生物医用金属材料研究现状与应用进展(一)

生物医用金属材料又称医用金属材料或外科用金属材料,是在生物医用材料中使用的合金或金属,属于一类惰性材料,具有较高的抗疲劳性能和机械强度,在临床中作为承力植入材料而得到广泛应用。在临床已经使用的医用金属材料主要有钴基合金、钛基合金、不锈钢、形状记忆合金、贵金属、纯金属铌、锆、钛、钽等[1]。不锈钢、钴基合金和钛基合金具有强度高、韧性好以及稳定性高的特点,是临床常用的3类医用金属材料。随着制备工艺和技术的进步,新型生物金属材料也在不断涌现,例如粉末冶金合金、高熵合金、非晶合金、低模量钛合金等。

1

性能要求

2

研究现状

生物医用钛合金材料是用于生物医学工程的一类功能结构材料,常用于外科植入物和矫形器械产品的生产和制造。钛合金医疗器械产品如人工关节、牙种植体和血管支架等用于临床诊断、治疗、修复、替换人体组织或器官,或增进人体组织或器官功能,其作用是药物不能替代的。医用钛合金材料研究涉及材料、物理、化学、生物、医学、电子显微及生化分析等多个学科,研究方向包括:医用金属材料的合金设计与评价体系、材料的加工-组织-性能关系与人体软、硬组织的相容性匹配、材料的表面改性(生物相容性、生物功能性、生物活性、耐磨性和耐蚀性等)及材料基体与表面(界面)的相互作用规律等。

纯钛具有无毒、质轻、强度高、生物相容性好等优点。20世纪50年代美国和英国开始把纯钛用于生物体。20世纪60年代后,钛合金开始作为人体植入材料而广泛应用于临床。从最初的Ti-6Al-4V到随后的Ti-5Al-2.5Fe和Ti-6Al-7Nb合金以及近些年发展起来的新型β钛合金,如表1所示,钛合金在人体植入材料方面的研究获得了较快的发展。

钛的密度与人骨近似,质轻。纯钛生物相容性好,强度为390~490MPa。实验证明,钛相比于钴基合金和不锈钢的抗疲劳性和耐蚀性能更优越,钛的表面活性好,组织反应轻微,容易与氧发生反应建立致密氧化膜,钛的氧化层比较稳定。因此,钛与钛合金具备生物医用材料的条件,是一种较为理想的、适于植入体的、具有发展前途的植入材料。临床上广泛采用钛与钛合金制造人工关节部件、接骨板和螺钉等,还用于制成人造椎体(脊柱矫正器)、人工心脏(心脏瓣膜)、人工种植牙、心脏起搏器外壳等[3]。

镍钛形状记忆合金是一种在一定温度下经过处理能够塑性变形为另一种形状,而在一定条件下又能自动恢复成原有形状的形状记忆合金。镍钛形状记忆合金的疲劳极限较高,耐腐蚀性良好,其具有的独特的形状记忆恢复温度与人体温度相适宜,具有良好的生物相容性,因此在医学领域得到广泛应用。近年来,镍钛形状记忆合金开始应用于心血管治疗领域,镍钛形状记忆合金支架可应用于冠心病的治疗,具有较大发展前景。

钛合金在生物医用领域的应用呈快速发展的趋势,结合国内外的研究现状,其未来的发展方向为:(1)单晶生物医用钛合金,沿某一方向生长获得的单晶材料可获得接近人体骨骼的弹性模量,制作的植入体也会具有更好的弹性模量匹配;(2)超细晶低弹性模量、高强度钛合金的生物相容性及产业化;(3)超弹性和形状记忆功能医用低弹性模量钛合金的组织性能调控;(4)调节孔隙率的大小来降低生物医用多孔钛合金材料弹性模量的同时提升其力学性能[5]。

