科学家用“活字印刷法”合成单原子催化剂,有效避免贵金属单原子团聚,已实现均一性公斤级合成纳米超导材料

活字印刷术是中国古代四大发明之一,通过将可移动的木质字模排列组合,实现各种文字和书籍的印刷。

以活字印刷法为灵感,海南大学教授团队提出了一种制备贵金属单原子催化剂的普适性策略,并表现出优异的氢氧化和氢析出反应活性[1]。

具体来说,研究人员以精确合成的多种贵金属单原子前驱体作为“活字”的模板,包括钯(Pd)、铂(Pt)、铑(Rh)、铱(Ir)、钌(Ru)等,将多孔碳载体作为“纸张”。

通过高温焙烧,成功把前驱体中的贵金属单原子“点对点”地印刷到碳载体上,最终合成贵金属单原子催化剂(SA-PM/CNs)。

这种通用的催化剂合成策略有效地避免了制备过程中贵金属原子的团聚现象,并能够确保贵金属原子的高度分散性。该合成策略具有普适性、可拓展性以及规模化制备的能力,展现出了巨大的产业化潜力。

审稿人对该研究评价称,普适性策略不仅能够制备贵金属单原子催化剂,还能拓展到非贵金属催化剂,在氧还原反应、析氧反应以及氢燃料电池等不同的电催化体系均具有应用潜力。

指出,合成的多种单原子催化剂能够应用于光电催化、金属-空气电池、氢燃料电池等领域。目前,该催化剂在实验室能够实现公斤级合成,且性能均一性较好。

该方法不仅为合成单原子提供新方向,还为设计合成新型多活性中心和多功能单原子催化剂开辟了新道路。“这种具有普适性的合成策略,为研究单原子催化剂提供了高效、可控的制备方法,也为合成其他种类单原子催化剂提供借鉴。”他说。

发展氢能产业是世界能源技术变革的重要方向

追求清洁、可再生的能源及高效的能源利用与转化,是世界经济和社会可持续发展的重大需求。氢的能源属性是清洁高效、可再生的二次能源,在能源的转型和存储、交通等领域具有重要的应用前景。

据国际氢能委员会预测,“2050年氢能在全球能源中的比重达到18%,氢能产业链将创造3000万个工作岗位,创造2.5万亿美元产值,减少60亿吨二氧化碳排放[2]。”

随着世界各国将能源朝着更加清洁、低碳和智能的方向推进,发展和加强氢能产业建设已成为当前全球能源技术变革的重要方向之一。这不仅是实现中国“双碳”目标的具体路径,也是建设制造强国、搭建新型能源体系、建设现代化产业体系的重要举措。

2023年,中国产氢量突破4000万吨,位居世界第一。然而,这些氢气基本来自化石能源制氢和工业副产氢。其中,利用可再生能源电解水制取的绿氢占比不到1%;另一方面,中国还存在较大的弃风和弃光等问题。

如何以绿氢为媒介消纳富余可再生能源,是科学家们重点探索的方向之一。在高效的氢电能量转化过程中,催化剂发挥着举足轻重的作用。

然而,在实际运行条件下,催化剂面临着强酸、强碱的腐蚀性环境,以及高电压、大电流的操作环境,极易造成催化剂腐蚀失稳,降低稳定性和氢能器件寿命的缩减。

实现多种贵金属单原子的可控合成

当前,发展低成本、高性能和长寿命的氢电催化材料及器件,也是氢能产业发展面临的挑战之一。

为解决该问题,团队一直围绕着低铂贵金属催化剂开展研究,并取得了一系列创新性的研究成果,包括高稳定性的一维中空纳米笼结构催化剂、核壳结构、纳米团簇催化剂等[3-7]。

