解析7网站导航:初中数学试题>全等三角形的应用>列表7 题目: 已知:如图,在平行四边形ABCD中, E、F是对角线AC上的两点,且AE=CF。 求证:DE=BF 免费查看参考答案及解析 题目: 已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE; https://www.12tiku.com/tiku/list-b724-s735-l7.html
6.等腰三角形教案2、如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,如此作下去。若OA=OB=1,则第 个等腰直角三角形的面积 。 等腰三角形教案2 教学目标 1、掌握证明的基本步骤和书写格式。 https://www.9136.com/jiaoyufanwen/jiaoan/127281.html
7.初二数学全等三角形测试题及答案.doc资源"初二数学全等三角形测试题及答案.doc" 本文档主要讲解初二数学中全等三角形的知识点,包括选择题、填空题和解题过程。下面是相关知识点的详细解释: 一、选择题 1. 图5图7《全等三角形》:该题目考查学生对全等三角形的理解和应用能力。正确答案是 C.3 个。解释:根据全等三角形的定义,两个三角形如果它们的对应边https://download.csdn.net/download/qq_44012932/25383803
8.全等三角形的制作方法有()A. 利用复制、粘贴得到全等三角形 B. 利用反射得到全等三角形 C. 利用标记向量、平移得到全等三角形 题目标签:全等三角形方法三角形如何将EXCEL生成题库手机刷题 如何制作自己的在线小题库 > 手机使用 分享 反馈 收藏 举报 参考答案: A B C 复制 纠错举https://www.shuashuati.com/ti/8a5fb81547f84de7853e0072b677ddfe.html
9.专题15三角形及全等三角形(共30题)(解析版)O为、的中点,只要量出的长度,就可以道该零件内径的长度.依据的数学基本事实是(?)A.两边及其夹角分别相等的两个三角形全等B.两角 及其夹边分别相等的两个三角形全等C.两余直线被一组平行线所截,所的对应线段成比例D.两点之间线段最短【答案】A【分析】根据题意易证 http://www.360doc.com/document/24/0604/09/79068045_1125270928.shtml
10.全等三角形单元测试题,数学全等三角形题忙于做八年级数学 单元测试 题的学生,一定能够做好每一份八年级的数学题目,并且及时去对好答案。我整理了关于八年级数学上册第12章全等三角形测试题,希望对大家有帮助! 八年级数学上册第12章全等三角形试题 (满分120分,限时120分钟) 一、选择题(共10小题,每小题3分,共30分) 1.面积相等的两个三角形( ) Ahttp://www.qiatong.com/sx/hhwd/96894.html
11.直角三角形题目答案,直角三角形题目答案1题目: 任取正方体的3个顶点构成三角形则构成直角三角形的概率为()A.100%B.857%C.75% 查看答案 题目: 长方形ABCD的长为6厘米宽为2厘米经过点A做一条线段AE把长方形分成两部分一部分是直角三角形另一部 查看答案 题目: 直角三角形ABC∠A=30°AC=20厘米BC=10厘米以C为定点将三角形旋转到AC与BChttps://www.httiku.com/xuexitiku/so-%E7%9B%B4%E8%A7%92%E4%B8%89%E8%A7%92%E5%BD%A2.html
12.免费人教版八年级数学上册《第12章全等三角形》单元测试含答案宜城教育资源网www.ychedu.com免费人教版八年级数学上册《第12章全等三角形》单元测试含答案解析初二数学试题学案网第12章全等三角形一、选择题(共9小题)1.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对 B.2对 C.3对 D.4对2.如图所示,点E是矩形ABCD的边ADhttp://sx.ychedu.com/SXST/BLJST/556806.html
13.全等三角形是()A的正确答案解答解析考点详解A.面积相等的三角形B.角相等的三角形 C.周长相等的三角形D.能够完全重合的三角形 请仔细审题,看清楚题目要求,认真作答! 正确答案 验证码: 查看正确答案 试题解析 无 标签:全等三角形 本试题来自[gg题库]本题链接:https://www.ggtiku.com/wtk/113136/1402235.htmlhttps://www.ggtiku.com/wtk/113136/1402235.html
14.读《小学数学教材中的大道理》学习平面图形的运动,主要是为平面几何中全等三角形的学习做准备,中学里定义两个三角形全等的,就是指一个三角形通过平移、旋转、反射三种运动能够和另一个三角形重合。 5、轴对称一词指代两个概念。一是轴对称图形,指的是某个图形具有轴对称的性质,对称轴可以通过对折使对应的两边重合形成的折痕来找到;还有一个就https://www.meipian.cn/1wxbar0t