2月1到5日收到样本交付期限为节后2月19日;
2月19号起恢复正常上机和报告出具。
杭州谷禾信息技术有限公司
2021年1月14日
现在经济飞速发展,随着生活条件改善,人们的寿命开始变长,对健康长寿的研究也逐渐开始增多。
然而寿命变长却不一定健康,越来越多人开始患上各种慢性疾病。
慢性疾病怎么来的?
首先从炎症开始。炎症其实是身体在与自身有害的物质(例如感染,毒素)作斗争来自愈的过程。当细胞要被破坏时,身体就会释放化学物质,从而触发免疫系统的反应。
那慢性疾病为什么与肠道健康有关呢?
因为免疫系统有很大一部分在肠道,具体来讲,这要涉及到肠道通透性的问题。
来自麻省总医院儿童医院腹腔研究和治疗中心主任Fasano博士和他的团队发现了zonulin蛋白(连蛋白),这为研究肠道通透性功能的新方法打开了大门,不仅因为它影响肠道,而且还影响了整个过程中炎症和自身免疫的作用。
除了基因组成和暴露于环境诱因外,还有三个引起慢性炎症性疾病的额外因素:
肠道通透性的不适当增加(可能受肠道菌群组成的影响);
负责耐受性免疫应答平衡的“超好战”免疫系统;
肠道菌群的组成及其对免疫系统的表观遗传影响宿主基因组的表达。
这种相互作用对宿主肠道免疫系统功能的形成有很大影响,并最终将遗传易感性转化为临床结果。这一观察导致了对慢性炎症性疾病流行的可能原因的重新审视,表明肠道通透性的关键致病作用。
临床前和临床研究表明,连蛋白家族是调节肠通透性的一组蛋白质,与多种慢性炎症性疾病有关,包括自身免疫性,感染性,代谢性和肿瘤性疾病。这些数据为多种慢性炎症性疾病提供了新的治疗靶点,其中连蛋白途径与它们的发病机理有关。
除了微生物本身,肠粘膜的状况也起着重要作用。Fasano解释说:“尽管这种巨大的粘膜界面(200m2)看不见,但它通过与周围环境中各种因素的动态相互作用而起着关键作用,这些因素包括微生物,营养素,污染物和其他物质。”
虽然过去人们认为细胞内紧密连接是静态且不可渗透的,但我们现在知道并非如此。正如Fasano所解释的,连蛋白是肠道渗透性的强大调节剂。然而,尽管连蛋白是肠道通透性的生物标志物,并在许多慢性炎性疾病中起着致病作用,但并非所有慢性炎症性疾病都是由肠道渗漏引起的。
在正常情况下,你的肠道会保持健康的内稳态,当遇到抗原时,不会发生过度的免疫反应。在图中第2点,肠道菌群失调(即肠道菌群的数量和多样性不平衡)正在形成,导致连蛋白的过量生产,从而使肠道内壁更容易渗透。
SturgeonCetal.,TissueBarriers,2016
两个最强大的触发连蛋白释放是细菌过度生长和谷蛋白。连蛋白是对坏细菌的反应产生的——它通过打开紧密连接帮助细菌排出体外,所以细菌过度生长是有意义的。但是为什么它对谷蛋白有反应呢?
有趣的是,连蛋白途径将谷蛋白误解为微生物的潜在有害成分。这就是为什么谷蛋白会触发连蛋白的释放。虽然Fasano没有提到,除草剂草甘膦也触发连蛋白,而且是谷蛋白10倍的效力!
随后的通透性允许微生物群衍生的抗原和内毒素从管腔迁移到固有层(肠粘膜的结缔组织),从而引发炎症。
随着过程的继续恶化(上图中第3阶段),适应性免疫反应开始,触发促炎性细胞因子的产生,包括干扰素γ(IFN-γ)和肿瘤坏死因子α(TNF-α)。这些细胞因子使通透性进一步恶化,从而形成恶性循环。
最终(第4阶段),粘膜耐受性被完全破坏,导致慢性炎症性疾病的发作。
最终出现的特定的慢性炎症性疾病,部分取决于你的基因组成,部分取决于你所接触的类型以及部分取决于肠道菌群组成。
除了遗传易感性和环境触发因素外,各种慢性炎症性疾病的发病机理还涉及到相互影响的肠道通透性/Ag转运,免疫激活以及肠道菌群的组成/功能的变化。
连蛋白是上皮和内皮屏障功能的调节剂,肠营养不良可能导致连蛋白的释放,从而导致腔内物质穿过上皮屏障的释放,导致促炎性细胞因子的释放,而促炎性细胞因子本身会导致通透性增加,形成恶性循环,从而导致大量的饮食和微生物Ag大量涌入,触发了T细胞的活化。
根据宿主的遗传组成,活化的T细胞可能保留在胃肠道内,导致肠道慢性炎症性疾病或迁移到几个不同的器官以引起全身性慢性炎症性疾病。”
自身免疫性疾病如腹腔疾病、1型糖尿病、炎症性肠病、多发性硬化症和强直性脊柱炎
代谢紊乱如肥胖、胰岛素抵抗、非酒精性脂肪肝、妊娠期糖尿病、高脂血症和2型糖尿病
肠道疾病如肠易激综合征、非腹腔麸质敏感性和环境肠道功能障碍
神经炎症性疾病如自闭症谱系障碍、精神分裂症、重度抑郁症和慢性疲劳/肌痛性脑脊髓炎
癌症脑癌和肝癌
2018年,发现的肠道菌群实际控制肝脏中的抗肿瘤免疫应答,并且抗生素可以改变免疫细胞的组成在肝脏中触发肿瘤生长。
哈佛医学院的研究人员已经确定了肠道微生物的特定种群,可以调节局部和系统的免疫反应来抵御病毒入侵。
某些肠道细菌也会促进炎症,炎症是几乎所有癌症的潜在因素,而其他细菌则会抑制炎症。某些肠道细菌的存在甚至可以增强患者对抗癌药物的反应。
肠道菌群提高癌症治疗效果的一种方法:
激活你的免疫系统,让它更有效地发挥作用。
研究人员发现,当这些特定的微生物缺失时,某些抗癌药物可能根本不起作用。
最近的研究表明,肠道细菌也参与了抗病毒防御。
哈佛医学院的研究人员第一次确定了特定的肠道微生物群,这些菌群调节局部和全身免疫反应,抵御病毒侵略者。这项工作确定了一组肠道微生物,以及其中的一个特定物种,它能使免疫细胞释放出抗病毒化学物质——1型干扰素。
研究人员进一步确定了许多肠道细菌共有的确切分子,它开启了免疫保护级联反应。研究人员指出,这种分子并不难分离,可能成为增强人类抗病毒免疫的药物的基础。”
虽然这些发现还需要重复和证实,但它们指出了一种可能性:你也许可以通过在肠道中重新播种脆弱拟杆菌和拟杆菌科的其他细菌,来增强你的抗病毒免疫。
这些细菌启动一个信号级联,诱导干扰素的释放,通过刺激免疫细胞攻击病毒,并导致病毒感染的细胞自我毁灭来保护免受病毒入侵。
具体来说,驻留在细菌表面的一个分子通过激活所谓的TLR4-TRIF信号通路触发干扰素的释放,这种细菌分子刺激免疫信号通路,该通路由9种toll样受体(TLR)之一启动,TLR是先天免疫系统的一部分。
自身免疫性疾病往往会导致维生素D缺乏症,这会改变微生物组和肠道上皮屏障的完整性。
这篇综述总结了肠道细菌对免疫系统的影响,探讨了自身免疫疾病研究中出现的微生物模式,并讨论了维生素D缺乏症如何通过其对肠道屏障功能,菌群组成的影响而有助于自身免疫,和/或对免疫反应的直接影响。
维生素D对免疫系统具有多种直接和间接的调节作用,包括促进调节性T细胞(Tregs),抑制Th1和Th17细胞的分化,损害B细胞的发育和功能,减少单核细胞的活化和刺激来自免疫细胞的抗菌肽。
也就是说,维生素D与自身免疫之间的关系很复杂。除了免疫抑制,维生素D还通过影响菌群组成和肠道屏障的方式改善自身免疫性疾病。
虽然关于维生素D对肠道细菌的影响的研究仍很薄弱,尤其是在患有自身免疫性疾病的患者中,但已知维生素D缺乏症和自身免疫性疾病是合并症,通常建议这些患者补充维生素D。
众所周知,维生素D支持肠道和免疫细胞的防御。维生素D是维持紧密连接所需的关键成分之一。
肠上皮与外部环境不断相互作用。上皮表面适当的屏障完整性和抗菌功能对于维持内稳态和防止特定微生物物种的入侵或过度定殖至关重要。
健康的肠上皮和完整的粘液层对于防止病原性生物入侵至关重要,而维生素D有助于维持这种屏障功能。多项研究发现,维生素D3/VDR信号调节紧密连接蛋白的数量和分布。
作为一种可使离子进入肠腔的“泄漏”蛋白,在功能性维生素D缺乏症的情况下,claudin-2表达可能会导致结肠炎。
维生素D上调抗菌肽的mRNA和蛋白质表达,包括抗菌肽,防御素和溶菌酶。
抗菌肽主要由肠道Paneth细胞分泌,是微生物组组成的重要介质。
防御素由上皮细胞,Paneth细胞和免疫细胞分泌,并且是肠道固有免疫反应的重要组成部分。
维生素D缺乏症可能通过以下方式影响微生物组和免疫系统,从而导致自身免疫疾病:
1维生素D缺乏或补充会改变微生物组,细菌丰度或组成的操纵会影响疾病的表现。
2由于饮食不足而缺乏维生素D信号传导会损害肠道的物理和功能屏障完整性,从而使细菌之间的相互作用刺激或抑制免疫反应。
3如果缺乏维生素D,先天免疫防御能力可能会受到损害。
YamamotoErinAetal.,FrontImmunol,2019
以上所有,我们可以看到,优化肠道菌群和维生素D水平对于保持健康至关重要。通过肠道菌群检测,查看自己的肠道菌群的构成,适当补充益生菌,维生素D将有助于避免肠道泄漏。
对肠道微生物组产生重大影响的最简单,最有效和最便宜的方法:定期食用发酵食品。
健康的选择包括酸奶,纳豆和各种发酵蔬菜。
避免破坏或杀死微生物组,其中包括:
如果可以的话,尽量避免抗生素。抗生素杀菌一视同仁,不管好坏。
尽量少吃常规饲养的肉类和其他动物产品,因为这些可能会被喂食低剂量的抗生素。
尽量避免经基因工程处理和/或草甘膦处理的谷物。
少吃加工食品(由于过量的糖会滋生病原菌)
参考文献:
KrautkramerKA,KreznarJH,RomanoKA,VivasEI,Barrett-WiltGA,RabagliaME,KellerMP,AttieAD,ReyFE,DenuJM.Diet-MicrobiotaInteractionsMediateGlobalEpigeneticProgramminginMultipleHostTissues.MolCell.2016Dec1;64(5):982-992.doi:10.1016/j.molcel.2016.10.025.Epub2016Nov23.PMID:27889451;PMCID:PMC5227652.
GuglielmiGiorgia,Howgutmicrobesarejoiningthefightagainstcancer.[J].Nature,2018,557:482-484.
LarsenNadja,VogensenFinnK,vandenBergFransWJetal.Gutmicrobiotainhumanadultswithtype2diabetesdiffersfromnon-diabeticadults.[J].PLoSOne,2010,5:e9085.
SturgeonCraig,FasanoAlessio,Zonulin,aregulatorofepithelialandendothelialbarrierfunctions,anditsinvolvementinchronicinflammatorydiseases.[J].TissueBarriers,2016,4:e1251384.
YamamotoErinA,JrgensenTrineN,RelationshipsBetweenVitaminD,GutMicrobiome,andSystemicAutoimmunity.[J].FrontImmunol,2019,10:3141.
关于肺癌,可能有以下误解:
你对肺癌了解吗?