钴基合金医用金属材料

钴基合金通常指Co-Cr合金,有2种基本牌号:Co-Cr-Mo合金和Co-Ni-Cr-Mo合金。Co-Cr-Mo合金微观组织为钴基奥氏体结构,能够锻造或铸造,但制作加工非常困难,其机械性能和耐蚀性优于不锈钢,是现阶段比较优良的生物医用金属材料。锻造钴基合金是一种新型材料,用于制造关节替换假体连接件的主干,如膝关节和髋关节替换假体等。美国材料实验协会推荐了4种可在外科植入中使用的钴基合金:锻造Co-Cr-Mo合金(F76)、锻造Co-Cr-W-Ni合金(F90)、锻造Co-Ni-Cr-Mo合金(F562)、锻造Co-Ni-Cr-Mo-W-Fe合金(F563),其中F76和F562已广泛用于植入体制造[6]。

不锈钢医用金属材料

医用不锈钢具有低成本和良好的加工性能、力学性能等,目前在口腔医学和骨折内固定器械、人工关节等领域应用广泛。302不锈钢是最早使用的医用金属材料,抗腐蚀性能较好,强度较高。有研究人员将钼元素加入不锈钢中制作316不锈钢,有效地改善了医用不锈钢的抗腐蚀性。20世纪50年代,研究人员研制出新的316L不锈钢,将不锈钢中的最高碳含量降至0.03%,使得材料的抗腐蚀性能得到进一步提高。从此,医用不锈钢便成为国际上公认的外科植入体的首选材料。

虽然钴基合金的抗蚀性强于不锈钢,但是医用不锈钢具有价格低廉、易加工的优势,可制成各种人工假体及多种形体,如齿冠、三棱钉、螺钉、髓内针、板、钉等器件,另外制作手术器械和医疗仪器时也广泛应用,现阶段医用不锈钢依然是应用最为广泛的医用金属材料。目前常用的医用不锈钢为316L、317L,不锈钢中的C质量分数≤0.03%可以避免其在生物体内被腐蚀,主要成分为Fe60%~65%,添加重要合金Cr17%~20%和Ni12%~14%,还有其他少量元素成分,如N、Mn、Mo、P、Cl、Si和S。

为了避免镍的毒性作用,研究人员研制出了高氮无镍不锈钢[7]。近些年来,低镍和无镍的医用不锈钢逐渐得到发展和应用。日本的物质材料研究所(筑波市)开发了一种不含镍的硬质不锈钢的简易生产方法,解决了无镍不锈钢难以加工而制造成本太高的问题,生产成本低廉,有望广泛用于医疗领域。

生物医用铝合金材料

铝及其合金材料具有良好的性能,可塑性和生物相容好,作为植入材料早在20世纪40年代就已广为使用,目前可承受高负荷的部件也多用铝及其合金制成。铝具有较高的耐蚀性,除在氢氟酸、苛性碱、热的浓硫酸、盐酸和硝酸的混合液溶解外,其他试剂对铝都发挥不了腐蚀作用,体液不影响铝的交变疲劳强度,良好的生物相容性使得铝植入材料不刺激人体。另外,相比于不锈钢,铝的抗缺口裂纹扩展能力很高。

生物医用可降解镁合金材料

多孔镁合金材料作为一种可降解的生物材料可为细胞提供三维生长的空间,有利于养料和代谢物的交换运输。镁本身具有生物活性,可诱导细胞分化生长。在材料降解吸收的过程中,种植的细胞会继续增殖生长,有望形成新的具有原来特定功能和形态的相应组织和器官,以达到修复创伤和重建功能的目的。生物医用可降解镁合金材料的完全可降解性和杰出的生物相容性使其有望广泛应用于临床硬组织修复或替代。可降解镁合金血管支架是镁合金作为可降解生物医用金属材料研究领域最大的研究进展。

生物医用锆基合金材料

锆基生物医用合金材料因其强度高、韧性好、抗腐蚀性好且具有良好的生物相容性等优点而被广泛应用于医疗领域。

Zr是一种拥有优良耐腐蚀性能、组织相容性好、无毒性的金属,常被用作合金化元素添加进Ti合金中,以提高Ti合金的机械性能。从Zr-Ti二元相图可以看出,Zr和Ti能相互溶解,说明它们具有相似的物理和化学性质。近年来,通过添加无毒副作用的合金元素对Zr合金进行强化及性能优化开发出了新型生物医用合金材料。