最近,单原子催化剂在诸多催化反应中,表现出优异的催化活性和应用潜力,这主要归因于其原子利用率高、活性位点明确且均一、独特的电子结构等本征优势。

其中,贵金属单原子催化剂可以极限地降低贵金属的使用量,而保持其高活性和稳定性,正好符合该课题组低铂催化剂的研究方向。

在制备过程中,贵金属原子容易发生团聚形成颗粒,因此,如何有效地确保贵金属单原子的分散性是一大难题。

同时,贵金属不同元素之间性质差异较大,用单一方法难以实现不同种类的贵金属单原子催化剂的可控合成,极大地限制了单原子催化剂的研究和应用。

该课题组发现,利用氮化碳(C3N4)载体能够在阻断金属原子聚集方面达到较为理想的效果。并且,还可以提供氮源来固定金属原子,从而实现贵金属单原子催化剂的可控制备。

研究人员证实了SA-Pd/CN、SA-Pt/CN和SA-Ru/CN在氢析出反应中展现出和商业催化剂相当的催化活性和选择性。

此外,在印刷载体的选择方面,虽然最终获得的都是由多孔碳载体负责的贵金属单原子,但不同碳源对贵金属单原子的负载量具有较大的影响。

表示:“我们通过多次尝试,选择了氮含量高、在高温下容易形成较多缺陷位点的碳源聚多巴胺,为贵金属单原子提供了更多的锚定位点。”

总的来说,研究人员通过积极地寻找各种原子级分散金属的材料载体,同时不断地优化制备工艺,开发出贵金属单原子催化剂的普适性制备策略。

海南大学助理研究员为论文第一作者,海南大学副教授、教授和教授为论文共同通讯作者。

当前,多金属单原子催化剂已经展示出比单一金属单原子催化剂更好的性能。然而,具有多金属活性中心的催化剂的合成是挑战之一。基于此,他们下一步的研究计划是将探索更高性能的多元单原子催化剂,以实现二元或多元单原子催化剂的精确合成。

“通过开展实际氢能器件水平的测试,来验证我们催化剂的实用性,并将结果反馈于催化剂设计,从而进一步优化合成和量产方法。”说道。

致力于将催化剂放大制备和公斤级测试

目前,担任海南大学海洋科学与工程学院副院长、教授、博士生导师。该课题组的研究方向聚焦在海洋能源与资源开发领域,包括海水制氢、海水电池、海水提铀/锂和海洋能源装备等。

在课题组之前的研究中,曾以腐蚀诱导策略为基础,研发出一种低铂合金催化剂配位和应力效应协同调控新方法。一维串状纳米笼低铂催化剂具有优异的电催化性能,通过该催化剂实现了氢燃料电池的输出功率和使用寿命的大幅度提升。

此外,团队还开发了一种基于超薄铂层的铂基核壳结构催化剂新体系,揭示核壳结构催化剂稳定性调控机制。并且,根据直接电解海水制氢以及海水电解槽的实际测试,对该催化剂的稳定性进行验证。

认为,在研究方向的选择上,应聚焦存在的关键科学问题和技术难题,又能服务当地的经济发展和需求,实现“特色取胜”。

因此,他们也在开展直接电解海水制氢技术。随着“双碳”目标的临近和落实,巨量的淡水纯化和电力需求将会给诸多地区带来严重的社会和环境压力。

通过耦合海洋可再生能源和直接电解海水制氢技术,将是一项比较理想的规模化绿氢制取途径。“通过直接电解海水制氢技术,将蓝色能源转化为稳定的氢能供应系统,服务于中国海洋强国战略,将是我们未来的奋斗和发展目标。”说。

除了基础研究,将技术向产业化落地也是致力于推动的目标。据悉,该课题组与国家能源集团共建立了海洋清洁能源研究院,主要研究内容之一,是将具有应用前景的催化剂放大制备,实现中试和公斤级测试。

此外,他们还和国家电投集团(陵水)智慧能源有限公司共同开展新型水解制氢高效膜电极组件的研发及其基础研究,将进行波动性光伏和风电制氢,储氢和氢能车辆运行示范系统。

表示:“我们坚信,随着中国‘双碳’目标的临近和政策的落实,氢能产业必将获得较大的发展。”

参考资料:

4.Rao,P.,Deng,Y.,Fan,W.,Luo,J.,Deng,P.,Li,J.,Shen,Y.,Tian,X.*,Movabletypeprintingmethodtosynthesizehigh-entropysingle-atomcatalysts,NatureCommunications2022,13,5071.