肺癌是第三大常见癌症(占所有癌症的11.6%)。2018年全球诊断209万例以上,死亡170万人。
肺癌类型
肺癌中最常见的类型是非小细胞肺癌(NSCLC),约占所有病例的80%—85%。
小细胞肺癌(SCLC)约占肺癌的15%—20%。SCLC的增长和传播速度比NSCLC快。
它的可怕之处在于大多数患者被诊断时为晚期,死亡率高。在没有有效治疗的情况下,治疗前后多器官转移和复发是死亡的关键原因。
肺部微生物群和癌症之间的相互作用:
肺癌的发生、驱动因素和治疗
MartinsD,etal.,Pathobiology.2020
肺癌是由宿主和环境因素之间的相互作用引起的复杂疾病。在各种环境风险因素中,微生物在维持微生态平衡和调节宿主对多种治疗的免疫反应中起着至关重要的作用。
肺部是人体表面积最大的黏膜部位,也是与外部环境的主要接触面。肺里面藏有多种微生物。
肺微生物群由细菌,真菌和病毒组成,这些细菌是由吸入粘膜分泌物,鼻咽,口咽和环境空气交换而产生的。和肠道、皮肤等微生物组不同。
在健康的肺中,普雷沃氏菌(Prevotella),链球菌(Streptococcus),韦荣氏球菌属(Veillonella),奈瑟菌属(Neisseria),嗜血杆菌属(Haemophilus),梭杆菌属(Fusobacterium)是最丰富的细菌属。与真菌曲霉菌(Aspergillus),青霉菌(Penicillium),念珠菌(Candida)等真菌共存,不会引起健康人肺的感染。
而在在慢性阻塞性肺疾病(COPD)和囊性纤维化等肺部疾病中,肺微生物群处于失调状态。
正常情况下,人体是动态平衡的,并且各个身体部位的微生物可以直接相互作用,或者通过系统循环中的炎性物质,细胞因子和代谢物间接相互作用,如下图所示。
LiuNN,etal.,NPJPrecisOncol.2020
人类呼吸道和胃肠道中微生物群的早期形成和免疫环境可能源自皮肤和外部环境。
尽管肠道和肺微生物群的微观解剖特征,组成和种群动态存在明显差异,但这两个器官具有相似的体内平衡和某些生理特征,例如微生物群成熟过程,粘膜免疫系统,共同进化以及与免疫细胞的沟通和持续不断暴露于外部环境。
胃肠道疾病患者更容易出现多种肺部疾病
肠道菌群已被证实可导致慢性阻塞性肺疾病,哮喘的进展以及急性肺损伤的恶化。
肠道和肺中特定微生物代谢产物通过循环的联系和调节作用。例如,与健康对照相比,观察到支气管哮喘患者粪便中的微生物代谢产物(包括脂肪酸,乙酸盐,丁酸和丙酸以及异酸)显着减少。
普氏栖粪杆菌(Faecalibacteriumprausnitzii)和阿克曼氏菌(Akkermansiamuciniphila)可通过诱导抗炎细胞因子IL-10并抑制促炎细胞因子(如IL-1247)的分泌来抑制小儿过敏性哮喘的炎症反应。
肠道菌群可诱导小鼠肺部对细菌性肺炎的炎症反应,并通过TLR4增强中性粒细胞浸润。
复杂的介入性生态系统调节各种病理过程,维持肠道和肺的生理平衡。因此,科学家基于在大量长期流行病学观察的基础上建立的多样而复杂的肠-肺微生物群网络,提出了“微生物群-肠-肺轴”。
说起代谢产物,不得不说的是短链脂肪酸(SCFA)。它是由大量共生微生物产生的,并在宿主细胞中起着至关重要的信号分子的作用。
肠道中缺乏短链脂肪酸的小鼠容易受更多的细菌负荷,如金黄色葡萄球菌,这可能受肺Th17免疫力调节。饮食中添加短链脂肪酸(SCFA)可以通过调节小鼠T细胞和树突状细胞的活性来改善哮喘易感性。
临床前模型中肠道微生物组的调节可以改变宿主的免疫反应和对肺部感染因子的敏感性。
肠-骨髓-肺轴
短链脂肪酸可调节骨髓细胞的分化并维持宿主免疫稳态。在某些情况下,SCFA可以调节肠道微生物组的组成并诱导骨髓生成,从而在呼吸道中产生抗炎环境。
微生物组通过介导宿主对各种致病因素和治疗结果的敏感性,直接或间接调节宿主的免疫活性。微生物组与免疫系统之间的动态相互作用,让宿主能够识别并预防细菌或真菌的入侵和感染。
在临床前研究中,缺乏肠道微生物组的无菌(GF)小鼠表现出严重的免疫发育不良,具有不完整的粘液层,免疫球蛋白分泌障碍以及淋巴结大小和数量减少。
特殊亚群CD4+Th17细胞在微生物相互作用、粘膜免疫功能和宿主对肠道、肺和皮肤炎症性疾病的反应中起重要作用。
肠道菌群可以刺激Th17反应并调节IL-17的产生,这与某些病原体的消除有关。IL-17途径还参与了多种肺部疾病的发病机制,包括哮喘,结节病,闭塞性细支气管炎和与骨髓移植有关的肺炎。
共生菌群可以通过炎症小体调节呼吸道粘膜的免疫力,并提供稳定的免疫激活信号。
例如短链脂肪酸,最终通过抑制中性粒细胞诱导的损伤和增强抗病毒CD8+T细胞反应来改善小鼠对流感病毒感染的反应。
癌症通常是一个多因素的病理过程,正常细胞开始以非程序化的方式增殖,导致细胞凋亡、自噬、炎症和DNA损伤。
如何诱发癌症?
表面边界肿瘤的发生通常与宿主粘膜免疫屏障破坏有关。当粘膜表面受损时,如果无法及时修复损伤,将重建原始组织和共生微生物组的微环境。否则,这种损害将继续加剧并导致反复发作的炎症,最终可能诱发癌症。
发病机制
肿瘤内微生物与癌症发展之间的联系,并已证明了三种主要机制是潜在的作用方式:
(1)直接通过增加诱变来促进肿瘤发生
(2)调节癌基因或致癌途径
(3)通过调节宿主免疫系统来降低或增强肿瘤进展
微生物与肿瘤细胞之间的相互作用
Wong-RolleA,etal.,ProteinCell.2020
许多微生物已经进化为产生可导致DNA损伤,细胞周期停滞和遗传不稳定的化合物。产生此类化合物的细菌的存在会直接增加所占组织的诱变作用。
微生物失调可能会引起宿主生理机能失调,并加剧慢性肺部疾病的恶化。
在慢性阻塞性肺疾病(COPD)患者的呼吸标本中鉴定出呼吸道病毒39–56%,而在临床基线为6–19%。
病情加重期间病原菌存在于51-70%的患者中,而最初的稳定临床基线中则存在25-48%。
特发性纤维化(IPF),已证实其具有不同于健康肺部状况的微生物组,一项随机试验报告说抗生素治疗可能有益于IPF患者的生存。
此外,包括细菌或病毒感染在内的肺微生物组可能会侵入气道上皮细胞,从而诱导宿主免疫反应或触发慢性病原性刺激中伤口愈合的级联反应。
在不同的条件下,肺微生物群在促进致癌和维持体内平衡方面起着双重作用。
肺部微生物群可以直接影响肺癌细胞的生长。在上一小节提到过微生物在癌症进展中作用的三个主要机制中,局部免疫环境的调节和致癌途径与肺癌有关。
肺微生物群落的失调可能通过特定的微生物成分促进致癌途径的改变。
研究人员在一个原位小鼠模型中证明了微生物群-免疫相互作用在促进炎症和肺癌发展中的重要性。发现与健康肺相比,某些细菌科如草螺菌属Herbaspirillum和鞘脂单胞菌科Sphingomonadaceae在含肿瘤的肺组织中富集,而其他分类群包括Aggregatibacter和乳杆菌属在健康肺中富集。
增加的局部细菌负担和改变的肺微生物群的组成刺激myd88依赖的IL-1β和IL-23从骨髓细胞产生。这些细胞因子诱导Vy6+Vδ1+γδT细胞的激活和增殖,产生IL-17,促进炎症和中性粒细胞浸润。此外,这些γδT细胞产生白细胞介素-22和其他促进肿瘤细胞增殖的效应分子。
无菌(绿色荧光)小鼠或经抗生素处理的小鼠显著降低了肺部肿瘤的生长,证明共生细菌显著促进了肺癌的发展。
利用雾化抗生素证明,细菌生物量的减少与通过T细胞和NK细胞活化增强抗肿瘤免疫反应和减少免疫抑制调节性T细胞有关。
此外,发现益生菌鼠李糖乳杆菌能够克服免疫抑制并抑制肺肿瘤植入,并且在抗生素和益生菌条件下肿瘤转移减少。
研究人员发现成年小鼠的过敏性气道炎症显著减弱,这是由于HDM(室内尘螨)治疗后,表面配体PD-L1、PD-L2和CD40的表达增加。
目前的知识不能详细说明伴随疾病进展的肺微生物群变化的因果关系,因为大多数研究是基于长期观察和队列研究。更有可能的是,肺微生物群可能在维持身体稳定性和促进癌症方面发挥双重作用。
当前,肺癌的传统疗法可分为手术切除,放射疗法,化学疗法和免疫疗法。即使是现在,在诊断时(III/IV期),仍有近75%的肺癌患者已进入晚期。
因此,对肺癌的早期发现和改善的治疗变得越来越紧迫。目前对微生物临床应用的探索仍处于早期阶段,包括临床前模型中的益生菌,饮食干预和FMT(粪便微生物群移植)。
了解人类微生物群,尤其是肠道微生物群与肺癌之间的关系,可能会为肺癌的诊断和治疗开辟新的窗口。
微生物标志物
目前,临床上广泛使用和有效的肺癌诊断工具是胸部X光和CT。然而,由于CT的检查成本高且不便,因此仍不能完全普及。
放疗和化疗
晚期肺癌的放疗已成为临床实践中的常规治疗方法,虽然有副作用,例如免疫损伤和辐射诱发的毒性。
最近的一项研究表明,小鼠粪便微生物群移植可以减少辐射诱发的损害,而不会促进体内癌细胞的增殖和迁移。此外,在放疗后的小鼠模型组织中观察到与原始微生物相比,具有增强的IL-1β,IL-6和TNF-α表达的独特微生物特征。将对辐射高度敏感的微生物鉴定为可改善治疗效果的预测性生物靶标是有希望的。
微生物群可能是减少放射线引起的毒性并改善放射治疗后肺癌患者预后的一种治疗策略。
肠道微生物组在yao物代谢,化疗诱导的毒性和宿主反应敏感性方面起着至关重要的作用。肠道菌群可以通过微生物和微生物酶直接调节yao物的吸收和代谢。此外,肠道菌群还可以通过调节基因表达,局部粘膜屏障反应和远处器官的生理状况来间接影响口服和全身给yao的代谢率。
体内和体外实验表明,化学治疗剂与人类微生物群之间存在复杂且多层次的干预关系。
目前,大多数微生物组和化学治疗的研究仍处于动物实验阶段,很少有研究直接探讨肺癌化疗后患者肠道菌群的改变和功能。仍需要进行其他临床试验,以研究肠道菌群的调节模型是否可以成为一种有效的临床方法,以辅助化疗治肺癌并使yao物诱导的毒性降至最低。
免疫治疗
先前有报道称肠道菌群失调可能影响对癌症的免疫治疗效果。
一项后续研究比较了两组患者的肠道菌群,并从康复患者的粪便中分离了阿克曼菌(Akkermansiamuciniphila).[一种益生菌,曾被证明可以有效预防肥胖和糖尿病]
这项研究证明了其有助于癌症免疫疗法。此外,研究人员将恢复患者的粪便植入无菌小鼠中,接受“有效”粪便的人对PD-1抑制剂反应迅速。口服阿克曼菌也可以恢复相同的免疫治疗效果。
一项对晚期非小细胞肺癌患者进行免疫检查点抑制剂PD-1治疗的最新研究表明,肠道菌群多样性较高的患者对抗PD-1免疫检查点抑制剂的反应更好。
益生菌,益生元和靶向微生物
目前,益生菌,益生元和合生元,它们在不同的临床实践中普遍显示出安全性。
临床数据不断增加所揭示的一般效果包括促进胃肠道的稳态和完整性,通过产生短链脂肪酸(SCFA)和维生素或次级胆汁盐来调节代谢,参与消化活动以及中和炎症和致癌物。
益生菌、益生元作用:
但是,当前有关有益菌和分子机制的有限研究和知识尚不能提供剖析宿主微生物组的最佳方法。微生物的变化是否会引起意想不到的局部稳态失调,炎症反应或什至是癌前病变尚不清楚。最近,FDA就使用FMT发出安全警告,警告由于致病性生物的传播而造成严重不良事件的风险,需要注意和谨慎。
宿主,微生物组和环境之间的三重相互作用在健康功能中维持了肺稳态。
此外,微生物组在促进传统的肺癌治疗包括放射疗法,化学疗法,手术切除和免疫疗法方面可能具有不可估量的治疗策略。
尽管微生物组的巨大潜力为肺癌的预防和治疗画出了广阔的前景,但普遍认为,这一领域的发展需要更多的多学科和深入的探索。更好地了解癌症发生过程中的微生物组以及对多种治疗方法的不同反应可能会为促进肺癌患者的诊断和预后提供巨大的机会。
肺癌的饮食建议
有胃口就吃饭。
如果胃口不大,请尝试全天少食。
如果需要增加体重,请补充低糖,高热量的食物和饮料。
如果胃很容易不适或有口疮,请避免食用香料并坚持清淡的食物。
如果出现便秘问题,可多吃高纤维食物。
虽然说没有明确哪种饮食可以治愈癌症,但均衡饮食有助于抵抗副作用,感觉舒适。
LiuNN,MaQ,GeY,YiCX,WeiLQ,TanJC,ChuQ,LiJQ,ZhangP,WangH.Microbiomedysbiosisinlungcancer:fromcompositiontotherapy.NPJPrecisOncol.2020Dec10;4(1):33.
doi:10.1038/s41698-020-00138-z.
Tsay,J.A.-O.etal.AirwaymicrobiotaisassociatedwithupregulationofthePI3Kpathwayinlungcancer.Am.J.Respir.Crit.CareMed.198,1188–1198(2018)
Huang,D.etal.Thecharacterizationoflungmicrobiomeinlungcancerpatientswithdifferentclinicopathology.Am.J.CancerRes.9,2047–2063(2019).
Wong-RolleA,WeiHK,ZhaoC,JinC.Unexpectedguestsinthetumormicroenvironment:microbiomeincancer.ProteinCell.2020Dec9.doi:10.1007/s13238-020-00813-8.Epubaheadofprint.PMID:33296049.
Liu,Y.etal.Lungtissuemicrobialprofileinlungcancerisdistinctfromemphysema.Am.J.CancerRes.8,1775–1787(2018).
MartinsD,MendesF,SchmittF.Microbiome:ASupportiveoraLeadingActorinLungCancerPathobiology.2020Dec22:1-10.doi:10.1159/000511556.Epubaheadofprint.PMID:33352574.
Peters,B.A.etal.Themicrobiomeinlungcancertissueandrecurrence-freesurvival.CancerEpidemiol.Biomark.Prev.28,731–740(2019).
过完今天,这个魔幻的2020就要过去了。面临工作、学习、出行等方方面面一而再地按下暂停键,很多人都希望这一年能够重启。
这一年发生了太多故事
每一个都足以让人痛惜
“活着”、“健康”这样的字眼在这一年显得尤为珍贵。简单的道理往往在经历重大的事件后才会尤为深刻。
古有求仙药,今有各种医疗技术的不断革新,大家对于长寿有着一致的追求。当基本的生活有了一定的保障后,人们不仅想要活得长久,还要健健康康地活着。
我们可以看到,人类的预期寿命已开始延长,并且仍在继续提高。“健康长寿”不再停留于一句祝福语,而是可行的人生目标。
长寿是多种变量复杂组合的结果。由于不同地区自然环境、社会制度、社会经济发展状况和人口构成等因素千差万别。
遗传因素如线粒体状态、染色体稳定性、端粒长短、疾病、干细胞活性;
环境因素如肠道微生物、饮食、运动、空气质量以及生活环境;
其他因素如情绪压力、社交爱情、目标成就、投入预防等等。
人们在迈向健康长寿的过程中处于不同的阶段和水平。若干年后,也许有相当多的人进入百岁人生。
在2020年的最后一天,我们就来聊聊肠道菌群和长寿的故事。
伊卡里亚岛
意大利
提起意大利,你想到的是足球还是意大利面,其实这个国家还盛产长寿老人,根据欧盟统计,意大利为欧洲第一长寿国,女性平均寿命为84岁,男性平均寿命为78.3岁。
研究发现100岁意大利老人的肠道菌群种类分布与30岁意大利人相比,出现了较明显的变化,厚壁菌门中的拟杆菌XIVa明显减少,而芽孢杆菌上升,身体的炎症反应状况高,因此科学家得出长寿的关键因素:菌群种类的改变,更好的应对和调节炎症反应。
中国新疆和田,广西巴马,四川都江堰青城山等
中国新疆和田,广西巴马以及四川都江堰市青城山等地区都很大比例的长寿健康老人。动物遗传育种研究所李英团队在《CurrentBiology》发表的一项关于寿老人和年轻人群肠道菌群研究发现长寿老人肠道菌群多样性和菌群丰度显著高于年轻组,这一结论在意大利相应人群中也得到了证实,提示更多有益菌群以及更丰富的菌群多样性可能是人类健康长寿的重要原因之一。
肠道微生物群被认为是监测和可能支持健康衰老的变量之一。事实上,宿主-肠道微生物体内平衡的破坏与炎症和肠道通透性以及骨骼和认知健康的普遍下降有关。肠道微生物群作为健康衰老可能的介质,通过对抗炎症、肠道通透性以及认知和骨骼健康的恶化来保持宿主环境的稳态。
健康老年人的肠道菌群如何定义?