此外,为推动Zr基合金在生物医用材料领域的应用,还应从材料设计与制备方面加强研究,例如,从第一原理出发进行Zr基生物医用合金材料新体系的设计,为新型合金的开发提供指导;从有限元分析的角度出发设计Zr基生物医用合金材料的加工工艺,对复杂的挑战性需求形状进行混合加工;采用3D打印技术完成Zr基生物医用合金植入体的定制化打印,以满足不同患者的需求。

生物医用可降解锌基合金材料

大量研究表明,Zn作为新一代可降解金属具有广阔的应用前景。合金化可以克服纯锌力学性能差的缺陷,另外合金化元素的加入在有效改善锌基合金力学性能的同时也能够给合金带来一定的生物性能改变:Mg的添加提高了Zn的细胞相容性,Cu和Ag能够增强合金抗菌性能,Cu2+还能对血管内皮化产生积极作用。目前对锌及其合金的研究多集中在体外实验和小动物研究,而对于植入材料研究而言,接近于人体应用环境的大动物实验(原位)研究是必需的,并且在以后的研究中也应着重提高Zn基合金的生物相容性。冯相蓺等综述了锌镁合金、锌铜合金、锌银合金、锌锂合金等锌基合金的主要研究进展[10]。

生物医用金属材料——钨

钨是除了碳之外熔点最高的元素,由于其较好的辐射不透过性和致血栓性,纯钨机械可脱性微弹簧圈被用于介入手术治疗脑动脉瘤,并表现出良好的生物相容性,但是钨的可降解性往往导致被堵塞的血管再通以及血清中钨离子浓度增大。

生物医用贵金属材料

用作生物医用材料的金、银、铂及其合金总称为医用贵金属。贵金属的价格比较昂贵,但具有较好的生物相容性,因此,类贵金属得以发展,例如仿金材料等。

医用贵金属(金、银、铂等)具有独特的生物相容性,良好的延展性,且对人体无毒,是人类最早应用的医用金属材料之一。其中,铂族金属是医学上重要的镶牙材料;另外,铂族催化剂对氧化作用来说具有极好的催化活性,还有着良好的导电率和抗蚀性,可用作人工心脏的能源。

其他生物医用金属材料

大块非晶合金具有不同于晶态合金的独特性质,如高强度、高硬度、高耐磨耐蚀性、高疲劳抗力、低弹性模量等,有可能用于接骨板、螺钉、起搏器等方面。因此开展了大量的有关研究,其中尤以钛基、锆基、铁基、镁基、钙基为主。

高熵合金是另一类具有研究前途的新型金属材料,这是基于大块非晶合金具有超高玻璃化形成能力的合金。高熵合金一般由5种以上的元素按照原子比或接近于等原子比合金化,其混合熵高于合金的熔化熵。五元合金相图中,在中间位置存在固溶体相区。高熵合金具有一些传统合金所无法比拟的优异性能,如高强度、高硬度、高耐磨耐蚀性、低弹性模量、良好的生物相容性等。另外,通过添加不同的元素,如银、铜等还可以具有抗菌性能。

从未来发展趋势上看,可生物降解医用金属材料的研究将集中在:(1)通过合金化、冷加工、热处理和表面处理等方法改善镁合金和铁合金的腐蚀速度;(2)合金化后添加元素对于材料生物相容性的影响;(3)为了避免植入物在早期失效,对于腐蚀过程中材料力学性能变化的分析;(4)可生物降解医用金属材料腐蚀产物的成分分析以及生物安全性评价;(5)寻找新的可生物降解合金体系,挖掘潜在的应用可能;(6)建立更为完善的体外评价标准,使得体外实验对于体内实验结果的预测更加精确。随着可生物降解性医用金属材料研究的不断深入,可以预见材料的性能将逐渐完善以满足临床应用的需求,这类新材料有望部分取代部分传统的生物医用金属材料在临床上获得实际应用[12]。

