??聚多巴胺是一种多功能的仿生高分子材料。聚多巴胺一方面具有类似于天然黑色素的宽带光吸收性能,另一方面又对多种固体材料的表面具有非选择性的强黏附特性,可模拟软体动物所分泌的吸附蛋白的功能。用聚多巴胺胶体粒子做为贵金属纳米催化剂的载体,不仅可以使超小尺寸的金属纳米颗粒均匀稳定地分散在载体表面,而且材料的催化效率还可以通过光热传导而得到进一步的提升。
??近日,美国南卡罗来纳大学(UniversityofSouthCarolina)王辉教授课题组将聚多巴胺所特有的宽带光吸收、高效光热转化和表面黏附的功能相结合,成功把亚微米尺度的聚多巴胺胶体粒子发展为金属钯纳米催化剂的载体,从而在可见和近红外光照射条件下充分利用光热效应来增强异相催化反应的动力学。
图一:尺寸可控的聚多巴胺颗粒的透射电镜图片(A-E)。粒径与多巴胺单体浓度之间的关系(F)。不同尺寸的聚多巴胺颗粒的消光光谱(G)、摩尔吸光度(H)和消光效率(I)。单色激光照射下的温度变化曲线(J)和光热转换效率(K)。
??基于反应速率明显受控于温度的原理,对该反应的动力学调控可以通过光热转化来实现。除传统的加热方法外,反应体系的温度还可以通过聚多巴胺的光热转化来精确控制。以785纳米波长的激光作为光源,反应体系的热平衡温度随入射光强度增强而升高。因此光照下的该反应随入射光强度增强而显著加快。光照条件下的反应活化能为43.7±2.11KJ·mol-1,与暗反应的活化能基本保持一致。这表明动力学的增强主要源自聚多巴胺的光热效应,而不是其他光化学反应过程造成的影响。在445纳米,520纳米及638纳米波长的光源照射下,均可通过光热效应来实现对异相催化反应过程的精确动力学控制。
??此项工作表明聚多巴胺即可作为贵金属纳米催化剂的载体,又可通过光热效应使贵金属纳米催化剂的性能得到进一步提升,充分展示了聚多巴胺胶体粒子在异相催化和能量转换领域里的多功能性和巨大的应用前景。
??本文第一作者为南卡罗来纳大学化学和生物化学系博士研究生王子欣,论文通讯作者是南卡罗来纳大学化学和生物化学系王辉教授。王教授课题组长期致力于纳米光学、表面增强光谱和纳米颗粒表面分子动态行为的研究。此项工作得到了美国化学会石油研究基金(AmericanChemicalSocietyPetroleumResearchFund)的资助。此工作中所涉及的偏振共振同步光谱研究是与密西西比州立大学(MississippiStateUniversity)张栋茂教授课题组合作完成的。