党岱:阴极非贵金属催化剂在膜电极的应用及展望主题论坛5

8月25日,由中国电池工业协会、电池中国网联合主办的“2023氢能与燃料电池技术及应用国际峰会”在中国上海隆重举行。

广东工业大学副教授党岱作题为《阴极非贵金属催化剂在膜电极的应用及展望》的主题演讲。

以下是发言内容实录,未经嘉宾审阅:

那么今天的演讲分为四部分,首先也介绍一下燃料电池的工作原理和背景。

其实在燃料电池核心的工作区域主要发生的是阳极的氢氧化和阴极的氧还原,主要受制于阴极的氧还原动力学电流非常低,它和阳极相比大概差十几个数量级以上,所以目前燃料电池的计划多半来自于阴极,这个地方开发高性能的阴极催化剂是非常重要的一个事情。

那么,大家可以看一下右如图我们燃料电池单电池结构,它主要有五部分组成,包括质子膜、催化剂、炭纸也就是气体扩散层、双极板还有离聚物也就是传导质子的作用来组成。

大家从这个图上可以看到催化剂Catalysts在整个电堆的核心成本大概在35%-40%左右,刚才林教授说如果用铂碳的话现在大概在45%左右,那么差别不是很大。

也就是说我怎么样去用不含铂的催化剂目前来讲在学术界,包括一些国际在燃料电池方面做的比较好的巴拉德,也在这方面做了大量的探索工作。在2017年的时候巴拉德和日本公司推出了一个非贵金属阴极的空气自呼吸的电堆,在市面上来看的话它的效果还可以,但是也面临着一些比较重要的稳定性上面的问题,我们接现在会介绍。

这个地方我简单介绍一下非贵金属催化剂它的整个发展历程,目前来讲整个催化剂它还处于一个初期阶段,也就是说我们还没有面向商业化运用,还在实验室的验证,我在验证的过程当中我也把它分成以我个人的想法认知分成四个部分:也就是说在90年以前它主要是一个探索期,也就是说大家现在有这样一个认知,这个东西可以用来做阴极的氧还原的催化剂,基本上都以金属和氮相连的催化剂,来作为主要的一个氧还原活性位点。

到了2011年-2021年这样一个十年,大家就从一个大踏步跨越式发展重新一个理性的认识,催化剂如何能够在膜电极上面有一个更好的应用,那么它的稳定性能够逐步提升,随后达到大家想要的一个效果,从这个角度大家还是做了非常多的一个探索工作。

那么从2022年就是去年开始这类工作也达到了一定的水平,接下来我们也在想怎么样从实验室搬出去真正放到车上面去应用。这个地方简单给大家回顾一下,也就是说非贵金属催化剂首先在196几年有学者就会发现这样一个大环的普林结构的催化剂有一定的氧还原的特性,接下来到了百花齐放的阶段,90年代到2010年当时凯斯西储大学的戴明明(音)教授华人,他当时研发出来的掺氮碳纳米管催化剂发现它的活性已经在碱性条件下超越铂,所以这个时候给整个学术界,包括工业界都带来了一个非常大的震撼。

在这个阶段我们可以看到金属氮碳类催化剂确实可以在三电极也就是RDE条件下它作为一个薄膜类的电极可以达到非常好的一个性能,但这个时候大家对它的认识也非常粗浅,也解决停留在什么在分子阶段也就是说我这个催化剂还是一个颗粒,那么这样一个颗粒在酸性条件下在高温高湿这样的一个环境下如果用到MEA当中的话,它的性能下降是显而易见的,所以这个时候大家也就在想我怎么样能够把一个高性能铁酸碳催化剂能够转换到MEA里面。

我们可以简单看一下两者不同,商业的催化剂它的用量大概目前在0.2毫克-0.4毫克左右,它的厚度大概在10微米,也就是说我这样一个非常薄的催化层,可以为高效的阴极提供传质,也就是氧气的传输还有水的排出还有像电子传递还有简单的热管理、水管理这样的一个作用。