THE END
1.2025年贵金属产品市场调查报告:行业现状与发展前景研究2023年全球贵金属产品市场规模达到 亿元(人民币),中国贵金属产品市场规模达到 亿元。报告预计到2029年全球贵金属产品市场规模将达到 亿元,在预测期间贵金属产品市场年复合增长率预估为 %。 以产品种类分类,贵金属产品主要类型有金, 铂金属, 银。以终端应用分类,贵金属产品主要应用于工业, 金融, 消费领域等领域。随着https://www.gelonghui.com/p/1445265
2.AI黄金白银分析,未来走势预测与市场深度洞察新闻资讯摘要:本文分析了AI领域的黄金和白银市场,探讨了未来走势及市场洞察。文章指出,随着人工智能技术的不断发展,黄金白银等贵金属的需求和应用场景将不断扩大。通过对市场趋势的深入分析,文章预测了未来黄金白银价格的波动区间,为投资者提供了重要的参考依据。本文旨在帮助读者了解AI黄金白银市场的现状和未来发展趋势。 http://www.tcylb.com/post/485.html
3.我国矿产资源高效清洁利用进展与趋势我国稀有金属矿产资源高效利用方面的进展主要是:锂矿方面主要有盐湖卤水提锂技术的发展,铍矿方面主要有高氟低品位铍矿中对矿石加碱焙烧-水解除杂-再球磨后浮选提铍技术的发展,铌钽矿方面多种选冶联合工艺如重选-磁选-浮选联合流程等技术的应用。 (5)稀土金属https://mse.xauat.edu.cn/info/1025/1524.htm
4.车用燃料电池关键材料技术研发应用进展氢能汽车技术应用因此,必须减少贵金属的使用量。 减少铂用量,提高铂的催化和稳定性能,延缓催化剂功能衰减一直是电催化剂应用研究与发展的重要攻关方向。2013 年美国能源部(DOE)燃料电池技术部门公布了交通领域车用PEMFC电催化剂2020 年性能目标值,其中关键指标是:铂族金属用量不大于0.125g/kW,催化层铂族负载量不超过0.125mg/cm2 (http://m.h2fc.net/Technology/show-244.html
5.2024年值得关注的7个产业趋势和8个政策主题综上所述,我们总结2024年需要关注的7个产业趋势如下:集成电路(半导体设备、半导体材料、存储),消费电子(MR、面板),汽车智能化(自动驾驶、智能座舱),AI+硬件(算力),AI+软件(大模型、垂直端应用、AIGC),机器人(减速器、零部件),金属(贵金属、工业金属、钛合金)。 https://wallstreetcn.com/articles/3705493
6.壳聚糖贵金属离子的应用与研究进展壳聚糖贵金属离子复合材料在环境治理领域也有着重要的应用。例如,Au/CS复合材料可以用于水污染治理和重金属离子吸附等。Pt/CS复合材料则可以用于气体污染治理和有机物降解等。 三、结语 壳聚糖贵金属离子复合材料具有广泛的应用前景,在催化、生物医学和环境治理等领域都有着https://b2b.baidu.com/q/aland?q=760E7712050E703A7439033D09221E1A7C0D1A6F1A0A1A221819777674311C70&id=qid8a810d79c71c39ab95742912343f8607&answer=17856885900444586860&utype=2&ptype=8
7.铍资源现状及其选冶技术进展2.国家非金属矿资源综合利用工程技术研究中心,郑州 450006; 3.自然资源部多金属矿综合利用评价重点实验室,郑州 450006) 铍是最轻的碱土金属元素,极性强,易形成强化学键。铍及其化合物具有比刚度大、热导性好、尺寸稳定性优异等特性,广泛应用于国防军工、核能、航空航天等高尖端领域,有“金属玻璃”“超级金属”之https://www.fx361.com/page/2022/0901/13994135.shtml
