在构建这些解决方案时存在几个障碍,比如从不同的语言、不同的方言和口音中实现清晰的转录,识别不同类型的场景词汇,去除环境噪音,以及使用不同的渠道(如单声道或立体声)来录制对话。多年来,大型科技公司提出了许多解决方案。他们建立了强大的专有模型,精度非常高。但主要的挑战是数据需要通过网络发送,这可能与保密性和隐私问题相冲突。此外,这些专有模型在特定领域定制的训练中具有有限的范围。
在未来的日子里,使用强大的深度学习来使用预训练的组件和迁移学习来构建编码器解码器网络将是一个区别。这些计算密集型模型利用高性能GPU计算的硬件加速来规避翻译和语音细微差别带来的挑战。
像BERT和GPT-3这样的大型语言模型将在未来的几天里变得更加复杂,扩展它们的能力来处理不同的语义相似性和场景关系,并改进现有的文本摘要和生成、聊天机器人、提高翻译准确性和增强情感挖掘、搜索、代码生成等应用程序。
在计算机视觉领域,人们正在构建用于物体检测、分割、跟踪和计数的更新、更强大的模型,这些模型提供了以前无法想象的精度水平。通过强大的GPU,这些模型将变得越来越普遍。
人们可以期待看到混合解决方案利用所有上述进步,将下一代人工智能助手带入生活。这些解决方案将具有人类对话的温暖触感,再加上快速执行和推理能力,最终降低运营成本,极大地提高客户满意度。
越来越多的企业意识到,需要可解释的人工智能来提高透明度,建立问责制,并暴露自动决策系统中的偏见。可解释的人工智能也是降低企业人工智能固有风险的主要工具。事实也证明,可解释的人工智能也增加了整个企业对人工智能的采用,因为当人工智能模型在预测的同时给出理由和基本原理时,人们会更加信任。在医疗保健或金融服务等环境中,这将获得很大的动力,因为需要理解和阐明推荐治疗或诊断的理由,或者为什么贷款申请被拒绝。
一些技术,如LIME,通过扰动输入和评估对输出的影响来提高模型的可解释性。另一种流行的技术(SHAP)通过分析特征组合及其对结果增量的相应影响,使用基于博弈论的方法。它创建可解释性分数,以突出对输出贡献更大的输入方面。例如,在基于图像的预测中,可以突出显示导致输出的主导区域或像素。随着人工智能对商业和社会的影响不断增加,人们也面临着由这些复杂用例产生的各种道德问题。正在研究适当的数据治理框架、揭露偏见的工具和透明度因素,以保持符合法律和社会结构。模型将被彻底测试漂移、谦逊和偏见。适当的模型验证和审计机制,内置可解释性和可重复性检查,将成为规范,以防止道德失误。
由于较低的计算需求而导致的成本下降将催生智能和响应式设备的市场。对于数据管理受到严格监管的医疗保健和金融等行业来说,数据要求的降低将是一个福音。每个边缘设备的模型都是根据特定的边缘环境定制的,关键数据永远不会出现在边缘网络之外。边缘人工智能将在智能仓库、制造业和公用事业等领域普及。随着企业越来越意识到笨重模型的巨大能源需求,将采用基于边缘的人工智能来减少人工智能的碳足迹,并实现可持续发展目标。防抱死装置会让车主在一直踩刹车时,它会一松一放的关闭和打开刹车油路,防抱死装置电脑基本上是每秒15次左右的点刹,防止汽车抱死发生,防抱死装置提高短距离的安全停车。就因为这样,每次刹车防抱死装置都是不断的点刹,所以车主们在踩刹车时会有种踏板跳动的感觉。