长寿者肠道菌群多样性水平高
一般认为,随着年龄增长时,肠道微生物多样性通常会降低。可能是由于生理,饮食,药物和生活方式的变化所致。
是不是所有老人的肠道菌群多样性都会降低?
研究人员检测了一群健康的长寿老人的肠道微生物组,来自中国四川都江堰市的长寿老人,包括“90-99岁”和“≥100岁”两个年龄段。
他们发现长寿人群的肠道菌群比年轻成年人的肠道菌群更多样化,这与传统观点相矛盾。
他们还发现了产短链脂肪酸菌在长寿老人中开始增加,例如梭状芽胞杆菌XIVa。
国内外研究结果一致
为了验证他们的发现,他们分析了来自一个意大利小组的独立数据集。
出现一致的结果:长寿的意大利人也比年轻的人群的肠道菌群多样化水平更高。
庆幸的是,谷禾肠道菌群数据库中也有比较长寿的老人肠道菌群数据。
我们抽取其中一例相对较为健康的长寿老人的数据:
编号:083*****97,98岁(谷禾肠道菌群数据库)
谷禾健康数据库
可以看到肠道菌群多样性水平也是明显增高,与文献报道相符。大部分指标都处于正常水平。
长寿者产短链脂肪酸菌增多
结合意大利和中国的数据集,发现尽管肠道微生物群结构存在显著差异(可能是由于饮食、基因和环境的差异),但区分长寿个体和年轻群体的前50种细菌特征中,有11种特征是相同的。同样,这些特征包括肠道菌群多样性水平更高和几个产短链脂肪酸菌丰度更高。
一项后续研究中,另外两个独立的队列中也观察到了长寿人群中更大的肠道微生物组多样性:一个来自中国江苏省,另一个来自日本。
以上这些研究都清楚地表明,健康长寿的人存在更多样化且平衡的肠道菌群,而在患有不同合并症的老年人中观察到肠道菌群紊乱。
因此,研究人员假设调节肠道微生物组(如通过饮食、益生菌)来维持健康的肠道微生物组将有利于健康地衰老。
进一步假设,在患有慢性疾病的老年人中,将紊乱的肠道菌群调节为健康的肠道菌群将减轻他们的症状,提高他们的生活质量。
肠道微生物组和健康衰老的有效假设
该假设背后的一个基本原理是慢性炎症,即老年人中慢性低度炎症的增加,这与不同的慢性疾病有关。
短链脂肪酸对维持肠道止血很重要。短链脂肪酸为结肠上皮细胞提供主要能量,并具有抗炎特性。这些产短链脂肪酸菌在长寿老人中的富集表明,这些细菌可能会减轻炎症及由此造成的损害,这可能是他们能够健康衰老的原因。
以上我们知道长寿老人的产短链脂肪酸菌增多,那么其他菌群会有什么样的变化?
在门类水平上,大多数研究都证明了变形菌丰度的增加。
长寿者菌群变化,潜在有益菌较多
·不同地区比较:
一项研究分析并比较了长寿村庄中百岁老人与同一地区和城市化城镇中的老年人和成年人的肠道菌群。采集长寿村的百岁老人、老年人和年轻人的粪便样本,以及来自韩国城市城镇的老年人和年轻人的公共数据库获得肠道菌群数据。
与城镇化老年人相比,长寿村老人:
康复医院百岁老人的肠道菌群也不同于居家。这些差异可能是由于饮食方式和生活环境的差异。
·不同年龄比较:
我们来看一项研究,对62个人的粪便微生物组进行宏基因组测序,年龄从22岁至109岁不等。
下图可以看到,随着年龄的增长,肠道微生物群发生了变化。
注:4个年龄组的肠道微生物组:
15名百岁老人(99至104岁,centenarian);
23名半超百岁(105至109岁,semisupercentenarian)
研究人员发现与年轻人相比,长寿者菌群变化如下:
我们发现同样,变形菌门增加,另外有益菌如阿克曼菌增多。
有趣的是,当研究人员将分析集中在功能规模上时,发现与碳水化合物代谢有关的基因减少。
这种功能重塑在百岁老人和半超百岁老人的肠道微生物组中更为明显,研究人员观察到淀粉和蔗糖(KEGG途径编号ko00500),磷酸戊糖(ko00030)以及氨基糖和核苷酸糖(ko00520)途径的贡献减少。
异种生物降解有关的基因数量增加
同时,研究人员发现了和甲苯(ko00623),乙苯(ko00642),己内酰胺(ko00930)以及氯环己烷和氯苯(ko00361)降解途径的随之增加。
此外,众所周知,它们是在加工精制石油产品(如塑料)的过程中产生的,并包含在普通消费产品(如油漆和漆、稀释剂和橡胶产品)中。
己内酰胺是尼龙的原料,用于生产合成纤维、树脂、合成皮革、增塑剂等多种室内产品。先前的研究表明,这些分子在室内的负担比在室外环境中更高,并强调了室内暴露对人类健康的特殊重要性。
生活在强人为下的环境中,例如意大利的艾米利亚-罗马涅区(工业发达),导致持续不断地暴露于这些普遍的异生物质中,促进它们在身体组织(包括肠道)中的维持和累积。
研究人员认为,这可以为人类宿主创造合适的条件,以选择能够解毒此类化合物的肠道微生物组成分,就微生物组和宿主在人类环境中的适应性而言互惠互利。
脂质代谢基因变化
鉴于已知甘油磷脂和鞘脂在动物源性食品中更为丰富,而α-亚油酸主要来自植物源食物,这些特征可能与饮食习惯有关,特别是长寿者的植物源性脂肪摄入量高于年轻人的动物脂肪摄入量。
氨基酸代谢基因变化
此外,涉及氨基酸代谢的功能途径:
色氨酸(ko00380),酪氨酸(ko00350),甘氨酸,丝氨酸和苏氨酸(ko00260)的代谢基因随着年龄的增长而逐渐增加。
另一方面,发现年轻人中丙氨酸,天冬氨酸和谷氨酸代谢的基因(ko00250)更为丰富。色氨酸和酪氨酸的代谢被认为是蛋白水解代谢增强的指标。
此外,血清中色氨酸的生物利用度降低,以及尿液中酪氨酸代谢引起的酚类代谢产物水平升高。
慢性炎症水平低
研究人员发现随着衰老,脂多糖生物合成基因(ko00540)逐渐增加,这可能与病原菌(即肠杆菌科的成员)的存在和慢性炎症的水平低有关。
然而,更长的寿命并不一定等于健康的衰老。随着年龄的增长,人们更有可能患上各种疾病,如心脏病、中风、高血压、认知障碍、癌症等。
前面章节有一项研究(长寿村老人与城镇化老人肠道菌群)提到,来自不同地区的老人,虽然都是长寿,但菌群情况不尽相同。
因此,我们想更具体地了解,同样是长寿老人,健康长寿和不健康长寿具体到个人,在哪些方面会有区别。我们抽取谷禾肠道菌群数据库中两例报告来进行直接比较分析。
健康总分
健康总分能很好的反映一个人的总体健康水平,有慢病或其他问题的老人一般低于55分。
菌群多样性
菌群多样性健康长寿老人的菌群多样性水平最好能高于50,菌种数量在1000~1800左右较好,超过2000则可能会伴有病原菌感染的情况。
慢病情况
主要是心脑血管及糖尿病和部分消化道疾病,涉及慢性炎症和代谢疾病。
病原菌
病原菌感染是老人中最常出现的问题,包括呼吸道和肠道病原菌,随着衰老,肠杆菌科的部分机会致病菌比例会上升,需要注意饮食健康,以及呼吸道健康和口腔健康。
肠道屏障及炎症水平
长寿老年人中Akk菌水平普遍较中年人群较高,Akk菌有助于降低肥胖等代谢疾病,但是Akk菌丰度过高会导致肠粘膜黏蛋白降解,破坏肠道屏障,也是需要注意的指标。
短链脂肪酸水平
益生菌水平
在谷禾检测的90岁以上人群中,益生菌水平普遍较高,基本超过人群平均水平。
06长寿者避雷专区——谣言粉碎机
信息爆炸的时代,我们可以轻易获得大量关于营养保健的信息,然而其中大多数可能是不正确或者过时的观念。
1.减肥仅靠控制热量?
我们都知道,减肥需要燃烧比摄入更多的能量,但这不是唯一。那些遵循“卡路里摄入,卡路里消耗”方法的人通常只专注于食物的卡路里值,而不是其营养价值。这对于整体健康而言,并非最佳选择。
如果出现体内激素失调,甲状腺功能低下,代谢状况,药物使用等健康问题,可能即使在严格饮食下也难以减轻体重。
2.高脂食物不健康?
许多人仍然担心高脂肪的食物并遵循低脂肪的饮食习惯,认为减少脂肪的摄入有益于整体健康。
膳食脂肪对于保持最佳健康至关重要。另外,低脂饮食与包括代谢综合征在内的健康风险更高有关,并且可能导致胰岛素抵抗和甘油三酸酯水平升高,这是已知的心脏病危险因素。
而且,在鼓励减肥方面,高脂肪饮食已被证明比低脂肪饮食有效(甚至更高)。
当然,无论是低脂还是高脂饮食,任何一种极端情况都可能危害健康。尽可能遵循“中庸之道”。
3.非营养性甜味剂是健康的?
市场上出现越来越多的非营养性甜味剂(NNS)的产品有所增加。显然,高糖饮食会大大增加疾病的风险,但摄入NNS也会导致不良的健康后果。
例如,摄入NNS可能会引起肠道菌群产生负面变化并促进血糖失调,从而增加2型糖尿病的发病率。
该领域的研究仍正在进行中,未来需要高质量研究来确认这些潜在的联系。
4.你必须很瘦才能健康?
尽管如此,降低疾病风险并不是说要你必须要达到模特身材。最重要的是营养饮食并保持积极的生活方式,因为这些行为通常会改善体重和体内脂肪百分比。
5.所有食物都用低脂和减肥食品来代替?
去超市你会发现各种标有“清淡”,“低脂”,“无脂”的产品。虽然这些产品对那些想要减少体内多余脂肪的人来说很诱人,但它们通常是不健康的选择。
研究表明,许多低脂和减肥食品所含的糖和盐要比普通脂肪食品多得多。最好不要经常食用这些产品,有时候也可以享受一下正常食物,例如全脂酸奶,奶酪和坚果黄油。
6.钙补充剂对骨骼健康必不可少?
很多人听说添加钙补充剂以保持骨骼系统健康。但是,目前的研究表明,补充钙可能弊大于利。
例如,一些研究已将钙补充剂与心脏病风险增加联系起来。此外,研究表明,它们不会降低骨折或骨质疏松症的风险。
7.所有果汁和果汁都是健康的?
某些果汁营养丰富。例如,主要由非淀粉类蔬菜制成的新鲜果汁可以是增加维生素,矿物质和抗氧化剂摄入量的好方法。
然而,要知道外面买到的大多数果汁中都含有糖和卡路里。如果过量食用,会促进体重增加和其他健康问题,例如蛀牙和血糖失调。
8.每个人都需要补充益生菌?
益生菌的概念现在越来越火。但是,研究表明,不是所有人补充益生菌都有用,搞不好有副作用。
益生菌不应作为千篇一律的补充剂,而应更加个性化,最好在做完肠道菌群检测之后再确定是否需要补充益生菌,补充哪一类益生菌,这样才能真正让身体恢复健康。
9.减肥很容易?
你可能看过很多生动的减肥前后的图片,甚至还有传奇的故事,几乎不费吹灰之力就可以迅速减肥的故事,不要随意相信。
减肥其实并不容易。它需要坚持不懈,自律,努力和耐心。另外,由于遗传或其他药物因素使某些人的减肥困难很大,我们需要正视这一切,面对它,慢慢来,给自己多一点耐心,找到一种对你有效的可持续的模式最重要。
10.纤维补充剂是高纤维食品的良好替代品?
许多人缺乏足够的膳食纤维,这就是为什么纤维补充剂如此受欢迎的原因。尽管纤维补充剂可以改善肠蠕动和血糖控制,从而有益于健康,但它们不应代替真正的食物。
高纤维全食(例如蔬菜,豆类和水果)包含营养物质和植物化合物,它们可以协同工作以促进您的健康,并且不能完全由纤维补充剂替代。
LONGEVITY
随着时代的不断发展,旧的观念也在不断更新。曾经的认知也许是“七十古来稀”,而现如今更多的是百岁人生。
我们的追求也会越来越高,不仅是长寿,更是健康的长寿。可以预见,长寿时代将促使健康产业结构升级。
是的,微生物产业作为健康领域的其中一块,发展迅速。值得庆幸的是,在应对突如其来的疫情下,肠道微生态也在被应用于治疗,技术的革新为提高健康水平提供有力支撑,各个制度完善也在为健康领域的可持续发展构建强大保障,人类命运共同体正彰显其感召力。
而谷禾健康作为微生物产业的一员,自2012年创立起,对于科研事业一直贡献着自己的力量,与此同时,这么多年来,谷禾一直希望将科研真正服务于大众,将科研成果带给每一个人,这是我们的使命。
现如今,我们也已经看到阶段性硕果。曾经,“肠道菌群”还只是一个概念,谷禾健康从肠道菌群的研究构思,到取样专利的落地,肠道菌群检测报告逐步完善,再到样品运输的细节管理,我们都在经历从0到1的过程,勇于创新,不断摸索,在微生物产业的道路上,迈着坚定的步伐。
令我们感到欣慰的是,“肠道菌群”现已逐渐从研究过渡到临床甚至普通人群,并且从模糊的健康概念走向精准检测甚至个性化辅助治疗。
2021寄语
愿你所有努力都有回报
所有的美好都如期而至
KongF,DengF,LiY,ZhaoJ.Identificationofgutmicrobiomesignaturesassociatedwithlongevityprovidesapromisingmodulationtargetforhealthyaging.GutMicrobes.
