作者简介:张欣,法学博士,对外经济贸易大学法学院副教授。
目录
一、技术赋权和技术赋能:算法行政的建构原理
三、算法行政的法治化路径——兼论《个人信息保护法(草案)》
四、结语
引言:从数字治理到数据驱动型治理
伴随着海量数据和高效算力,大数据技术重新界定了国家、社会的互动关系和二元边界,实现了全方位、系统化的国家赋权和社会赋权。在社会层面,大数据技术赋予和扩展了公民的知情权、表达权、参与权和监督权,网络政治生态的权力结构呈现出动态演化、合作共生和多方博弈的新图景。在国家层面,通过控制底层代码和塑造其运行的合法环境,大数据技术重新分配了信息权力,对国家和政府赋能。一方面,网络化、平台化的生态环境促使政府转变其在整个网络生态中的样态和架构,由中心化、单一化的治理支点演变为平台化、分布式的多元治理网络,实现了治理信息收集、加工和反馈的及时、精准与高效;另一方面,算法技术的专业性、高效性消解了传统行政决策中专家和政府官员的知识性和专业性地位,重构了行政决策多元主体之间的知识化和专业化格局。二者相互作用,促使算法技术扩展式嵌入行政实践之中,软件代码和统计操作趋向于取代法律规则,形成了“自动分析、自动决策、自动执行”的算法行政系统。
(一)大数据时代政府通过平台化改造实现数字化转型
由此可见,自党的十八届三中全会提出“国家治理现代化”这一重要方针,国家和政府在治理网络中的组织架构、制度依托、决策工具和治理背景实现了全方位演进。以电子政务泛在化、感知化和智能化为发端,我国政府向着智慧化、现代化、智能化、服务化的运行形态和模式快速发展。在智慧政府到智慧城市的建设中,各类型“一站式、一门式、一网式、一窗式”的智能化便民综合服务信息平台在整合信息资源的基础上,为行政相对人提供了个性化、精准化、扁平化的服务。例如,在强势推进的社会信用体系建设过程中,各省市均基本建成统一的社会信用信息共享平台以解决信息壁垒问题。以厦门为例,其打造了极具特色的“两网、两库、两窗口、一支撑”格局,其中,“两网”即开通政务内网“信用工作平台”和“信用厦门”网站,“两库”即建成法人信用信息库和自然人信用信息库,“两窗口”即在自贸区和政务服务中心分别设立信用服务窗口,“一支撑”即依托市级共享协同平台搭建信用信息共享协同平台。从技术治理的架构视角来看,算法行政过程中依托的信用信息共享协同平台集中体现了大数据时代政府平台化和数字化的核心思路。
面对复杂、动态、分散的治理对象,传统条块式的行政组织架构无法适应治理对象的高度流动性和专业复杂性,因此,需要在组织架构上作出实质性改变,以解决条块式架构中存在的信息流动不畅、决策滞后和应对乏力的问题。大数据技术具有高效、便利、互联互通的特性。通过利用信息技术将自身架构延展至平台化和扁平化样态,政府机构可以在原有的行政组织架构中以最小边际成本实现治理过程信息聚合能力和治理决策流动性的提升,以此降低行政行为和公共服务带给社会主体的成本。这种在架构层面的治理逻辑的改变,集中性地体现出现代技术治理语境下,国家已经不再是传统意义上政治秩序生成的顶端,也不再是大型权力聚合体的存储者,转而调适并开始充当规制权力技术设施的连接点(nexus)。这种平台式的架构,一方面,有助于打通各行政机关之间信息的共享和流转,一定程度上减轻了条块式监管架构的僵化问题;另一方面,平台式架构可以为政府行政提供“扩展槽”,通过与社会性、商业性平台的扩展对接,形成更大范围的辐射性和嵌入性。
(二)智能时代专家意见的主导地位让位于数据和算法