8.瑞士步琦应用基于喷雾干燥技术的表面增强拉曼光谱研究进展除了以上常用检测方法外,还可以利用喷雾干燥方法结合拉曼光谱技术-表面增强拉曼光谱(SERS)来测定水中污染物。SERS 技术是一种简便、快速进行有机化合物痕量分析的技术。与传统的拉曼光谱相比,它可以获得信号得到显著增强的拉曼光谱。SERS 中的拉曼增强发生在两个或多个聚集的金属纳米颗粒的连接处,即所谓的热点;贵金属纳https://www.antpedia.com/news/dist_article/232988.html
9.第八届全国有色金属结构材料制备/加工及应用技术交流会暨2022中国技术创新和产业发展,促进结构材料向高性能化、复合化、结构功能一体化发展,加强产、学、研、用深度融合,交流结构材料领域近年来具有创新性的科技及应用成果,中国有色金属学会与南京理工大学等单位拟定于2022年8月5-7日在江苏省南京市,共同举办“第八届全国有色金属结构材料制备/加工及应用技术交流会暨2022中国结构https://m.china-mcc.com/meet_show-101.html
10.一文读懂!铜烧结的优劣势尽管银烧结技术具有诸多优势,但其成本相对较高,而且未来随着碳化硅芯片成本的降低,银烧结在封装成本中的占比会越来越高,尤其是随着大面积烧结的应用,用户一定会关心银烧结的成本问题。 这是因为银烧结工艺在追求质量的过程中,往往需要在活性金属钎焊(AMB)基板上进行选择性镀银,这一步骤无疑增加了成本。在进行系统级烧https://www.eet-china.com/mp/a339255.html
11.关于发布2018年度全国石油石化企业管理现代化创新优秀成果优秀中国石油经济技术研究院 吕建中 李华启 郭晓霞 杨 震 刘玉贵 邱茂鑫 展恩强 张珈铭 刘 颖 杨 虹 陈兴炳 陈水银 5. 以北极极寒工程项目为载体的全面协同管理 海洋石油工程股份有限公司 金晓剑 陈宝洁 李小巍 吕 屹 李 涛 王 伟 孙 宇 李晓光 6. 以核心技术为龙头聚合优势资源的大型液化天然气接收站自主建设https://www.zgsyqx.com/list.asp?id=4574
12.纳米人在本综述中,华中师范大学的Chengzhou Zhu与美国华盛顿州立大学的Yuehe Lin等介绍了有关应用于氧析出反应的贵金属电催化剂的组成和结构优化的最新进展,其中包括基于Ir和Ru的氧化物和合金,以及具有各种形态的Ir和Ru以外的贵金属。为了阐明组成/结构-性能关系和活性-稳定性关系背后的基本科学和机制,作者进行了综合实验和http://www.nanoer.net/phone/e/action/ShowInfo.php?classid=32&id=9420
13.复合铜箔行业深度报告:产业化进程加速,pet铜箔为当下主流风物志04传统业务:公司从事工业应用超声波设备生产经营及技术研究近二十年,主要产品包括 超声波金属焊接机、超声波滚动焊接机、超声波弯曲刀焊接机、超声波线束焊接机、超 声波平齿焊接机等设备。复合铜箔业务:公司具备超声波滚焊技术,其研发的超声波金属滚动焊接机清洁、高效、 精密,可以连续发射超声波,实现滚动焊接。该设备的http://m.mindcherish.com/article/content?id=5699755
14.知网文萃:技术评论目前,从金属氧化物、贵金属、碳材料到金属单原子-碳掺杂材料、金属-有机框架材料等,已有超过1000种不同材料的纳米酶被报道。 尽管纳米酶的研究已经取得显著的进展,但仍面临着一些问题和挑战。我们相信,随着纳米酶研究的不断深入,特别是人工智能、大数据等新兴技术的应用,人们对纳米酶的设计、合成、定位和评价会将https://wap.cnki.net/touch/web/CnkiBook/Article/28166.html
15.中国聚合物网附录:工业催化技术及应用年会主要内容 1. 石油化工催化技术 双峰聚乙烯树脂的开发进展 中国石油化工股份公司北京化工研究院 高克京 吕新平 王如恩 FC-26高中油型加氢裂化催化剂的工艺研究与工业应用 中国石化抚顺石油化工研究院 潘德满 曾榕辉 ZSM-22在丁烯裂解增产丙烯反应中的催化性能 复旦大学化学系 许 宁 贺鹤勇http://www.polymer.cn/Exhibition/exhibition_info10085.html