但是对于我们阴极过度金属作为阴极催化层有一个致命的问题,就是它的催化层实在是厚因为它的活性位点实在太少只有1%-3%左右,所以它的催化层可以去到100微米,因为我需要用到更多的催化剂来提升它在这方面的性能,才能够和铂进行PK。

所以这个时候我们显而易见就会带来一些问题,我在这里总结,也就是说第一点这一类催化剂主要是以微孔这样一个结构,它不利用气体的一个进入和水的一个排出。第二,有很多催化位点,三项位点不能暴露出来,它都被一些离聚物、NFC所包袱。

这里面主要应运而生就这几种催化剂相当大家现在也非常耳熟能详,一个是单元催化剂,包括一些铁氮碳、钴氮碳这种催化剂,还有一种就是双金属的双单元的催化剂,还有一些原子掺杂,比如说像硼氮硫磷这种掺杂进去以后去改变它的局域一些电子结构来提升它的性能,我们可以看到其实到了2023年的时候它的性能在氢氧条件下峰值功率达到1.2瓦每平方厘米,也就是说我们在性能上面已经和铂碳基本上持平,有这样的一个增长趋势。

但是你要把它放大放大之后再用到MEA上面,比如说用到300平方厘米的MEA上面做成一个小堆,实际上还是面临很多工程化方面的一些问题。

初期阶段目前来讲面临的一个比较大的问题就是稳定性,我们现在从2023年之后要干什么,就是要看怎么样去研究面向实用性的基础研究,你怎么样去达到像铂碳一样的稳定性,如果不能达到那么你怎么样通过研究可以让它在分阶段达到,比如说铂碳可以完成25000小时,或者比如说在ADT条件下可以达到15000小时的寿命我们比如说能不能达到非贵金属在1000是上升到5000小时这样一步一步慢慢的情况。

我们这个地方总结了一下非贵金属催化剂它的一些问题,稳定性上面遇到的一些问题,这也是学术界经过多年总结出来的,包括活性中心的一些溶解,因为你用到的是过度金属比如说像铁钴镍这种它在酸性条件下高温高湿环境下实际上是非常不稳定,还有像活性中心质子化、自由基攻击就会影响到你的碳,会把碳腐蚀掉,也会把离聚物氧化掉,还有像碳的腐蚀在高电危下也会氧化还有一些微孔的水淹带来的一些问题。

这个地方像昨天孙世刚院士所报道的,他们课题组也做了非常好的一些工作,比如说在铁氮碳里面加一些氧化铈来提升活性自由基的去除,效果也非常的明显,这个工作也是近期刚发表的,还有像华南理工大学的寥世军(音)教授课题组他们也在铁氮碳催化剂里面去掺杂锆来去除自由基,我们看到其实它的稳定性提升还是很明显,但实际上如果我们把它放到实际应用上来讲还是有非常大的前提。我们看到催化剂还是分散的非常均匀,上面没有任何的颗粒,不像我们的铂碳你看到它是一颗一颗分散很均匀,实际上它是原子极分散,我们分辨不出来的。

那么还有像吴刚(音)课题组他们是美国巴弗鲁大学的,它现在在这方面研究也做的非常好,它这个可以达到300小时稳定性,但是性能还没有上去,这就是我们刚才提到在2017年当时巴拉德和日本开发的燃料电池用的是非贵金催化剂作为阴极材料。

这个催化剂它的实际功率密度就会比较低,它的体积功率密度也比较低,是受制于整个阴极催化剂层比较厚,它的实际重量也比较重这样一个情况。但是它也有它的应用场景,就是我们现在也在探索如果把这个东西用到一个备用基站电源,对它的寿命能够达到3000小时不敏感这样一个区域,你可以把它用这种材料它的成本会大幅度降低。

那么未来的展望方面总结了四点,也就是说我们在非贵金属催化剂主要从第一也就是从燃料的调控,也就是从它的原子级别之间的配位环境以及电子配位环境以及电子结构的一个调控,以及它的制备方法以及它的孔结构的分布来提升材料本身活性这是第一点。