5.Xu,Y.,Wu,D.,Zhang,Q.,Rao,P.,Deng,P.*,Tang,M.;Li,J.,Hua,Y.,Wang,C.,Zhong,S.,Jia,C.,Liu,Z.,Shen,Y.,Gu,L.*,Tian,X.*,Liu,Q*.RegulatingAucoverageforthedirectoxidationofmethanetomethanol.NatureCommunications2024,15,564.

6.Song,Y.,Zheng,X.,Yang,Y.,Liu,Y.*,Li,J.,Wu,D.,Liu,W.,Shen,Y.,Tian,X.*.HeterojunctionEngineeringofMultinaryMetalSulfide-BasedPhotocatalystsforEfficientPhotocatalyticHydrogenEvolution.AdvancedMaterials2023,2305835.

7.Tian,X.,Lu,X.F.,Xia,B.*,Lou,X.*,AdvancedElectrocatalystsfortheOxygenReductionReactioninEnergyConversionTechnologies.Joule2020,4,45-68.

THE END

探索和开发低成本超长寿命高性能的氧还原反应非贵金属催化剂(ORR)以取代铂基催化剂用于电化学能量转换装置仍然是一个巨大的挑战。尽管有几种非贵金属催化剂(N掺杂石墨烯过渡金属纳米粒子单原子金属氮碳等)。虽然与商用铂碳相比,它们的催化性能可以媲美现有催化剂,但它们的长期耐用性,特别是在苛刻的电解液中的耐久性,在实际应用中仍然不能令人满意。来自湖南大学中国农业大学和剑桥大学的学者合成了一种的Fe3CNG催化剂,并对其进行了研究,以了解其在锌空气电池中的催化降解行为。实验分析和理论计算表明,由于Fe3C量子点提供了快速的电子转移到NG的价带,由Fe3C量子点和N掺杂石墨烯碳(Fe3CNG)形成的MottSchottky异质结提高了ORR。分子动力学模拟表明,在腐蚀性极强的电解液中,NG中的石墨烯结构相对稳定,避免了Fe3C量子点的腐蚀。将锌/石墨烯复合薄膜与固体电解液相结合,优化后的含Fe3CNG催化剂的锌空气电池具有高开路电压1.506V,高能量密度706.4Whkg1,以及长达1000h的长期稳定性。相关文章以“NonNobleMetalCatalystandZn/GrapheneFilmforLowCostandUltraLongDurabilitySolidStateZnAirBatteriesinHarshElectrolytes”标题发表在AdvancedFunctionalMaterials。论文链接:https://onlinelibrary.wiley.com/doi/10.1002/adfm.202200397图1.Fe3C@N/MCHS和Fe3CNGMottSchottky异质结制备示意图.