早在德国社会学家韦伯论述“法制性支配”类型的官僚制特点时就曾指出,专业知识在确立官僚系统的优越性上发挥着重要作用。专业知识一方面保证官僚系统拥有权力,另一方面官僚组织在处理政治事务过程中又可依靠累积的经验和知识增强其权力。公共政策制定活动的现代化和理性化思潮使得现代行政过程日益推崇“专家理性理论”,专家因具备“技术理性”而获得行政决策的正当性。因此,现代公共政策制定领域不仅对行政部门的专业知识、技术理性赋予较大信任,还进一步扩展专家群体的范围,将“行政精英”以外的学术专家引入决策过程,构建知识专业化运作的缜密体系。这种在行政过程中对专家意见的推崇和尊重构成了现代公共行政活动的一大特点。然而,伴随着信息技术的发展和应用,下列三项核心诱因致使智能社会中的专家意见逐步让位于数据和算法,客观上为算法自动化行政的应用和普及奠定基础。
首先,专家技术理性模式不断高度专业化和技术化,并开始融合数据化的方式对自身参与的公共政策进行论证和评价。例如,集中体现现代公共政策领域对行政专家评价理念的“技术理性”绩效评价模型在过程和形式层面追求客观理性化,注重科学、逻辑性的数据论证,通过知识筛选和数据结果设定对公共政策的绩效作出具体评价。伴随着决策绩效数据化和理性化趋势的增强,行政决策本身也进一步呈现出量化和技术化特质。因此,以技术理性为表征的量化绩效评价制度为数据和算法进入行政决策过程提供了重要的激励机制。
最后,伴随着规制对象的复杂化、动态化、场景化特征的凸显,信息权力在行政专家和大数据技术应用之间进行了重构性分配,并对行政决策运行模式和运行生态朝向自动化和智能化演进起到了至关重要的作用。正如以色列历史学家尤瓦尔·赫拉利曾提出的“数据主义”潮流所根植的一种信念,即人类决策者并不具有将大量数据流提炼成信息、知识或者智慧的能力,因此数据处理工作应当委托给具有计算能力的算法,其能力远超过人脑。以被喻为经济发展新引擎的数字经济为例,其以数字技术创新应用为牵引,以多元化、场景化、个性化为特征,实现了经济产业要素的全面重构和深度融合。以大数据、云计算、人工智能为代表的数字技术深度嵌入,并不断扩展到新业态和新模式的迭代发展之中,引发了监管模式、监管理念、监管生态的全面变革。由于新兴业态多具有模式新、主体多、法律关系复杂等特点,仅依靠传统专家治理模式开展信息收集和处理,其局限性日益凸显。因此,顺势而为,积极利用大数据和算法技术,提升行政机构数字治理能力成为题中应有之义。
(三)软件编码和统计操作趋向于取代法律规则
综上所述,算法自动化行政的架构原理基于三个层面依次发生。首先,国家和政府转变自身的技术治理理念,将自身重置为具有平台化、数字化特质的“规制权力技术设施连接点”,为算法行政实践提供组织基础和发展契机。其次,专家技术理性绩效评价、分布式信任和智能社会信息权力的再分配致使专家意见逐步让位于数据和算法,客观上为算法行政的应用和普及奠定制度基础。最后,法律规范的可计算性和大数据技术的兴起使得海量数据被转换为特定的数据密集型知识形式,算法规制作为一种新的社会秩序系统最终得以出现。在组织基础、制度基础和技术基础的综合作用下,算法行政一方面深刻地体现出计算理性对沟通理性和公共话语空间的转换;另一方面,当算法通过优先级配置、分类、关联以及过滤四项功能嵌入行政决策的各个领域之时,还勾画出技术对国家和政府的动态赋权和赋能过程。数据和算法不仅作为现代社会的信息要素和治理客体而存在,更从宏观层面作为基础治理环境和重要治理技术而存在。
(一)以统一社会信用代码为基础构建多类信用信息平台