2019;10(2):210-215.doi:10.1080/19490976.2018.1494102.Epub2018Aug24.PMID:30142010;PMCID:PMC6546316.
DengF,LiY,ZhaoJ.Thegutmicrobiomeofhealthylong-livingpeople.Aging(AlbanyNY).2019Jan15;11(2):289-290.doi:10.18632/aging.101771.PMID:30648974;PMCID:PMC6366966.
KimBS,ChoiCW,ShinH,JinSP,BaeJS,HanM,SeoEY,ChunJ,ChungJH.ComparisonoftheGutMicrobiotaofCentenariansinLongevityVillagesofSouthKoreawithThoseofOtherAgeGroups.JMicrobiolBiotechnol.2019Mar28;29(3):429-440.doi:10.4014/jmb.1811.11023.PMID:30661321.
皮肤菌群如何导致痤疮、湿疹?如何维持皮肤健康?_腾讯视频
生物系统——组成
生物系统很复杂,具有许多调节功能,例如DNA,mRNA,蛋白质,代谢物,以及表观遗传功能(例如DNA甲基化和组蛋白翻译后修饰(PTM))。这些特征中的每一个都可能受到疾病的影响,并引起细胞信号传导级联和表型的改变。除了宿主对疾病的反应调节机制外,微生物组还可以改变宿主特征的表达,例如它们的基因,蛋白质和/或PTM。
生物系统——疾病
为了深入了解疾病的机制,我们需要研究这些特征及其相互作用。例如,黑色素瘤、肺癌和甲状腺癌等癌症是由BRAF癌基因驱动的。然而,当患者接受抑制BRAF的治疗时,往往会产生耐药性。最近的多组学研究揭示了肿瘤特征的异质性和复杂性,如基因突变、转录组、蛋白质和信号通路。现在人们认识到肿瘤可以绕开治疗而产生耐药性。
生物系统——技术
随着下一代测序和质谱技术的发展,人们越来越需要融合生物特征的能力来研究整个系统。转录组、甲基组、蛋白质组、组蛋白翻译后修饰和微生物组等特征都影响宿主对各种疾病和癌症的反应。由于样品制备步骤、测序所需的材料量和测序深度要求,每个平台都有技术限制。近年来,数据集成方法的发展受到了推动。每种方法都使用诸如概念整合、统计整合、基于模型的整合、网络和路径数据整合等方法来具体整合组学数据的子集。
生物系统——多组学
多组学方法的整合使得对疾病病因学有了更深入的了解,例如:揭示微生物组在减轻或增加疾病风险方面发挥作用的各种方式。双酚A(BPA)是一种大规模生产的化学品,广泛应用于食品包装、塑料和树脂中,双酚A的不完全分解就是一个例子。由于双酚a是一种内分泌干扰物,双酚A已成为日益增长的公共卫生问题。因此,利用微生物手段快速、完全降解双酚A等化合物的研究具有重要意义。
本文讨论每个数据特征的研究设计考虑,基因和蛋白质丰度及其表达率的限制,当前的数据整合方法,以及微生物对基因和蛋白质表达的影响。在开发整合多组学数据的新算法时应考虑的因素。
不同生物基因数量
生物系统是具有多种调控功能的复杂生物。例如,人类基因组由大约32亿个核苷酸组成,可产生20000至25000个蛋白质编码基因,并且通过选择性剪接事件可产生超过100万种蛋白质(下图)。
不同的生物有不同数量的基因和蛋白质。例如,在大肠杆菌、酿酒酵母和智人基因组中分别有大约4300、6000和25000个基因。这导致大肠杆菌、酿酒酵母和智人的每个细胞中分别有大约2400到7800、15000和300000个mRNA分子。线粒体转录物约占多聚腺苷酸化RNA的20%。其他高丰度的转录物包括编码核糖体蛋白质和参与能量代谢的蛋白质的转录物。下图概述了人类DNA、DNA甲基化、组蛋白翻译后修饰、mRNA和蛋白质的复杂性。
Grawetal.,2020MolecularOmics
染色质结构和基因/蛋白质调控的概述。DNA通路受DNA甲基化和组蛋白翻译后修饰(PTM)的调控。调节的每一层也可以通过环境和宿主生物中存在的微生物进行修饰。可以通过使用各种核苷酸和蛋白质/肽测序技术对生物调节的每个水平进行测序。
细胞中蛋白质含量
一个细胞中蛋白质的估计数量约为2.36×106(在大肠杆菌中),约为2.3×109(在晚期智人细胞中)。在一个细胞的全部蛋白质总数中,最丰富的蛋白质可占蛋白质含量的5-10%,由核糖体蛋白、酰基载体蛋白(ACP)(在脂肪酸生物合成中的功能)组成,分子伴侣和折叠催化剂、糖酵解蛋白质(能量和碳代谢的主干)和肌动蛋白等结构蛋白质。
转录因子是一种低丰度的蛋白质,在细菌中每个细胞的拷贝数为1-103,在哺乳动物细胞中为103-106。
最丰富的蛋白质通常在细菌中有数千个拷贝,在哺乳动物细胞中有数百万个拷贝。由转录因子调控的基因数量取决于其浓度。蛋白质含量取决于生长条件和基因诱导。最后,考虑到微生物与宿主细胞数量的比例(取决于宿主细胞类型)和其他因素,这可能会变得更加复杂
mRNA和蛋白质寿命以及差异
由于仪器检测,动态范围和分子寿命表达的限制,用于各种组学平台的测序技术只能捕获某一时刻某个细胞群体中发生的情况的快照。例如,mRNA转录本和蛋白质的终生表达差异很大。在大肠杆菌中,mRNA的中位寿命为5分钟,在发芽酵母中为20分钟,而对于人参则为600分钟。然而,蛋白质的寿命约为1-2天。
转录和翻译的速率因生物体的不同而不同(大肠杆菌:每秒10-100个核苷酸(nt)和10-20个氨基酸(aa)/s。智人:6-70nt/s和2aapers;分别为转录和翻译速率)。
对于大肠杆菌来说,一个单一的mRNA转录本在被降解之前可以产生10-100个蛋白质。鉴于这一信息,我们可以看到,将我们对组学平台的选择和由此产生的对细胞过程的解释相结合,检测具有更长寿命的蛋白质的机会将增加。
在考虑数据整合研究设计、开发新算法和解释结果时,认识生物体的生物复杂性、分子的动态范围、测序限制以及这些分子的表达寿命非常重要。
近年来,微生物组学在宿主健康中的重要性已得到公认。全生物和全基因组的概念对我们如何看待微生物组有着深远的影响,尤其是在治疗方面。这种微生物-宿主相互作用的密切关系可以更明确地称为“微生物群-营养代谢-宿主表观遗传轴”。微生物与宿主相互作用的紧密关系可以更明确地称为“微生物群-营养代谢-宿主表观遗传轴”。
微生物群及其代谢产物可以通过直接修饰组蛋白,改变DNA甲基化谱图和影响而影响宿主表观遗传。非编码RNA的性质(上图)。例如,可以通过改变组蛋白修饰酶的活性和酶底物的水平,通过微生物群来修饰组蛋白。
微生物影响药效
微生物群也可以影响药物的治疗性质。许多前药,即必须进行代谢转化才能在药理上有用的药物,可能会保持无活性(即不存在介导前药向其活性形式转化的微生物群),或者该药物/前药可能无法生物利用。此外,服用NSAIDs(非甾体类抗炎药)的患者可能会促进抗生素耐药菌的优势,因为24%的非处方非处方NSAIDs被抑制。
这些代谢组学效应引起人们对旨在用于人类和农业系统的治疗药物或其他饮食和治疗方案的潜在副作用的担忧。例如,抗生素可以消除产生组蛋白脱乙酰基酶(HDAC)抑制剂的微生物。这些微生物(如果存在)可以增强调节性T(Treg)细胞,从而有助于抗炎过程。
微生物代谢途径的多样性及其对药物药代动力学和药效学的影响可能部分解释了个体和人群之间药物反应的变化。因此,涉及微生物组的治疗方法可能必须因地制宜。组蛋白可以同时进行变体置换和翻译后修饰(PTM),这些共同构成了“组蛋白密码”。这些局部排列可以影响染色质结构,从而导致转录活性的激活或抑制。
通过饮食,微生物有能力改变宿主的甲基化和PTM谱,并且还可以通过膳食碳水化合物的发酵影响短链脂肪酸(SCFA)的生成。丁酸盐和乙酸盐等SCFAs可抑制脱乙酰酶水平。这意味着由于乙酰化促进转录活性的增加,染色质结构变得越来越松弛。事实上,已经证明微生物可以以位点特异性和组合方式影响宿主组织乙酰化和甲基化染色质状态,甚至影响宿主发育和代谢表型。
微生物参与干预
微生物如何影响主要组织相容性复合体(MHC)的表达,或者宿主杂合度如何通过MHC影响微生物群的多样性,这在很大程度上是未知的,也是一个活跃的研究领域。微生物在癌症和免疫治疗中的作用正日益成为治疗策略发展的目标。蛋白质组学与其他组学策略相结合已被用于研究疾病过程。如果我们不考虑微生物群的影响,那么我们可能会错过开发潜在治疗方法的有意义的见解。尤其是那些与代谢紊乱(如肥胖)或代谢物(如胆汁酸)对器官系统的全身影响有关的疾病。
大数据集的可用资源列表
选择合适的引物和平台
除了选择标记基因和合适的数据库外,研究人员还可以在测序方法和平台之间进行选择。由于Illumina和IonTorrent等短读平台的局限性,研究人员必须在1500bp的16SrRNA基因的可变区之间进行选择。取决于微生物群落组成,每个可变区提供不同水平的敏感性和特异性。然后选择在研究中最能区分普通分类群的引物组和扩增子区域的组合。
目前针对扩增子测序可选择的测序平台和方案很多,不同平台的读长和适用的测序区段以及优势各有不同。16s测序主要的测序区段包括v4、v3v4,v1v2,v6,此外还有全长等不同的区段选择,不同可变区或全长由于引物的不同以及不同种属相应区段内的变异多样性差异,对菌属的丰度评估会有一定的差异。
从长度来看,全长16s长度为1.5kb左右,单菌落的16s全长sanger一代测序仍然是菌种鉴定的主要手段,纳米孔和pacbio的三代测序可以高通量的获得全长序列,对于希望更高分辨率的分析菌种的研究有一定优势。三代的测序准确度目前逐渐改进,直接测序准确度可以在90%以上,纠错后可以提高到97~99%以上,已足够提供高精度的分类。三代目前主要问题在于建库成本相对较高,通过使用barcode可以降低部分但仍然偏高,此外普遍测序深度相对于二代测序要低许多。
目前最主要的可变区选择是v4区和v3v4区,v4区长度为256bp左右,加上两侧引物长度为290bp左右,使用双端2x250bp或2x150bp可以测通,此外如454、life、illumina的测序平台读长也可以主要涵盖该区段读长。例如采用illuminaNovaseq测序平台对该项目进行双端测序(paired-end),测序得到了fastq格式的原始数据(样本对应一对序列s_1.fastq和s_2.fastq)。再配对拼接成单条序列。其引物通用性相对是所有可变区中最高的,大量的大规模菌群调查研究都采用v4区作为检测区域,包括人体菌群研究如:hmp,肠道菌群如美国肠道计划agp,欧洲的fgfp等,以及全球土壤菌群调查,目前仍然是国际研究中使用最广泛和认可的检测区域。
illumina的miseq提供了长达2x300bp以及hiseq2500和最近的novoseq提供有2x250bp的测序方案,为进一步利用读长,目前有相当一部分研究选择v3v4区,该区段长度在460bp左右,相较于v4度多出了v3区段约100bp左右的片段,在少部分菌属中可以增加一定分辨率。经过对比,v3v4区的检测结果和v4区在绝大部分菌属中的丰度一致,但由于引物不同,在少量菌属中丰度会有不同偏向,v3v4从otu层面上并未发现较v4区有明显增加。引物的选择和提取、储存方法是影响菌群检测丰度构成的主要因素,不同研究之间的比较需要考虑到实验方案的一致,相同的方案可以直接比较。
此外,如果深入研究,还需要望整合疾病指标、宿主蛋白质组学和微生物多样性多组学的联合分析。
推荐覆盖率和读数
基因组测序
DNA测序技术的错误率和读取长度各不相同。Illumina短读测序(即Hiseq、Miniseq等)通常具有非常低的错误率,约为每碱基0.25%,但对低多样性文库敏感,如16S宏基因组学和靶向基因方法等应用。长读取技术的错误率较高,PacBio为13–15%,OxfordNanoporeinstruments为5–20%。Illumina平台的读取长度最大为600个碱基,但长读取技术通常一次读取可达到10–30kb。最佳读取长度也取决于应用程序。
大多数测序实验可以收集150-300碱基对读取长度的合适信息,但也有例外。对于全基因组测序(WGS),最长的读取可能是最佳的,但是对于长读取技术,错误率随着长度的增加而增加。有许多研究者把“短读”和“长读”结合起来。由于最近长读取排序技术的出现,关于WGS以外应用程序的最佳长读取长度的信息非常缺乏,但Illuminashortreadsequencing提供了丰富的最佳读取长度建议。
蛋白质测序
最新的质谱技术利用数据独立采集(DIA)来对MS1扫描中所有肽从LC色谱柱洗脱时的序列进行测序,这与仅对最丰富的峰进行测序的DDA方法相反。
对于复杂的混合物,例如上面的血清示例,DIA方法优于DDA。这种方法有助于克服受高丰度蛋白质高度影响的复杂混合物。
除了对宿主基因和/或蛋白质进行鸟枪法测序外,我们还可以对微生物组利用鸟枪法测序。
当测序深度很浅时,弹枪宏基因组学/元代谢组学只能采样优势菌群。shot弹枪对微生物组测序的主要挑战是由于采样不足而难以组装基因组片段,将肽组装在一起以进行可靠的蛋白质和生物分类鉴定也同样困难。
尽管存在这些潜在问题,但从各种人体部位和疾病(如唾液、肠道/粪便、颈阴道疾病或慢性肾脏疾病)中对微生物蛋白质组进行深度取样是可能的。然而,每个研究必须考虑的研究/取样设计和分析方法可能有很大差异。
从差速离心到双过滤差速分离,几种样品制备方法已被证明能富集微生物生物量。这些方法通常遵循各种优化的微生物裂解方案,通常涉及机械破坏(如打珠、超声波),辅以酶(如胰蛋白酶)和洗涤剂。在成功溶解后,同样重要的是去除残留的酶、洗涤剂和盐。
元蛋白质组学实验的另一个复杂性是由于同一生物体内的蛋白质具有共享的肽序列这一事实。为了对蛋白质鉴定有信心,应以高可信度鉴定蛋白质的独特肽段匹配。当将肽序列映射到数百个具有保守蛋白序列的不同物种时,这变得更加复杂。质谱法不对蛋白质进行测序,而是测量肽的电荷,并依靠与蛋白质序列数据库匹配的质谱进行蛋白质鉴定。
精心挑选的数据库对于正确分析从这些各种测序平台生成的核苷酸和蛋白质测序数据至关重要。使读数与参考基因组比对的能力仅与参考基因组中存在的序列和注释信息一样好。有几种资源可以不断地整理和更新核苷酸序列信息和注释,包括加利福尼亚大学圣克鲁斯分校(UCSC)基因组学研究所基因组,美国国家生物技术信息中心(NCBI)GenBank和RefSeq,DNA元素百科全书(ENCODE)和Ensembl仅举几例。通用蛋白质资源(UniProt)包含Swiss-Prot(手动注释和审阅)和TrEMBL(自动注释且未审阅)数据库,以获取蛋白质序列信息。
已经开发了几种数据集成方法来集成某些类型的组学数据。另外,已经创建了大数据存储库来存储来自各种疾病的测序实验的数据。这些资源提供了有价值的构建基块和大量生物样本,可用于推动数据集成方法的发展。当前,数据集成工具实现了多种方法,但通常分为两类:多阶段分析和元维度分析。
多阶段集成模型仅使用数据的两个数字或分类特征构建。例如,将来自RNA-seq实验的基因计数与来自质谱运行的蛋白质信息相结合。元维度分析试图通过级联或转换将所有感兴趣的数据类型合并到可以同时分析的同时矩阵或“元数据”集中。
后一种方法具有更大的统计能力,但在尝试合并来自不同类型数据集的数据时可能会具有挑战性。但是,研究人员如何确定最合适的工具或方法?