图2.所制备的Fe3C@N/MCHSS的形态特征:a)扫描电子显微镜图像;b)电子显微镜图像;c,d)高分辨电子显微镜图像;以及e)典型的电子显微镜图像和相应的CNO和Fe元素映射;f)C和Fe元素的组合映射图像;g)亮场和h)暗场电子显微镜图像;i)相应的NG和Fe3C的HAADFSTEM图像。图3.a)镍泡沫上Fe3C@N/MCHSs阴极的制造工艺,b)固态电解质的制备,c)柔性Zn/石墨烯阳极电极的制备。图4.a)商用Pt/CN/MCHSS和Fe3C@N/MCHSS在N2和O2饱和的0.1MKOH中以50mV/s的扫描速率的CV;b)在O2饱和0.1MKOH下,在1600rpm转速下各种电催化剂的LSV;c)在O2饱和的0.1MKOH中的Fe3C@N/MCHSS在不同的转速下的LSV和(插图)相应的KL曲线;d)用于甲醇交叉试验的商用铂/C和Fe3C@N/MCHSS的计时电流曲线;f)与最先进的单一催化剂的比较;g)锌空气电池示意图;h)开路电压;i)速率性能;j)比容量;k)功率密度和l)具有铂碳和Fe3C@N/MCHSS催化剂的锌空气电池的充放电循环次数。图5.Fe3C@NG的莫特肖特基异质结示意图:a)接触前和b)接触后;c)ORR机制;d,e)Fe3C@NG模型的电荷分布;f)Fe3C@NG模型上的ORR过程;g)示意图能量溢出和h)G,NG,Fe3C和Fe3C@NG板的不同活性位点上ORR途径的能量变化;i)在Fe3C@NG上以不同电位下的能量跃升;j)在0.5MH2SO4溶液中Fe3C@NG的分子动力学(MD)模拟。综上所述,本文报道了一种非贵金属Fe3CNG催化剂,其催化活性和耐久性可与商用铂/碳相当,用于固态锌空气电池的实用ORR。揭示了Fe3CNG催化剂中的MottSchottky等促进了电子转移和电荷密度重分布对催化剂性能的调节作用。特别是对于Fe3CNG异质结,通过适当的设计和调节,由于莫特肖特基异质结和电荷密度的重新分布,同时实现了快速的电子转移和低能垒。分子动力学模拟表明,石墨烯层阻止了Fe3C与H3O+OH和H2O之间的接触,唯一影响降解的是石墨烯层中掺杂的N原子。通过制备锌/石墨烯复合薄膜和固态电解液,进一步解决了锌空气电池普遍存在的自腐蚀锌枝晶稳定性差等问题,优化后的Fe3CNG催化剂锌空气电池的开路电压达到1.506V,能量密度达到706.4Whkg1,长期稳定性达到1000h,向实际应用迈进了一大步。本文的工作为理解用于ORR的非贵金属Fe3CNG异质结构催化剂提供了一些新的见解,也为制造低成本高能量密度长时间循环的锌空气电池提供了新的途径。(文:SSC)本文来自微信公众号“材料科学与工程”。欢迎转载请联系,未经许可谢绝转载至其他网站。推荐阅读:欢迎微信后台回复“应聘编辑”加入我们实用!Origin软件使用经典问题集锦免费下载:18款超实用软件轻松搞科研合作投稿点击此处[Er1gF7PbJUGeb2rznpW3zw==.jpg]欢迎留言,分享观点。点亮在看材料科学与工程