如前文所述,算法自动化行政的构建机理之一在于政府通过平台化改造实现数字化转型。实际上,无论是政治管控逻辑还是商业生产逻辑,都可以通过微观层面的“账户—数据—评分”框架予以统一,通过平台化改造实现数字化转型并获得“规制能力”(regulability)。具体而言,一方面,需要政府作为平台打造其纵向控制结构,例如通过身份认证、行为追踪、记录评分等形式构建规制能力。另一方面,还需要在横向维度将多类别的信用信息平台联通,通过信用信息互享互通、自动对接等方式扩展其规制能力的辐射边界。以福州市为例,在推进信用领域的算法行政实践时按照“一库、一平台、一网、N应用”的架构原则具体搭建底层基础设施。
为构建智能化、数字化、精准化的信用监管和信用治理机制,我国首先通过公民个人身份证号码和组织机构代码建立起统一的社会信用代码,将个人和组织的身份数字化,为信用信息收集和记录个体信誉足迹活动提供纵向底层架构。社会信用代码对于个人和组织身份识别具有唯一性、真实性和准确性,可以满足信用记录长期性、连续性、准确性和全面性的要求。数字化的身份识别代码还可以打通多个行政机构之间的子系统,为信息高效收集、互通流转和共享奠定重要基础。在实施社会信用代码的基础上,我国各行政部门对业务系统加以改造,建立了一批社会信用信息共享平台与智慧审批平台、网上执法平台、公共资源交易平台。这些平台自动对接,实现了横向的互联互通,通过实现自动比对、自动拦截、自动监督、自动惩戒、自动反馈等方式有效扩展算法规制能力的横向边界。
这种横纵兼具的数字化信用治理平台极大地扩展了政府的规制能力,为构建守信联合激励和失信联合惩戒制度,推进失信被执行人跨部门协同监管奠定了规制基础。但与此同时,由于信用奖惩机制通过信用画像模型和各省市各部门建立的信用信息平台系统化、高效化、泛在化地嵌入多元应用场景之中,一旦发生信用信息记录错误或者基于某一信用特征要素设定存在偏误,就可能导致某一个体或者某一群体在基于信用画像的算法行政系统中被不当锁定,可能在多个场景中受到不利影响。以《厦门市守信联合激励与失信联合惩戒行为清单》《厦门市守信联合激励与失信联合惩戒措施清单》建立的联合奖惩机制为例,仅第一批清单就涉及23个领域、238项联合奖惩措施。《威海市级查询使用信用记录事项清单》亦推动在45个部门的263个行政管理事项中查询使用信用记录,涉及评先选优、干部任用、行政审批、财政性资金安排、公共资源交易等领域,初步形成了“办事先查信用”的工作机制。因此,平台化、数字化的政府虽然通过横纵架构极大地增强了规制能力,但这种平台化架构还同时暗藏风险,一旦个体受到算法歧视,将会有极高的概率延续现有的分类和阶层现状,发生个体不公的结构性锁定效应。
(二)以大数据模型进行信用画像建模推动信用治理自主化和全周期化
这一实施模式无疑具有高效、精准的绩效优势,极大地节省了税务机关的人力和财力。但在算法日益具有自主性决策地位的行政实践中,这可能引致以下两种风险。首先,为提升精准性和可预测性,信用画像采用的数据既包括结构化信用数据,又包括非结构化数据。在未获得当事人知情和同意的前提下,对当事人社交媒体平台发布的非结构化数据进行抓取和分析,形成具有直观利益影响的信用画像,可能对个人信息的自主可控带来不利影响。其次,信用画像模型和大数据监测技术的自主性逐步增强。一些信用监管实践中采用的自动对接、自动比对、自动拦截、自动监督、自动惩戒模式可能消解相对人的知情权、参与权、异议权甚至救济权。
(三)以指数化和智能化打造动态信用分级分类监管工具
在顶层设计、平台建设、信用智能模型建设之外,我国的信用监管和信用治理还呈现指数化、指标化、动态化和智能化特征。在“信用+监管”“互联网+监管”作为核心指导思想推动监管改革的政策背景下,我国各省市、各层级、各部门的监管机构开始广泛利用大数据和云计算等信息技术着力推动监管有效性。这些监管工具多以大数据和云计算技术为支撑,对接各类信用信息平台,形成指数化、指标化、动态化、智能化的分类分级监管。目前,我国信用监管指数工具主要在全国层面、各省市层面和专业监管层面予以适用。