如上所述,生物学问题是选择的分析方法类型的驱动力,诸如采样,平台类型和数据质量等因素很重要。样品如何收集和准备?
如果测序深度或质量较低,是否可以有效分析数据?数据类型兼容吗?
归一化和滤波后损失了多少信号?
这些都是在选择适当工具之前应考虑的所有问题。
多组学数据集成工具
例如:是否有一个或多个干预组与对照组(或其自身)进行比较,或者是否在干预前后对同一样本的效果进行评估?
生物样本是否会被单独收集或分析?它的科学依据是什么?
哪些类型的组学平台将提供最有价值的以及如何整合多组学数据?
然而,由于样品的特殊限制或材料的可及性和数量,这并不总是可能的,从福尔马林固定石蜡包埋(FFPE)组织生成多组学数据对于某些组学平台可能是不可能的。虽然在选择实验设计时有许多问题需要考虑,但选择研究设计的决定因素通常是其可行性和经费限制。
样品和数据的收集应以数据分析为指导,以减少混淆和技术因素,例如批量效应。这些效应可以在样品收集,制备和存储的步骤中引入。
一项研究的统计能力取决于几个因素(下图),其中一些因素可以控制,而另一些因素由于研究及其设计而固定。首先,选择了用于分析的统计方法。虽然有些测试比其他测试更强大,但重要的是验证和满足他们的假设。
影响研究统计能力的另一个因素是单个组学平台测量的变量数量,通常由组学平台决定。例如,基因组学通常测量数百万个变体,转录组学量化了成千上万个分子,和蛋白质组学和代谢组学分析了数千个分子。此外,统计效力受表型或处理效应的大小和差异程度(效应大小)的影响。效果有多明显?组间的信号差异有多大?有多少被测变量受到影响?关于效应大小的信息可以从以前的文献或专家知识中获得,但通常是未知的。
这种情况下,初步研究可以帮助估计效应大小,但由于不稳定,这些估计需要谨慎处理。另一个效力影响因素是测量值的均匀性,描述了样品的自然方差、测量仪器的精度和检测限。随着方差的增大,统计效力将减小。样本的方差可能是多方面的结果,例如样本群体的选择、组织类型的选择或混杂因素。
除了样本方差膨胀外,混杂因素也会在数据中引入偏差,因此,收集样本元数据以减轻某些混淆的影响是很重要的。由于影响研究统计能力的大多数因素是固定的或由研究设计决定的,因此最常用于调整研究统计能力的因素是样本量。
多组学研究中影响统计功效的因素
研究的首要考虑正在调查的疾病或研究问题的背景,以及整合在一起时,什么类型的数据将提供有价值的见解。根据生物学问题、材料类型(新鲜组织、FFPE组织、血清/血浆和细胞系)、DNA/RNA/蛋白质的数量、生物复制的数量以及研究中混杂效应的数量,这些因素将决定数据采集所需的最佳样品制备和测序方法。
样品制备方法,包括每个样品制备的日期、提取的DNA、RNA和/或蛋白质的类型、基因组学的文库生成、质谱分析的蛋白质消化和肽标记方法以及测序平台/仪器,都是研究设计和最终结果解释的关键因素结果。
如果一个样本是在不同的日期制备的,而不是其他生物复制品,这将引入方差和/或偏差,并降低分析的统计能力。如果蛋白质组样品使用多个TMT-10plex批次进行复合,这将在整个测序过程中引入批次效应。这些因素应在样品制备前进行讨论。
同样重要的是要知道什么样的调控特征被捕获用于测序和整合。例如,如果在进行质谱分析之前在样品制备过程中膜蛋白没有溶解,那么膜结合蛋白就不能与基因表达数据整合。质谱数据的一个警告是,缺失值并不一定意味着蛋白质没有表达,只是蛋白质低于质谱仪的检测限。生物学问题应该成为多组学数据整合方法的驱动力。
在大多数情况下,当前的工具利用聚类、网络、数据简化和贝叶斯分析。随着数据获取量的不断增加,产生了大量的数据集,使得机器学习对于有效的分析和数据挖掘变得越来越必要。有必要使用易于获取和记录良好的方法、工具和算法。
机器学习在允许科学家集成多组学数据集方面发挥了越来越重要的作用。通过利用机器在大量生物数据中比较和识别模式的能力,可以用更加准确和有效的方法来阐明复杂的细胞机制,在某些情况下还可以预测临床结果。这是通过计算机独特的能力来实现的,它可以同时观察多个层次的组学数据,从而提供一个更全面的系统视图。
高通量的组学平台并不总是回答研究问题所必需的。传统技术:如酶联免疫吸附试验(ELISA)、免疫组织化学(IHC)和定量聚合酶链反应(qPCR),也是验证特定生物学机制所必需的。事实上,为了验证从组学数据中鉴定出的重要分子是一个真正的阳性结果,通常需要这些技术来验证一个更大的组学研究的结果。
但是每种方法都受到其统计能力、样本量、技术变量、批次效应、测序深度、样本制备和许多其他因素的限制。在设计、进行和分析研究以及解释研究结果时,必须牢记这些因素。因此,如果允许,建议研究设计一开始就让生物统计学家/生物信息学家参与进来。
GrawS,ChappellK,WashamCL,GiesA,BirdJ,RobesonMS2nd,ByrumSD.Multi-omicsdataintegrationconsiderationsandstudydesignforbiologicalsystemsanddisease.MolOmics.2020Dec21.doi:10.1039/d0mo00041h.Epubaheadofprint.PMID:33347526.
A.Zaman,W.WuandT.G.Bivona,TargetingOncogenicBRAF:Past,Present,andFuture,Cancers,2019,11,1197
A.Alvarez-Arenasetal.,InterplayofDarwinianSelection,LamarckianInductionandMicrovesicleTransferonDrugResistanceinCancer,Sci.Rep.,2019,9,9332.
K.Yuetal.,Anintegratedmeta-omicsapproachrevealssubstratesinvolvedinsynergisticinteractionsinabisphenolA(BPA)-degradingmicrobialcommunity,Microbiome,2019,7,16.
G.D.Pooreetal.,Microbiomeanalysesofbloodandtissuessuggestcancerdiagnosticapproach,Nature,2020,579,567—574.
A.Gonzalezetal.,Characterizingmicrobialcommunitiesthroughspaceandtime,Curr.Opin.Biotechnol.,2012,23,431—436SearchPubMed.
D.GurwitzTheGutMicrobiome:InsightsforPersonalizedMedicine,DrugDev.Res.,2013,74,341—343.
N.IssaIsaacetal.,Metaproteomicsofthehumangutmicrobiota:ChallengesandcontributionstootherOMICS,Clin.MassSpectrom.,2019,14,18—30
肝病按照病因划分,常见的有如下几大类:
无论病因如何,肝病如果没有得到有效管理控制,进展的常见终末阶段是肝硬化。
肝硬化可导致失代偿和肝细胞癌的发展。
发病率
目前由于疫苗接种计划和有效抗病毒治疗不断发展,乙肝和丙肝肝硬化的发病率正在下降,但由于以下两个原因导致另两种肝病发病率不断上升:
1、肥胖,导致非酒精性脂肪肝的发病率增加
2、饮酒,导致酒精性肝病的发病率增加。
本文带你详细了解肝病与肠道菌群:
肝脏也是胆汁产生的场所,在肠肝循环中具有重要作用。
肝脏,作为第一个接触微生物产物进入门静脉循环的器官,可能受到肠道微生物群及其变化的多种影响。肠道微生物群的成分或代谢物通过各种机制与肝脏相互作用。
肝脏中产生的胆汁酸(如胆酸和鹅去氧胆酸)与葡萄糖醛酸酶结合。一旦分泌到十二指肠肠腔,肠道菌群代谢和解共轭,产生尿胆原(排泄)和初级胆汁酸被吸收和循环。胆汁酸还通过内在的微生物调节活动来控制和影响菌群。
JonesRM,etal.,AnnualReview,2020
微生物产生的代谢物会随着微生物群的组成而变化;它们沿着门静脉分流并引发多种信号通路的激活。MAMP暴露过多会导致炎症。
肝硬化前期肠道菌群总体变化:
整体多样性减少,厚壁菌门减少,拟杆菌门和变形菌门增加。
——非酒精性脂肪肝病
非酒精性脂肪性肝病(NAFLD)和非酒精性脂肪性肝炎(NASH)是一种以肝细胞内脂质(主要是甘油三酯)的微泡或大泡状积聚为特征的肝病,并伴有不同程度的炎症浸润。
在非酒精性脂肪性肝病中,研究人员发现粪便、血液和肝活检中的致病菌(如肠杆菌科和大肠杆菌)的相对丰度增加。随着病原菌数量的增加和厚壁菌门数量的减少,菌群失调。
——酒精性肝病
长期摄入酒精可导致人类和动物模型中菌群结构的变化,肠道通透性增加,随着持续的酒精滥用,致病菌的多样性进一步减少,相对丰度增加,如肠杆菌科和肠球菌科。
在小鼠中,乙醇可以降低肠道屏障功能,并允许增加局部炎症。从机理上讲,乙醇也能抑制抗微生物凝集素的表达,在慢性乙醇消耗模型中,无Reg3β和Reg3γ的小鼠表现出增加的细菌移位和NASH的发生。这些发现表明乙醇可能介导了肝脏潜在的促炎性刺激,有多个长期后遗症。
尽管肝硬化的病因可能有所不同,但在肝病的末期,微生物群与肝脏的相互作用在很大程度上与病因无关。也就是说无论哪种都可能发展为肝硬化。
前面我们知道,肝炎如果不能得到有效控制,久而久之会对肝造成永久性损伤,也就是肝硬化。肝硬化又分为两种,一种是代偿性肝硬化,一种是失代偿肝硬化。
代偿性肝硬化虽然肝功能减退,但机体仍能正常运行。
失代偿性肝硬化指肝硬化发展到一定程度,出现肝功能衰竭,可能出现严重并发症,如肾功能衰竭、静脉曲张出血和肝性脑病等。
肝硬化患者最初没有症状,等到了肝硬化失代偿(定义为腹水、肝性脑病、黄疸和/或胃肠道出血),就是肝硬化过程中的转折点。
——肝硬化失代偿期会发生什么?
代偿性肝硬化患者可能会保持多年稳定,死亡率非常低,每年<1%。然而,在第一次住院治疗后,35%的患者将在28天内出现后续的失代偿,需要频繁入院。肝硬化急性失代偿可导致慢加急性肝衰竭(ACLF)。
注:慢加急性肝衰竭是一种综合征,以一个或多个主要器官或系统(肝、肾、脑、凝血、循环或呼吸)衰竭为特征。
TrebickaJoneletal,NatRevGastroenterolHepatol,2020
每次失代偿后,慢加急性肝衰竭在28天内的发展约为30%,在此阶段死亡率在28天内攀升至40%。这些器官衰竭患者通常在重症监护室接受治疗,肝移植是唯一的治疗方法。
肠道菌群如何影响肝硬化失代偿?