1.贵金属负载型催化剂及制备方法和应用.pdf贵金属负载型催化剂及制备方法和应用.pdf 9页VIP内容提供方:知识产权出版社 大小:424.63 KB 字数:约1.41万字 发布时间:2024-02-07发布于四川 浏览人气:19 下载次数:仅上传者可见 收藏次数:0 需要金币:*** 金币 (10金币=人民币1元)贵金属负载型催化剂及制备方法和应用.pdfhttps://max.book118.com/html/2024/0207/6143005135010044.shtm
2.从使用过的含氧化钌的催化剂中回收钌的方法1.一种从使用过的含钌催化剂中回收钌的方法,所述催化剂含有负载于微溶于无机酸的载体材料上的作为氧化钌的钌,该方法包括下列步骤a)将含氧化钌的催化剂在氢气流中处理,其中存在于载体上的氧化钌被还原为金属钌;b)将来自步骤a)的含有负载于载体材料上的金属钌的经还原的催化剂在含氧气的气体存在下用盐酸处理,https://www.xjishu.com/zhuanli/24/200680046754.html
3.2024年新型贵金属催化剂合作协议书20241120.docx新型贵金属催化剂合作协议书 PAGE 1新型贵金属催化剂合作协议书目录TOC h z 31281 前言 3 16561 一后期运营与管理 3 10862 一新型贵金属催化剂项目运营管理机制 3 12974 二人员培训与知识转移 4 4598https://www.renrendoc.com/paper/361821349.html
4.金属催化剂有哪些种类金属催化剂的优缺点→MAIGOO知识金属催化剂是一类重要的工业催化剂,是以金属为主要活性组分的固体催化剂。主要是贵金属及铁、钴、镍等过渡元素。金属催化剂主要包括块状催化剂(如电解银催化剂、融铁催化剂、铂网催化剂等);分散或者负载型的金属催化剂;金属互化物催化剂;合金催化剂(如Cu-Ni合金加氢催化剂);金属簇状物催化剂。 https://www.maigoo.com/goomai/262724.html
5.包含贵金属的多金属氧酸盐和相应金属簇就这一点而言,由于贵金属具有良好的独特催化性能,那些仅含有贵金属(即不含贵金属原子以外的任何其他金属原子)的POM以及含有多于一种不同类型的贵金属原子物质的POM也是新型、更高效和更具选择性的催化剂道路上的有希望的候选对象。[0022]因此,本发明的目的是提供含有主要比例的贵金属原子的Ρ0Μ,基于所述POM的总体https://www.lotut.com/zhuanli/detail.html?id=636a8d9eccf41ab38467f950
6.北京大学:贵金属单原子材料的水分解催化研究进展北京大学郭少军教授团队总结了具有优异性能的贵金属单原子催化剂在电化学水分解催化领域的最新研究进展。http://m.xincailiao.com/news/app_detail.aspx?id=603003&ptype=1
7.制药厂钯催化剂的成分(加三元催化剂多钱?)平泽金和贵金属精炼含钯催化剂都用在什么生产中? 钯催化剂的使用? pd2dba3是什么化学品? 盐酸钯与硫酸钯区别? 钯的主要用途? 钯催化剂价格为什么贵? 含钯催化剂都用在什么生产中? 1、含钯催化剂都用在化工领域、石油化工、精细化工等生产中。 敬请保留 客服微信 13027973222 http://www.cnjxhgjs.com/40621.html
8.供应田中贵金属20%50%铂碳催化剂TANAKATKK燃料电池用批发?质子交换膜燃料电池(PEFC)以小型轻量发挥较高输出。主要以燃料电池汽车及家庭用汽电共生电源深受瞩目。其利用了氢与氧的化学反应,作为对环保有益的新能源而倍受期待。集结长年培育的贵金属催化剂技术及电化学技术,开发PEFC的阴极用高活性催化剂,阳极用耐一氧化碳(CO)毒害特性的优良催化剂。 https://jiyong.cn.china.cn/supply/4959114594.html
9.纳米人以Rh纳米颗粒为例,深入研究了其分散过程。原位检测到的I?自由基和CO分子可促进Rh-Rh键的断裂和单核复合物的形成,含氧官能团将分离的Rh单核配合物固定。 图1. 活性炭负载Rh纳米颗粒和活性炭负载Rh单原子催化剂的结构表征 要点1. 贵金属纳米颗粒分散成单核复合物http://www.nanoer.net/showinfo-32-13244.html
10.我校在非贵金属CuZnAl浆状催化剂催化合成气转化制乙醇研究领域近日,煤科学与技术省部共建国家重点实验室培育基地传出喜讯,该基地黄伟教授团队在非贵金属CuZnAl浆状催化剂催化合成气转化制乙醇研究方面取得新进展,相关研究成果发表在国际催化顶尖期刊Journal of Catalysis(2019,380:68-82)上。论文第一作者为团队青年教师白慧讲师,通讯作者为黄伟教授。 https://xiaoyou.tyut.edu.cn/info/1007/1747.htm
11.电化学耦合阴极二氧化碳还原与阳极氧化合成其核心挑战是开发高性能电催化剂,提高目标产物产率和选择性。CO2电催化材料主要包括以下几类:①金属(金、银、铜、锌等)[34];②金属氧化物(氧化锡、氧化亚铜、四氧化三钴、氧化银等)[35-36];③共价有机骨架[37]与金属有机骨架[38];④分子催化剂[39];⑤非贵金属多孔炭基催化材料[40]。炭基催化材料由于导电https://www.fx361.com/page/2021/0928/14668531.shtml
12.鹏科金属,铁钼催化剂,钯催化剂,铂催化剂,贵金属回收,银催化鹏科金属,铁钼催化剂,钯催化剂,铂催化剂,贵金属回收,银催化剂,铑催化剂,催化剂装卸等业务。http://www.pengketech.com/list/post/2751744/