第二点我们能不能开发更好的非贵金属催化剂在MEA上面的制备方法,来制造更多的孔隙率以及调控它的清水性,来提升它的水热管理的一方面的性能。第三,我们从构效关系上来讲,能够用一些非原位或者原位一些表征技术,来研究催化剂和MEA之间的一些构效关系从理论计算的角度,来解析催化剂和MEA的结构,那么来提升它的性能。

最后就是我们怎么样在稳定上面去减少碳的腐蚀,水淹以及自由基等等来提升整体的活性和稳定性。

这是第一部分工作。

我们合作的点主要在这个位置,膜电极因为我们现在想把低铂和非贵金属催化剂用在膜电极上面做稳定性的一个探索。这样的话为今后比如说它的一些应用场景,空气自呼吸或者在海岛电源上面做一些探索性的工作。

最后就是感谢国家自然资金以及广东省自然基金的一些支持,这是我们课题组的一些成员结构,谢谢各位的聆听。

THE END

探索和开发低成本超长寿命高性能的氧还原反应非贵金属催化剂(ORR)以取代铂基催化剂用于电化学能量转换装置仍然是一个巨大的挑战。尽管有几种非贵金属催化剂(N掺杂石墨烯过渡金属纳米粒子单原子金属氮碳等)。虽然与商用铂碳相比,它们的催化性能可以媲美现有催化剂,但它们的长期耐用性,特别是在苛刻的电解液中的耐久性,在实际应用中仍然不能令人满意。来自湖南大学中国农业大学和剑桥大学的学者合成了一种的Fe3CNG催化剂,并对其进行了研究,以了解其在锌空气电池中的催化降解行为。实验分析和理论计算表明,由于Fe3C量子点提供了快速的电子转移到NG的价带,由Fe3C量子点和N掺杂石墨烯碳(Fe3CNG)形成的MottSchottky异质结提高了ORR。分子动力学模拟表明,在腐蚀性极强的电解液中,NG中的石墨烯结构相对稳定,避免了Fe3C量子点的腐蚀。将锌/石墨烯复合薄膜与固体电解液相结合,优化后的含Fe3CNG催化剂的锌空气电池具有高开路电压1.506V,高能量密度706.4Whkg1,以及长达1000h的长期稳定性。相关文章以“NonNobleMetalCatalystandZn/GrapheneFilmforLowCostandUltraLongDurabilitySolidStateZnAirBatteriesinHarshElectrolytes”标题发表在AdvancedFunctionalMaterials。论文链接:https://onlinelibrary.wiley.com/doi/10.1002/adfm.202200397图1.Fe3C@N/MCHS和Fe3CNGMottSchottky异质结制备示意图.图2.所制备的Fe3C@N/MCHSS的形态特征:a)扫描电子显微镜图像;b)电子显微镜图像;c,d)高分辨电子显微镜图像;以及e)典型的电子显微镜图像和相应的CNO和Fe元素映射;f)C和Fe元素的组合映射图像;g)亮场和h)暗场电子显微镜图像;i)相应的NG和Fe3C的HAADFSTEM图像。