肝硬化中微生物群-肠道-肝脏相互作用
接下来,就肠道菌群与肠道屏障,病变肝脏的相互作用,菌群代谢产物与转运,门静脉高压和酒精的作用这4个方面展开讨论。
1.与肠道屏障相互作用
肠漏:
一个不正常的微生物群可以影响肠道上皮屏障,并导致内容物从肠道到肝脏和其他地方难以控制的转移。这种肠上皮屏障的损伤被称为漏肠。
在肝脏疾病期间,由于肝肠循环、肠道炎症和门脉高压的改变,宿主生理和肠道完整性发生重大变化。与此同时,肠道微生物组和肝脏之间的串扰也发生了重大变化:
肠道中的宿主粘膜蛋白和通路(例如FXR信号)被肠道微生物群代谢物(例如短链脂肪酸)改变,并可能导致肝脏损伤;
肝脏疾病进展引起的肠道内化变化可能会影响肠道屏障,促进肠道炎症,降低抑菌肽;
由于穿过肠道上皮屏障的细菌成分会引发免疫反应,因此肠道渗漏被认为会增加慢性全身炎症。例如,在肝病患者,尤其是肝硬化患者中,细菌细胞壁脂多糖(LPS)水平升高,也被称为内毒素血症。
2018年的一项研究表明,从失代偿期肝硬化患者的循环血和其他“无菌”隔室中分离出的细菌是可行的,这表明即使是活的细菌也可以在失代偿期肝硬化期间通过肠屏障转位。
2.与病变肝脏的相互作用
从失代偿到慢加急性肝衰竭的进展与全身炎症的广泛激活有关,影响许多细胞因子和炎症系统。
在慢性肝病和肝硬化患者中,甲肝病毒和戊肝病毒重叠感染也可能诱发慢加急性肝衰竭。
炎症标志物水平升高
血浆中全身性炎症标志物(如IL-8或IL-6)水平升高,无论是否有明显的细菌感染,都与肝硬化和慢加急性肝衰竭的急性失代偿有关。新的数据强化了改变后的肠道微生物群和慢加急性肝衰竭之间的联系。
血浆代谢物特征
这些发现可能解释了为什么肠道微生物群的改变和细菌易位的增加可能为不同器官的免疫病理发展为器官衰竭,加重全身炎症和诱导ACLF的环境。
酒精性肝病
另外,在急性酒精性肝炎(ACLF的一个亚型)中,研究表明,与没有这种特殊菌株的患者相比,具有一种产生细胞溶血素的肠球菌菌株的患者具有极高的死亡率(180天内的死亡率分别为89%和3.8%)。
3.门静脉高压症和酒精的作用
即使肝硬化的门静脉高压症得到有效治疗,例如通过放置经颈静脉肝内门体分流术(TIPS)支架,许多患者仍出现进一步失代偿和ACLF(2年内约47%),尤其是由于全身炎症和随后的器官衰竭。
然而,应该指出的是,TIPS支架本身可能会加重高动力循环,从而导致内毒素水平的增加。从长远来看,TIPS支架降低了失代偿率,可能主要是由于这些肝硬化患者腹水的发生率降低。
失代偿性肝硬化和ACLF先于酒精性肝硬化发生。这一发现可能很重要,不仅因为酒精是失代偿期肝硬化最常见的病因,而且可能是由于酒精本身对肠道微生物群和肠屏障功能的直接影响。
在健康个体和动物模型中,已经证明急性酗酒会增加循环中的内毒素和细菌DNA水平。
酒精显著改变肠道微生物群的组成,降低拟杆菌的相对丰度,增加变形菌。
它的代谢物,特别是乙醛,可以破坏肠道上皮细胞的紧密连接,导致肠道渗漏,促进细菌和真菌的易位,这两者都可能与肝硬化的进展有关。
在不同病因的肝硬化(例如,非酒精性脂肪性肝炎或乙型肝炎引起的肝硬化)中也观察到微生物群组成的改变以及肠道的渗漏。
4.微生物代谢产物和转运
肝硬化发展过程中肠道微生物群的变化在很大程度上不仅归因于肠道微生物群的组成,还归因于其产物,这些产物可能具有致病作用。
一项研究表明,在肝硬化向失代偿和ACLF发展的过程中,血液代谢物特征明显改变。
针对903人的大规模研究为某些强预测代谢物模式的微生物起源带来了重要的见解,但很难对这些发现作出有力的陈述。
另一项对602名患者进行的研究表明,微生物群衍生代谢物与ACLF的存在有关。其他微生物成分,如次级胆汁酸、短链脂肪酸和色氨酸代谢物也在肝硬化中发生较大变化,与疾病的进展有关。尤其是,胆汁酸通过下调FXR受体来改变肠道屏障功能,这为临床FXR激动剂已经可用提供了新的治疗机会。
间接证据表明肠道微生物群可能会影响肝硬化的预后。
第二,在静脉曲张破裂出血期间或作为失代偿期肝硬化的长期预防措施,抗生素治疗是一种推荐的治疗方法,因为它可以改善结果,其机制可能与减少细菌移位有关。
尽管这一观点尚未得到确凿的证实,但我们知道,一种特定的微生物组表型(所谓的肠型)会导致肝功能的病理改变,并且考虑到微生物群中存在着广泛的成员,如真菌或病毒,微生物组标志物可能是非常有用的临床工具,以确定有失代偿和ACLF风险的患者。
肠道微生物群可以作为疾病进展、严重程度和治疗反应的生物标志物。
不同肝病的菌群特征
肝硬化:
瘤胃菌科、毛螺菌科与其他菌(包括肠杆菌科和拟杆菌科)进行比较,菌群比率失调。随着ACLF的发展,肝硬化菌群失调比率恶化。
该研究表明,肝硬化患者的菌群比率失调
对129名患者的研究显示,毛螺菌科减少,巴斯德氏菌科(Pasteurellaceae)的丰度可以预测死亡率。
其他研究也提供了证据,表明特定的微生物组群特征可以区分肝硬化和健康对照组,并且微生物组的变化可能能够监测病情的严重程度和进展情况。
一组45例肝移植受者中,肝移植改变了肠道菌群,使微生物多样性增加,原生细菌增加(如毛螺菌科),潜在致病菌减少(如肠杆菌科)。
该研究强调了患病的肝脏会影响肠道菌群。
肝硬化和慢加急性肝衰竭:
慢加急性肝衰竭和肝硬化的肠道微生物群特征
中国肝硬化患者宏基因组全关联研究(MWAS)显示,与健康个体相比,肝硬化肠道菌群组成有大于34个显著差异的菌群。肝硬化患者中韦荣球菌属和链球菌增多,而产丁酸共生菌包括Faecalibacteriumprausnitzii和Coprococcuscomes减少。(下表)
肝细胞癌(HCC)
持续的肝损伤和再生促进了肝细胞癌的发生,它是全球癌症死亡的第三大原因。
肝细胞癌HCC与肠道大肠杆菌过度生长有关,患者微生物群多样性增加,与产丁酸菌属(如Alistipes)减少有关,而致病性产脂多糖菌(如克雷伯氏菌)增加。
不同部位菌群功能
肠道菌群:
从门诊病人的角度来看,肠道菌群可以证明是预测入院,MHE和晚期纤维化患者的有用工具。
一项针对NAFLD肝硬化的研究发现,粪便微生物分析中的27种细菌特征以及年龄,性别和体重指数(BMI)可预测NAFLD肝硬化。
晚期纤维化是NAFLD死亡率的重要预测指标,可以从粪便菌群中推断出纤维化,以帮助识别高危人群。
鉴于失代偿性肝硬化中存在预测的失调模式,因此将CDR(肝硬化失调率-毛螺菌科+瘤胃菌科+韦荣氏菌科/肠杆菌科+拟杆菌科)视为预测失代偿风险的工具(适用于所有常见的CLD病因)较低的分数预示结果较差,并且具有较强的预测价值。
粪便菌群也可以用来预测谁会在90天内再次入院和急性肝性脑病复发,因为急性肝性脑病和其他失代偿的粪便菌群有所不同。
唾液菌群:
唾液菌群失调比率是一种简单实用的临床工具(Lachnospiraceae+Ruminococcaceae+Veillonellaceae/Streptococcaceae),可以预测有和无肝性脑病的失代谢性肝硬化患者90天的入院情况。
其他部位菌群:
微生物工具的潜力
需要进一步的研究才能使人信服结论:患者在不同的条件和疾病下,它们的肠道微生物群既表现出疾病特异性的变化,也表现出非特异性的共同反应。因此,在其作为生物标志物的潜力得以实现之前,确定强有力的疾病特异性肠道菌群特征至关重要。
生物标志物和基于微生物的工具的潜力
微生物组的整体观点,包括微生物基因表达和微生物衍生的代谢物或蛋白质,可能导致更准确和全面的生物标志物,类似于整合宿主遗传学与基因表达和表观遗传学时的强大疾病关联。这种包含宿主-微生物全生物的整体观点也可能支持诊断、分层和治疗的个体化,并可能开创全生物群关联研究的新时代,扩大宏基因组全关联研究领域。
我们知道,即使在没有肝病的情况下,微生物组也在调节情绪和潜在的认知中发挥作用。慢性肝病患者的脑功能改变是肠-肝-脑轴的结果,甚至在肝硬化之前就可以影响病程。
酒精使用障碍(AUD)
肝性脑病
肝硬化中普遍存在的认知功能障碍是一种记忆障碍型,称为轻度或隐性肝性脑病。这可以发展为明显的肝性脑病,表现为嗜睡,迷失方向,晕眩和昏迷。
多年来,氨被认为是肝性脑病发病的关键,但后来发现全身炎症对于氨发挥其神经毒性作用是必不可少的。越来越多地描述了特定微生物群在肝性脑病和全身性炎症(包括性别影响)进程中的作用。在小鼠中,发现肠道微生物组是肝性脑病所特有的全身性炎症和神经炎症所必需的。
轻度肝性脑病和PTSD
在临床上,轻度肝性脑病需要专门的认知测试,例如心理计量学肝性脑病评分(PHES),抑制性对照测试,脑卒中诊断等。但这些测试最好在专门的环境中进行,并且需要专业知识。
轻度肝性脑病(MHE)和创伤后应激障碍(PTSD)肠道菌群之间也存在协同作用,与其他人相比,PTSD患者的菌群失调更为严重。PTSD,酒精滥用和肝硬化常常并存。微生物变化可能有助于将MHE与PTSD区别开来,并且可以帮助我们定义较新的疗法。
老年肠道-肝-脑轴改变
利用肠脑轴的主要挑战是老年人群(慢性肝病患者)。老年人患者的致病菌往往更具致病性,随着合并症,住院和抗生素暴露于更大的革兰氏阴性病原体中,病情恶化。
针对肝硬化肠道微生物群的策略
通过治疗(部分成立和部分试验)调节肠道微生物群可能改善肝硬化患者的预后,而微生物组生物标志物可能反映对这些治疗的反应。下表显示了不同的策略。
针对肠道微生物群的肝硬化干预措施
接下来主要介绍一些具体疗法:饮食、益生菌、抗生素、白蛋白、牙周、粪菌移植等,有些目前正在临床试验中。
饮食
除其他因素外,饮食对肠道微生物群有重要影响,这一点已在各种疾病和条件下得到研究。一项针对国际肝硬化人群的研究报告称,咖啡、茶、蔬菜和酸奶的摄入都与微生物群落多样性的增加和住院率的降低有关,这为调节肠道微生物群落以促进肝脏健康提供了前景广阔的途径。(具体的饮食方面建议见文末附录部分)
益生菌
益生菌已经成为肝硬化临床研究的主题,特别是它们对脑功能的影响和肝性脑病的风险。
益生菌在肝硬化前可以改善NAFLD的组织学,在肝硬化中可以减少失调,对逆转OHE的二级预防有效,减少失代偿事件的住院率,但可能或不能改善认知能力(MHE)。
大多数制剂都含有乳酸菌,可产生短链脂肪酸,有利于结肠健康。一项短期(5天)口服两歧双歧杆菌和植物乳杆菌8PA3的小型试点研究表明,与单独标准治疗相比,口服两歧双歧杆菌和植物乳杆菌8PA3能恢复肠道菌群,并能更好地改善酒精性肝损伤。
以上是关于益生菌的前沿研究,如果想要尝试的话,最好是经过肠道菌群检测或者在医生的指导下服用更可靠。
抗生素
抗生素,也被用作失代偿期肝硬化的预防性治疗。
腹水患者发生自发性细菌性腹膜炎(SBP)的风险增加,接受抗生素预防来预防自发性细菌性腹膜炎的发展。这种SBP的一级预防已经被证明可以提高某些患者的生存率。
在一项多中心、随机对照试验中,对严重肝硬化患者使用抗生素,总体生存率没有任何益处,但是,同样,腹水中白蛋白浓度低的患者在接受抗生素治疗时,生存率得到了提高。
预防性抗生素治疗也同样有效建议用于其他临床情况,如静脉曲张破裂出血、既往SBP和复发性显性肝性脑病。然而,尽管对最脆弱的患者的短期效果可能是有益的,但在其他许多患者中,这些治疗不能阻止进一步的失代偿和ACLF。也许这种情况的部分原因是抗生素引起的微生物群落多样性减少。
因此,需要开发一种更具针对性的肠道微生物群来改善肝脏健康。
牙周卫生
也许你不知道,牙周卫生也会与肝硬化有关。已发表的人类MWAS表明,在肝硬化期间,肠道微生物组向口腔微生物组转变。
减少胃部充当天然屏障的酸性环境可能促成口腔微生物群转移到肠道,在肠道上皮屏障适应不同的微生物组分。如前所述,这些变化可能促进肠道微生物群通过肠道屏障的转移,进而导致并发症。因此,防止口腔微生物不必要的转移到肠道,可以成为未来肝硬化治疗的基础。
一项研究表明,与20名非肝硬化对照组相比,30名肝硬化患者的牙周卫生干预措施改变了肠道微生物群,改善了肝性脑病。
白蛋白作为潜在疗法
当肠道屏障被削弱时,它会双向泄漏,这也会导致重要的宿主分子从血液室泄漏到肠腔。例如,在酒精性肝病动物模型中,肠道通透性增加导致粪便白蛋白浓度升高。
随着肝硬化的进展,肝脏中的白蛋白合成受到损害:一方面,肝损伤导致肝细胞功能质量的丧失;
另一方面,肝脏僵硬程度的增加,白蛋白合成减少。不仅白蛋白减少,而且它能结合毒素和其他有害物质。这些观察结果将白蛋白水平定位为肝病严重程度的关键参数。
长期白蛋白治疗肝损害和非自发性细菌性腹膜炎感染患者分别通过提高生存率和解决ACLF改善了临床结果。因此,白蛋白泄漏到肠腔可能会影响肠道微生物群并被其代谢,从而可能改变微生物组分,间接改变宿主。
粪菌移植(FMT)
失代偿期肝硬化中菌群移植的初步研究正在出现,其安全性也很高,为更大规模的研究铺平了道路。
菌群移植后变形菌减少,放线杆菌增多,肝脏疾病严重程度改善,严重酒精性肝炎患者3个月时的死亡率降低,1年生存率提高。
一项包括20名复发性肝性脑病患者在内的开放性随机试验观察到,使用FMT灌肠剂减少了住院人数,改善了认知和菌群失调。
加深菌群影响机制的理解
未来的研究应该探索和加深对肠道微生物组变化影响肝硬化进展和失代偿发展的动力学和机制的理解。
诊断、治疗
由于肝硬化表现为肠道微生物群与宿主的大量重要相互作用,微生物组诊断和治疗几乎是治疗疾病进展和失代偿发展的必经之路。需要进一步倡导基于微生物组检测和靶向疗法。
改善预后
针对不同水平微生物群与宿主相互作用的策略改善患者的预后。
产学研合作
使之更容易获得和更具成本效益,微生物检测需要更广泛地适应,因为它相对容易收集且信息量较大。可以帮助诊断,预测和潜在地个性化治疗。
多学科综合
多学科例如微生物学,宿主遗传学,基因组学,表观遗传学,代谢组学,营养学等相结合,更好地利用微生物帮助我们有效的进行慢病管理,预防为主,将指导落实到饮食、生活方式等具体应用上,用全新的视角帮助我们认识健康,保持健康。
饮食方式
尽可能选择对肝脏友好的食物,帮你保护肝脏。以下是一些饮食技巧:
选择全麦谷物,面包和谷物。
多吃各种颜色的水果和蔬菜。
选择低脂乳制品。
选择瘦肉蛋白质。
选择植物油,例如橄榄油,而不是黄油。
零食坚果和种子食物。
减少钠摄入量。
每天喝8-10杯水。
避免含有反式脂肪的加工食品。
避免添加糖。
选择可以长期生活并遵循的饮食计划。
吃八分饱腹感
少吃多餐,每三到四个小时吃一顿小餐或吃零食,以补充精力。
限制饮酒量
肝脏是负责代谢营养物质和其他摄入物质的主要器官。如果体内酒精过多,肝酶可能没有足够的能力对其进行处理。过量的酒精会在身体的其余部分循环,产生负面影响。
定期减少饮酒量很重要。医生甚至可能建议你完全戒酒。
增加运动量
运动的好处不仅限于减肥和控制体重,还可以帮助减少肝脏周围的脂肪。定期运动也可以改善你的情绪,助你维持在最佳的健康状态。
开始时要循序渐进,比如可以每周进行150分钟运动开始,尽量选择你喜欢的运动,例如,跑步和步行的组合,多人参与的活动增加趣味性(如各种球类运动),健身房的器械训练等。
睡觉
充足的睡眠对于保持健康状态非常重要(包括慢性肝病治疗期间睡眠很重要)。如果你觉得入睡困难,开始慢慢尝试练习良好的睡眠习惯,例如:
避免咖啡因,烟草和其他刺激物。
尽量保持卧室环境清爽舒适。
运动尽量安排在清晨或午后,不要在睡前剧烈运动。
GratM,WronkaKM,KrasnodebskiM,etal.ProfileofGutMicrobiotaAssociatedWiththePresenceofHepatocellularCancerinPatientsWithLiverCirrhosis.TransplantProc2016;48:1687-91.