智能化、动态化的信用监管指数基于综合评价和统计指数理论,运用大数据技术,对信用信息进行采集、汇总、分析、加工和综合处理,通过建构指标和权重赋分体系,借助指数模型和测算方法反映样本主体的信用状况,为行政决策提供重要参考。其不仅具有较强的客观性、整体性,其动态化采集还具有及时性、精细性和预测性特征,而且有助于监管机关实现全周期视角的分级分类监管。但与此同时,指数类监管工具的开发和使用还可能伴随诸多风险。
(一)建议细化算法行政过程中个人信息处理应遵循的合法性和必要性原则
(二)建议引入算法影响评估制度以扩展自动化决策风险事前评估制度
第一,我国草案稿集中于风险评估,而非更为广泛的影响性评估。但从操作层面来看,何谓风险其实是一个棘手而又难以解决的问题。只有明晰了风险的衡量标准和基准,才可能在此之上搭建起更具可行性的平台。第二,我国的风险评估主要集中于对个人的影响和风险程度。而目前国际中的通行做法不仅聚焦于对个人的影响,还对社会、经济、生态等多方面的影响予以关照。第三,我国的风险评估并不区分被评估系统的优先级。实际上,欧盟、美国和加拿大的算法影响评估,更加注重对自动化决策系统重要性、应用场景的划分,在重点领域中实施更为严格的评估方法。第四,我国的风险评估聚焦于事前阶段,而国际通行的算法影响评估实际上是采取事前、事中和事后阶段的全周期视角的评估。
(三)建议明确算法行政领域的算法审计制度并适当扩展审计依据
从目前国际通行的治理实践来看,我国此次立法规定了自动化决策审计制度无疑具有重要意义。但现有规则设计集中性地存在两点不足。首先,对于在何种情形下由个人信息处理者进行内部审计,何种情形下需要启动外部审计未能予以规定。一方面可能对于个人信息处理者的合规指引不清,另一方面可能使得审计制度流于形式而未能起到真正效果。建议立法者适当考虑应用场景和优先等级,对公民基本权利可能产生实质性影响的行政领域规定强制性的算法审计制度,具体的启动条件、认定标准和审计主体可以通过次级立法予以详细规定。其次,目前的条文中规定算法审计的依据限定为符合法律、法规,而未采取国际上较为通行的“法律法规+道德伦理”的审计模式。这可能使得我国规定的算法审计制度在审计内容上存在局限。智能社会中法律、法规常常滞后于技术的发展和应用实践,若作为单一审计依据可能存在局限性。因此,建议立法机关适当扩展算法审计的依据,及时吸收具有共识性和已在国际算法审计实践中被上升为正式规则的伦理规范,为算法审计制度落到实处奠定良好的规则基础。
自工业革命以来,每一次技术变革都引发了社会形态、社会结构以及社会治理方式的改变。大数据、人工智能等当代信息科技迅猛发展,孕育并推动了数字社会的全面诞生,促进了数据驱动型治理实践的出现。在大数据时代,政府因循社会架构的变革规律,通过平台化改造实现了数字化转型,为算法行政奠定了底层基础架构。公共政策技术理性绩效评价模式、分布式信任和智能社会信息权力的再分配致使专家意见逐步让位于数据和算法,客观上为算法自动化行政的应用和普及奠定了制度基础。法律规范的可计算性和大数据技术的兴起使得海量数据被转换为特定的高度数据密集型知识形式,算法规制作为一种新的社会秩序系统得以出现。算法行政虽然高效、智能、动态、精准,但其可能对个体权利产生实质性影响,在决策透明度、问责度以及公正性层面亦存在风险。因此,应当明确算法行政应当遵循的合法、透明、问责、公正等核心原则,实施算法影响评估制度和算法审计制度,将算法行政实践切实纳入法治化发展路径。