图3.a)镍泡沫上Fe3C@N/MCHSs阴极的制造工艺,b)固态电解质的制备,c)柔性Zn/石墨烯阳极电极的制备。图4.a)商用Pt/CN/MCHSS和Fe3C@N/MCHSS在N2和O2饱和的0.1MKOH中以50mV/s的扫描速率的CV;b)在O2饱和0.1MKOH下,在1600rpm转速下各种电催化剂的LSV;c)在O2饱和的0.1MKOH中的Fe3C@N/MCHSS在不同的转速下的LSV和(插图)相应的KL曲线;d)用于甲醇交叉试验的商用铂/C和Fe3C@N/MCHSS的计时电流曲线;f)与最先进的单一催化剂的比较;g)锌空气电池示意图;h)开路电压;i)速率性能;j)比容量;k)功率密度和l)具有铂碳和Fe3C@N/MCHSS催化剂的锌空气电池的充放电循环次数。图5.Fe3C@NG的莫特肖特基异质结示意图:a)接触前和b)接触后;c)ORR机制;d,e)Fe3C@NG模型的电荷分布;f)Fe3C@NG模型上的ORR过程;g)示意图能量溢出和h)G,NG,Fe3C和Fe3C@NG板的不同活性位点上ORR途径的能量变化;i)在Fe3C@NG上以不同电位下的能量跃升;j)在0.5MH2SO4溶液中Fe3C@NG的分子动力学(MD)模拟。综上所述,本文报道了一种非贵金属Fe3CNG催化剂,其催化活性和耐久性可与商用铂/碳相当,用于固态锌空气电池的实用ORR。揭示了Fe3CNG催化剂中的MottSchottky等促进了电子转移和电荷密度重分布对催化剂性能的调节作用。特别是对于Fe3CNG异质结,通过适当的设计和调节,由于莫特肖特基异质结和电荷密度的重新分布,同时实现了快速的电子转移和低能垒。分子动力学模拟表明,石墨烯层阻止了Fe3C与H3O+OH和H2O之间的接触,唯一影响降解的是石墨烯层中掺杂的N原子。通过制备锌/石墨烯复合薄膜和固态电解液,进一步解决了锌空气电池普遍存在的自腐蚀锌枝晶稳定性差等问题,优化后的Fe3CNG催化剂锌空气电池的开路电压达到1.506V,能量密度达到706.4Whkg1,长期稳定性达到1000h,向实际应用迈进了一大步。本文的工作为理解用于ORR的非贵金属Fe3CNG异质结构催化剂提供了一些新的见解,也为制造低成本高能量密度长时间循环的锌空气电池提供了新的途径。(文:SSC)本文来自微信公众号“材料科学与工程”。欢迎转载请联系,未经许可谢绝转载至其他网站。推荐阅读:欢迎微信后台回复“应聘编辑”加入我们实用!Origin软件使用经典问题集锦免费下载:18款超实用软件轻松搞科研合作投稿点击此处[Er1gF7PbJUGeb2rznpW3zw==.jpg]欢迎留言,分享观点。点亮在看材料科学与工程