JonesRM,NeishAS.GutMicrobiotainIntestinalandLiverDisease[J].AnnualReviewofPathology:MechanismsofDisease,2020,16.
AcharyaChathur,BajajJasmohanS,ChronicLiverDiseasesandtheMicrobiome:TranslatingOurKnowledgeofGutMicrobiotatoManagementofChronicLiverDisease.[J].Gastroenterology,2020
BajajJS,SharmaA,DudejaPK.TargetingGutMicrobiomeInteractionsinService-relatedGastrointestinalandLiverDiseasesofVeterans:MeetingSummary.Gastroenterology2019.
LiuR,KangJD,SartorRB,etal.NeuroinflammationinMurineCirrhosisIsDependentontheGutMicrobiomeandIsAttenuatedbyFecalTransplant.Hepatology2020;71:611-626
RenZ,LiA,JiangJ,etal.Gutmicrobiomeanalysisasatooltowardstargetednon-invasivebiomarkersforearlyhepatocellularcarcinoma.Gut2019;68:1014-1023.
TrebickaJonel,BorkPeer,KragAleksanderetal.Utilizingthegutmicrobiomeindecompensatedcirrhosisandacute-on-chronicliverfailure.[J].NatRevGastroenterolHepatol,2020
LangS,FairfiedB,GaoB,etal.Changesinthefecalbacterialmicrobiotaassociatedwithdiseaseseverityinalcoholichepatitispatients.GutMicrobes2020;12:1785251.
PonzianiFR,BhooriS,CastelliC,etal.HepatocellularCarcinomaIsAssociatedWithGutMicrobiotaProfileandInflammationinNonalcoholicFattyLiverDisease.Hepatology2019;69:107-120.
GaoB,DuanY,LangS,etal.FunctionalMicrobiomicsRevealsAlterationsoftheGutMicrobiomeandHostCo-MetabolisminPatientsWithAlcoholicHepatitis.HepatolCommun2020;4:1168-1182.
Duan,Y.etal.Bacteriophagetargetingofgutbacteriumattenuatesalcoholicliverdisease.Nature575,505–511(2019)
能够处理来自NGS平台的数据,包括IlluminaMiSeq,IlluminaHiSeq或IlluminaNovaSeq,还可以处理以前的454焦磷酸测序技术。CoMA着重于短读而非长读的数据处理。
处理过程包括数据预处理、质量检查、对操作分类单元(OTUs)的聚类、分类、数据后续处理、数据可视化和统计评估。输出结果包含可供发表的图形和标准化格式的文件(例如,制表符分隔的OTU表、biom、Newicktree)。
比起qiime,它的下载安装没那么复杂,兼容linux、mac、windows系统,并且交互式的用户界面更方便小白上手。
性能评估方面,使用了模拟数据和真实的土壤数据与现流行的Mothur、QIIME和QIIME2软件进行了比较,其结果是一致的。
Coma的交互界面
$coma
如同回答问题般的操作
“Doyouwanttostartanewproject”→Yes
“DoyouwanttoassignyourfilesandchoosethenumberofCPUs”→Yes
“Areyouusingpaired-endreads”→Yes
工作流程
使用了各种开源的第三方工具,并以Bash脚本的形式将它们组合到了线性分析工作流程中,从原始输入文件(以FASTQ格式)开始。
不同的颜色代表CoMA工作流程的四个子部分:数据预处理和质量检查(橙色),OTU的聚类和物种分类(绿色),数据后处理(蓝色)以及数据可视化和统计分析(黄色)。
箭头指示发生的顺序,并指定了每个步骤的输入所需的文件类型。通过BLAST、LAMBDA或RDP使用任一可用数据库完成物种分类(例如Sliva或用户自定义数据库)。
数字表示用于特定CoMA步骤的第三方工具:1=PANDAseq,2=PRINSEQ,3=LotuS/sdm,4=QIIME,5=Mothur。TDOT=制表符分隔的OTU表
模拟社区群落数据测试
来自公共模拟微生物库。选择了3个数据集分别为MOCK-13、MOCK-16、MOCK-26.。Mock-13包含21个细菌菌株(18个属;三个重复),MOCK-16包括古细菌,共59个菌株(46属;三个重复),Mock-26包含来自11个真菌菌株(11属)的ITS数据。
表1展示了四个不同分析平台的基准测试结果:使用CoMA进行的数据分析揭示了18个属中的16个,与Mothur和QIIME数量一致。
综合所有模拟社区,CoMA表现出总体最高的准确性,每个分类单元的平均偏差为1.89%(表1),而Mothur(1.99%),QIIME(2.17%)和QIIME2(2.41%)。从层次聚类分析来看,CoMA和QIIME2显示最小的余弦距离(0.08)。Mothur的距离为0.11,QIIME的距离为0.12。所有四个管线之间的相互关系比估计值更紧密(总余弦距离:0.18)。
土壤微生物数据集测试
(森林F、草地GR、沼泽S)
Shannon-Wiener多样性。字母表示不同栖息地使用的分析工具之间的显著差异。三种分析工具都显示出了不同水平的Shannon-Wiener多样性,Mothur>QIIME>CoMA
主成分分析结果表示CoMA和QIIME分析得到的微生物群落具有更高的相似性。
韦恩图也显示出相似的结论,无论是哪个分类水平,Mothur分类得到的OTU数目都是最少的,CoMA和QIIME分类得到的一样的OTU的数目最高。
分析了三个土壤类型的关键科水平物种(即丰度>5%的序列)。在表格中被列举出来的关键科水平物种中,无论土壤类型为哪个,三种分析工具都确定了6个关键科。
另一方面,Mothur确定了在CoMA和QIIME中都找不到的4个关键科,CoMA和QIIME再次确定了相同的分类单元(18个中的14个)
在森林、草原和土壤中的每个分类水平的未分类读数。CoMA和QIIME在所有分类水平上的表现都相似。但是,在分析草地时,CoMA会发现更多的Order和Family(分别为5%和+3%;p<0.001)。
CoMA的主要优点是图形用户界面支持的直观且用户友好的操作。它使入门级用户无需进行费时费力的培训即可执行扩增子测序数据分析并获得可靠的结果。CoMA还提供了随时停止未完成的分析以稍后再继续或重新计算部分工作流的可能性。通过简单地调整决定性的输入参数,而无需进行完整的重新计算。未来,CoMA将会支持ASV结果输出。
一款用于研究微生物群与宿主表型数据关系的分析软件,可以本地安装也可在线使用。可以是16SrRNA测序数据,也可以是宏基因组数据。
用户界面
操作类似于MicrobiomeAnalyst这种平台,非常好上手。具体怎么操作就不赘述了,主要看看这款软件在表型数据的分析中表现怎么样。
案例研究
使用MANTA分析出的结果与案例中的结果一致,不同类型的脂肪酸会分别影响Lachnospiraceae和Ruminococcacea。这表示MANTA成功的假设了微生物群和生活方式之间可能存在的联系。
基于以上,我认为MANTA是一个不错的辅助分析工具,MANTA还提供了一个更加简易的版本MANTABASIC,输入的文件也比较简单,OUT表和含表型数据的制表符格式文件。
延伸
工具的选择应该基于解决什么样的问题。对于CoMA,如果你觉得用qiime太困难了,可以试试CoMA,这种非命令式的交互界面还是很好理解的,从案例研究的结果来看,与qiime的结果几乎一致。虽然是新开发的软件,但较为内核的算法借鉴或直接使用了老牌的工具。
这些都可能与维生素D缺乏有关。
维生素D对人体健康很重要。然而流行病学研究表明,全世界近十亿人口受维生素D缺乏症的影响。
一项针对北京和上海50-70岁人群调查显示:
注:VD水平缺乏(低于20ng/ml);VD水平不足(低于30ng/ml)
首先我们来看下维生素D在人体中扮演怎样的角色。
维生素D
·维生素D是脂溶性维生素
·参与钙和磷的吸收,骨骼健康以及肌肉的生长和发育(生理过程)
·刺激肌肉细胞的增殖和分化(影响肌肉系统)
·其充足的供应可预防呼吸道感染,间接参与具有抗生素特性的化合物的生产(免疫系统)
·其最佳含量对皮肤的状况和健康以及男性和女性生殖过程的调节都有积极的作用(皮肤)
为什么会有这么多人出现维生素D缺乏?