1.导电烟气脱硝催化剂及其制备方法在电子政务中的应用优点:碳材料具有高的比表面积,良好的导电性和化学稳定性,可作为贵金属催化剂的替代品。 缺点:对氧气和水蒸气的敏感性较高,再生周期短,使用寿命有限。 催化剂材料的选择策略 在选择催化剂材料时,应当遵循以下策略: 适应性:催化剂材料应当与烟气中NOx的浓度和温度条件相适应。 https://blog.csdn.net/weixin_33245447/article/details/142693820
2.催化燃烧与RTO在卤素等有机废气治理中的技术分析常见的催化剂一般分为两大类:贵金属催化剂和非贵金属催化剂,其中贵金属催化剂的活性成分主要有贵金属的铂,钯,和铑,而非贵金属催化剂的活性成分主要是过渡金属氧化物(稀土和稀有金属氧化物)和复合金属氧化物(固溶体,钙钛矿,和尖晶石)。 6. 对比直接燃烧,使用催化剂有何好处? https://www.safehoo.com/item/5665757.aspx
3.世界一流科技期刊文章精选单原子分散贵金属催化剂的制备和催化 厦门大学化学化工学院、能源材料化学协同创新中心郑南峰和傅钢课题组,采用乙二醇保护的超薄二氧化钛纳米片作为载体,应用光化学方法,成功制备了负载量高达1.5wt%的单原子分散钯催化剂;在温和条件下高效脱除前驱体氯钯酸上的氯离子是成功制备的关键;研究成果发表于《科学》杂志。贵金属http://www.scichi.cn/zinecontent.php?id=1827
4.制药厂钯催化剂的成分(加三元催化剂多钱?)平泽金和贵金属精炼含钯催化剂都用在什么生产中? 钯催化剂的使用? pd2dba3是什么化学品? 盐酸钯与硫酸钯区别? 钯的主要用途? 钯催化剂价格为什么贵? 含钯催化剂都用在什么生产中? 1、含钯催化剂都用在化工领域、石油化工、精细化工等生产中。 敬请保留 客服微信 13027973222 http://www.cnjxhgjs.com/40621.html
5.两电子氧还原制备过氧化氢:贵金属催化剂的几何与电子结构调控的1000-0518. 230048 两电子氧还原制备过氧化氢:贵金属催化剂的 几何与电子结构调控的研究进展 罗二桂* 唐涛王艺 张俊明 常宇虹 胡天军 贾建峰* (山西师范大学化学与材料科学学院,磁性分子与磁信息材料教育部重点实验室,太原 030032) 摘要 通过两电子氧还原反应(2e-ORR)电化学合成过氧化氢(H2O2)的显著优势是高http://yyhx.ciac.jl.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=18171
6.《大江大河3》中的催化剂难题,国内催化剂企业如何突破进口产品的从技术层面来看,目前氢燃料电池的催化剂主要分为三个大类:铂(Pt)催化剂,低铂催化剂和非铂催化剂,现阶段铂碳催化剂仍是应用的主流,低铂合金催化剂则仍处在研发中,尚未有较大的商用进展。 为了降低燃料电池的成本。鉴于铂金属(Pt)的高价格,提高金属的催化活性将减少所需贵金属的体积。 https://www.xianjichina.com/special/detail_542774.html
7.由MOF制备氮掺杂多孔碳材料及其催化氧还原反应的性能研究众所周知,铂材料被认为是燃料电池中ORR最活跃的催化剂,但它们的成本高,对甲醇的耐受性低,稳定性有限。有几种非Pt基催化剂:廉价贵金属催化剂,非贵金属催化剂和无金属催化剂。使用金属骨架材料(MOFs)作为前体制备高效多孔碳催化剂是非贵重金属催化剂。较大的表面积和MOFs的各种孔分布有利于吸附有机分子,并且可以https://wap.cnki.net/touch/web/Dissertation/Article/1017080933.nh.html
8.供应田中贵金属20%50%铂碳催化剂TANAKATKK燃料电池用?质子交换膜燃料电池(PEFC)以小型轻量发挥较高输出。主要以燃料电池汽车及家庭用汽电共生电源深受瞩目。其利用了氢与氧的化学反应,作为对环保有益的新能源而倍受期待。集结长年培育的贵金属催化剂技术及电化学技术,开发PEFC的阴极用高活性催化剂,阳极用耐一氧化碳(CO)毒害特性的优良催化剂。 https://jiyong.cn.china.cn/supply/4959114594.html
9.本公司主要工业气体净化剂,脱氧催化剂,脱氢催化剂,脱甲烷催化剂506TCO脱一氧化碳催化剂(柱形)﹑脱CO、鈀触媒﹑催化剂﹑气体净化剂、贵金属催化剂、钯金催化剂 506HN脱氧剂﹑鈀触媒﹑催化剂﹑除氧吸附剂﹑净化剂、贵金属催化剂、钯金催化剂 产品展示 更多>> 13X分子筛 活性氧化铝 506HOS多功能型催化剂、高效脱氧剂、高效脱氢剂、钯触媒、贵金属催化剂、钯金催化剂 http://www.app17.com/C100597
10.贵金属负载到碳粉问题?盖德问答最近在做铂钯负载到碳粉的 催化剂 ,前驱体是 氯化钯 和氯铂酸,用 抗坏血酸 作为还原剂在水溶液中进行还原,然后加入碳粉https://m.guidechem.com/wenda/question/detail77933.html
11.合成空心半球碳负载碳化钼纳米颗粒:有效的非贵金属脱氢催化剂碳化钼具有类贵金属(Pt、Pd等)的电子结构、氢吸附和催化性能,且价格相对低廉,是最有潜力替代贵金属催化剂的理想催化材料,在许多催化反应中如烷烃异构化、加氢脱氢、脱硫脱氮、费托合成、电催化析氢、能源存储和转化等反应中显示了潜在的应用价值。目前,进一步提高碳化钼催化性能普遍采用的方法有杂原子掺杂碳化钼、合成https://ccet.tyut.edu.cn/info/1108/2572.htm