1.饮食摄入和/或吸收减少
某些吸收不良综合症,如腹腔疾病,短肠综合症,胃搭桥,炎性肠病,慢性胰腺功能不全和囊性纤维化,可能导致维生素D缺乏。老年人中口服维生素D摄入量较低的情况更为普遍。
2.减少阳光照射
大约50%-90%的维生素D通过阳光通过皮肤吸收,其余的来自饮食。为了防止维生素D缺乏,每天需要20分钟的阳光照射,皮肤暴露在40%以上。维生素D的皮肤合成随着年龄的增长而下降。黑皮肤的人皮肤维生素D的合成较少。在住院或长期住院的患者中减少的日光照射也会导致维生素D缺乏。持续使用防晒霜的人的有效日晒量降低。
3.内源性合成减少
患有慢性肝病(例如肝硬化)的个体可能具有缺陷的25-羟化作用,导致活性维生素D缺乏。1-α25-羟化作用的缺陷可见于甲状旁腺功能亢进,肾衰竭和1-α羟化酶缺乏症。
4.肝分解代谢增加
某些yao物会诱导肝p450酶,从而激活维生素D的降解。
5.维生素D抵抗
在遗传性抗维生素D佝偻病中可以看到维生素D受体抵抗。
维生素D缺乏症的大多数患者无症状。
轻度的慢性维生素D缺乏症,也可能会导致慢性低钙血症和甲状旁腺功能亢进,特别是在老年人群中,可能导致骨质疏松,跌倒和骨折的风险。
长期严重维生素D缺乏症患者会出现与继发性甲状旁腺功能亢进有关的症状,包括骨痛,关节痛,肌痛,疲劳,肌肉抽搐(束缚)和无力。脆性骨折可能是由于长期缺乏维生素D导致骨质疏松所致。
在儿童中可能产生的症状:烦躁,嗜睡,发育迟缓,骨骼变化或骨折等。
其他一些症状可能会被忽视,其实也与维生素D缺乏有关,例如:
感到疲惫,免疫力下降,反复感染,容易出汗,脱发,伤口愈合慢,头晕,心脏问题,超重或肥胖,情绪低落,认知功能障碍等。
临床上,血清25(OH)D水平标准如下:
足够:大于20–30ng/ml或50–75nmol/L
安全上限:不超过60ng/ml或150nmol/L
有毒:高于150ng/mL或375nmol/L
毒副作用
高维生素D水平是由于过量摄入而不是由于过度日光照射引起的。
急性中毒可导致急性高钙血症,可引起混乱,厌食,呕吐,多尿,多饮和肌肉无力。
慢性中毒可导致肾钙化和骨痛。
维生素D缺乏与许多非传染性疾病的发生有关,如结肠癌,乳腺癌,卵巢癌,肾癌,胰腺癌,精神分裂症,阿尔茨海默,多发性硬化,骨软化症,佝偻病,骨质疏松,糖尿病等。
4.1呼吸道疾病
一些研究表明,维生素D补充剂可以增强免疫反应并预防呼吸道感染。
一项来自14个国家/地区的11,321人的研究表明,补充维生素D可以使维生素D缺乏和适当水平的人降低急性呼吸道感染(ARI)的风险。
来自三项随机对照试验的Meta分析研究中,发现补充维生素D可以降低维生素D水平低于25nmol/L的患者慢性阻塞性肺疾病恶化率。
4.2新冠肺炎
最近的一项研究表明,血液中25(OH)D的浓度至少为30ng/mL有助于住院的COVID-19患者减少临床预后不良和死亡的可能性。
研究分析了235例COVID-19患者的住院资料。与维生素D缺乏症患者相比,在40岁以上的患者中,维生素D含量适当的患者发生不良后果(包括失去知觉,缺氧和死亡)的可能性降低51.5%。
在疫情期间,我们可能常听到这样的词:“细胞因子风暴”。而维生素D缺乏会增强细胞因子风暴的过程。
注:细胞因子是蛋白质,是免疫系统不可或缺的一部分。它们可以同时具有促炎和抗炎作用,并发挥重要作用,有助于预防感染和疾病。但是,在某些情况下,细胞因子也会引起组织损伤。
细胞因子风暴是指响应感染或其他因素而发生的促炎性细胞因子的失控释放。细胞因子的这种失调和过度释放会导致严重的组织损伤,并增强疾病的进展和严重程度。
细胞因子风暴是导致多器官功能衰竭和急性呼吸窘迫综合征(ARDS)的主要原因,也是导致COVID-19进程和严重程度的重要因素。例如,已显示严重病例COVID-19的患者释放大量细胞因子,尤其是IL-1和IL-6。
维生素D缺乏与免疫功能降低有关,并可能增强细胞因子风暴。当然该领域还在研究中。
需要特别注意,单独服用补充维生素D并不能让你免受COVID-19的侵害。不过,缺乏维生素D可能会损害免疫功能,从而增加感染风险和对疾病的敏感性。
4.3自闭症
自闭症是遗传和环境因素共同作用导致的神经发育异常,自闭症人群中维生素D的缺乏较常见,而维生素D能够促进儿童的大脑神经发育,因此可能在自闭症的病因学上起着重要作用。
采用随机双盲对照临床试验(RCT)设计,纳入109名自闭症儿童(85名男孩和24名女孩;年龄为3-10岁)。将自闭症患儿随机分组,分别接受维生素D3或安慰剂治疗4个月。结果发现,自闭症儿童可很好地耐受高剂量的维生素D3,且临床疗效较好。
这项研究是第一个证明维生素D3补充剂有益于自闭症患者的随机双盲对照试验,但是仍需更大规模的随机对照试验来严格验证维生素D对自闭症患者的疗效。
4.4癌症
对包括57,000多名受试者的18项随机对照试验(RCT)进行的荟萃分析发现,每天摄入维生素D补充剂可降低总死亡率。补充钙和维生素D降低了罹患总癌症,乳腺癌和结直肠癌的风险。
一项RCT显示,钙和维生素D可以大大降低绝经后妇女的所有癌症风险。
近几年来的人群研究还发现,机体维生素D水平与肠道菌群之间也存在密切联系。
生命早期生长发育与维生素D有关
我们知道,婴儿在出生6个月内身体生长发育迅速,所以需要充足的营养。维生素D缺乏是婴儿早期营养不足的主要原因之一,维生素D补充不足会严重影响婴儿的骨骼发育。
有研究显示,婴儿体重与维生素D缺乏具有明显关联性。婴幼儿缺乏维生素D也会影响肠道菌群的定植能力和数量平衡,导致消化系统功能失调造成吸收功能障碍。
婴儿期肠道菌群数量的改变受多种因素影响。研究显示,维生素D可通过信号传导来增强肠道结构屏障的完整性和提高肠道免疫反应能力,进而稳定菌群在肠道的定植和数量平衡。
婴儿在1岁以内是肠道内菌群定植、演替和达到平衡的主要阶段,特别是肠道内双歧杆菌、大肠杆菌、乳杆菌等主要菌体在婴儿出生半年内完成定植、演替和数量的平衡,对增强机体免疫力和促进消化吸收起到了重要作用。
在最近对3-6个月大的婴儿肠道微生物群的研究中,研究人员发现脐带血维生素D水平与乳球菌减少有关。
上述资料表明从婴儿期到成人期,维生素D对肠道菌群的组成具有调节作用。
维生素D减少与肥胖有关
有研究显示,饮食中类固醇类物质的缺乏会影响肠道菌群的定植和平衡状态,使菌群数量明显增加,可能与肥胖的发生均有一定关系,但仍需进一步研究证实。
维生素D还可促进脂肪细胞内Ca2+的吸收,使脂肪酸合成酶的活性增强进而减少脂肪的分解,增强脂肪细胞的储脂能力。所以体内维生素D含量减少时,体内脂质代谢会明显增强和细胞内储脂能力降低,导致肥胖发生。
维生素D缺乏的婴儿体重和BMI指标明显高于维生素补充充足的婴儿。肠道菌群数量的增加与肥胖具有密切联系,特别是乳酸杆菌和双歧杆菌以及肠球菌能增加体重和引起肥胖。
该研究发现,观察组婴儿补充维生素D后乳酸杆菌、双歧杆菌、肠球菌含量明显低于对照组。
活性维生素D代谢产物
多项研究表明,肠道菌群会改变肠道维生素D的代谢,而益生菌补充剂会影响循环中的维生素D水平。维生素D缺乏会降低防御素的生成,防御素是一种对于维持健康肠道菌群非常重要的抗菌分子。正如研究人员期待的那样,口服合成防御素分子能够恢复肠道菌群平衡,降低血糖水平,并改善脂肪肝症状。
这些结果提供了强有力的证据,表明宿主维生素D信号和老年人肠道菌群健康之间存在重要的相互作用。肠道中CYP27B1-和CYP24A1-24-羟化酶的共定位表达可能会被存在的微生物群增强或抑制。
自闭症儿童维生素D水平较低现象
大量研究证实,自闭症儿童的维生素D水平低于同龄健康人群,并且足量、规范地补充维生素D可改善其自闭症核心症。
维生素D——神经保护剂
而维生素D的存在,可以改善由于脑部炎症和神经毒性引起的脑损伤,促进NGF表达,延缓神经元细胞死亡。因此,维生素D可以作为一种神经保护剂保护大脑皮层神经元避免兴奋性毒性。
自闭症儿童肠道患病率更高
自闭症儿童存在免疫系统功能紊乱,胃肠道紊乱患病率高于正常发育儿童。一项超过14,000例自闭症患者的多中心研究显示,自闭症患者炎症性肠道疾病患病率为0.83%,而全院患者患病率为0.54%;自闭症患者其他胃肠道紊乱疾病患病率为11.74%,而全院患者患病率为4.5%,表明自闭症肠道患病率更高。
WangL等研究发现,在自闭症患者和正常人群中发现鲍氏梭状芽孢杆菌存在明显差异。自闭症患者肠道中的脱硫菌属比正常人群明显增多,且普通拟杆菌属含量丰富,自闭症患者与对照组正常人群肠道中的放线菌及变形菌属含量也有差异。
还有研究观察到自闭症患者肠道中有更高水平的萨特菌和瘤胃球菌属。国外通过自闭症小鼠模型肠道菌群宏基因组的研究发现,其脆弱拟杆菌属、梭菌属比例较对照组明显异常,口服脆弱拟杆菌可改善自闭症样行为症状。
维生素D通过影响Th17/Treg细胞平衡改善菌群紊乱
维生素D可调节Th细胞以及Treg细胞功能,可抑制Th17细胞,并促进Treg细胞的增殖。Th17/Treg细胞平衡可能是维持正常的机体整体免疫功能和肠道免疫屏障功能中关键的因素。
维生素D通过影响Th17/Treg细胞平衡调节自闭症肠道的菌群紊乱,进而通过脑肠轴作用改善神经系统的发育。
这些研究提示,自闭症存在肠道微生物生态失衡,肠道微生物失衡的改善很有可能作为自闭症治疗新的发展方向。
VD与肠道菌群相互影响,从而影响肠道疾病
结直肠癌
2009年VolkerMai团队研究了非裔美国人结直肠癌高于白种美国人,研究发现非裔美国人饮食中的环杂胺明显增高,维生素D摄入量明显减少,两组人群的粪便微生物群组成也存在差异,推测环杂胺、维生素D与肠道菌群的组成有相互影响,从而影响肠道环境促进结直肠癌的发生。
克罗恩病
维生素D缺乏与克罗恩病(Crohn’sdisease,CD)的发病有关,研究表明补充维生素D3会改变CD患者肠道细菌组成,参与者口服维生素D3,从第1天至第3天每天服用20000IU,然后每隔一天服用一次,共4周,CD患者口服一周后,Alistipes菌、Barnesiella菌、紫单胞菌科(Porphyromonadaceae)、Roseburia菌、Anaerotruncus菌、Subdoligranulum菌和Ruminococaceae(均为厚壁菌门)的丰度显著增加。
炎症性肠病
1,25-OH2-D3治疗还可在炎症性肠病中改变肠道菌群的组成,从而对小鼠有保护作用。
在肠道性疾病中肠道细菌组成多发生改变,补充维生素D则可调节已经发生改变的肠道菌群组成。通过补充维生素D可以改变肠道内不同菌种的含量,调节肠道菌群的组成,增加双歧杆菌,拟杆菌,降低大肠杆菌和肠球菌的含量和比例。
肠炎
此外,益生菌治疗沙门氏菌肠炎的研究显示益生菌在维生素D受体(VDR)缺陷小鼠中没有显示出保护作用,而在野生型小鼠中可抑制沙门氏菌诱导的炎症和损伤。
VDR基因消融降低肠道中DEFA5和MMP7表达,肠道通透性增加,肠道内环境紊乱,维生素D参与-防御素-2的表达,通过-防御素-2的表达与肠道菌群相互作用,改善肠道环境以及影响肠道炎症,并且存在剂量关系。溃疡性结肠炎急性期用维生素D能够缓解急性期症状,改善肠道粘膜和肠道菌群。此外,推测益生菌对个体起效可能依赖于VDR基因。
以上,我们看到在各种肠道疾病的条件下,补充维生素D在一定程度上能改善肠道菌群。那么在缺乏维生素D的健康个体中,补充维生素D对肠道菌群是否有益?
近日,一项研究对80位健康维生素D缺乏的女性进行补充维生素D的治疗。
该研究主要是解决两个问题。
1.补充维生素D对受试者的肠道菌群的影响
补充维生素D可显着增加肠道微生物多样性。具体而言,拟杆菌/厚壁菌的比例增加,益生菌类Akkermansia和双歧杆菌的丰度增加。拟杆菌属和普氏杆菌属显著变化,表明补充后肠型发生了变化。
2.评估受试者菌群是否与他们的无反应状态有关。
注:无反应状态指一部分人群口服高剂量的维生素D也无效。
已有研究表明,Bacteroidesacidifaciens可以预防肥胖和提高胰岛素敏感性,也是大肠中促进IgA抗体产生的主要共生菌之一。在该研究中,无反应者中较低的Bacteroidesacidifaciens以及补充维生素D后的额外消耗表明,这种细菌可能与补充维生素D的反应有关。
因此,研究人员有这样一个设想,维生素D的补充促进有益菌生长,以维持免疫微生物的体内平衡。当然,需要开展更大队列的实验研究,以充分代表有反应者/无反应者,来证实该研究的发现。
6.1鱼类
鲑鱼
根据USDA食物成分数据库显示,一份3.5盎司(100克)大西洋鲑鱼每份含526IU维生素D。
一些研究发现野生鲑鱼的含量更高,每份高达1300IU。而鲑鱼养殖平均含量为250IU。
鲱鱼
金枪鱼罐头
每包100克可含多达268IU的维生素D,然而金枪鱼罐头中一般含有甲基汞(甲基汞是许多鱼类中发现的一种毒素)。可以选择淡金枪鱼(通常比白金枪鱼更好),每周不超过170克,可以防止甲基汞过多。
鱼肝油
鱼肝油每匙(4.9毫升)含维生素D约448IU。同时也富含维生素A,omega-3脂肪酸等,但是不要服用过量。
6.2蛋黄
鸡蛋中的蛋白质大多在蛋清中,而脂肪、维生素和矿物质主要在蛋黄中。一颗标准的蛋黄含有37IU的维生素D。
蛋黄中的维生素D含量取决于阳光照射和鸡饲料中维生素D的含量。当使用相同的饲料时,在阳光下漫游的牧场饲养的鸡所产卵的水平要高3-4倍。
从饲养的鸡中选择鸡蛋,或者从市场上购买富含维生素D的鸡蛋,可以满足日常需求。
6.3蘑菇
6.4强化食品
注:强化食品指向食品中添加一定量的食品营养强化剂,以提高其营养价值。
牛奶
有些牛奶中富含维生素D。每杯牛奶(237毫升)通常含有115-130IU。
豆浆
通常会含维生素D以及牛奶中常见的其他维生素和矿物质。一杯(237毫升)通常含有107-117IU的维生素D。
橙汁
一杯(237毫升)强化橙汁,包括高达100IU的维生素D,当作早餐开启一天的活力。
燕麦片
半杯(78克)可提供维生素D量为54–136IU。
注意以上食物中维生素D计算是强化食品中的含量。
最后,要提醒大家的是,“过犹不及”。维生素D虽然好,但不能补充过量。一旦维生素D过量,就会对身体带来伤害。
大剂量的维生素D服用一开始没有症状,但过几个月或几年就开始显现了,严重的情况下甚至可能导致肾脏衰竭和动脉钙化。
每天摄入1000-4000IU(25-100微克)的维生素D应该足以确保大多数人的最佳血液水平。
附录:特殊人群维生素D补充剂量
维生素D缺乏引起的骨软化需要起始每日使用3000-40000IU的维生素D,随后使用每日400IU的维持剂量。
肠道吸收不良或肝脏疾病引起的维生素D缺乏通常需要每日使用40000IU(成人)治疗,每日10000-25000IU(儿童)。
甲状旁腺功能减退引起的低钙血症需要使用每日最多100000IU维生素D
——参考自:《DK家庭用药指南》
SizarO,KhareS,GoyalA,etal.VitaminDDeficiency.[Updated2020Jul21].In:StatPearls[Internet].TreasureIsland(FL):StatPearlsPublishing;2020Jan
HolickMF.VitaminD:importantforpreventionofosteoporosis,cardiovascularheartdisease,type1diabetes,autoimmunediseases,andsomecancers.SouthMedJ.2005Oct;98(10):1024-7.
CzernichowS,FanT,NoceaG,SenSS.CalciumandvitaminDintakebypostmenopausalwomenwithosteoporosisinFrance.CurrMedResOpin.2010Jul;26(7):1667-74.[PubMed]4.
NaeemZ.Vitaminddeficiency-anignoredepidemic.IntJHealthSci(Qassim).2010Jan;4(1):V-VI.
SinghParul,RawatArun,AlwakeelMariametal.ThepotentialroleofvitaminDsupplementationasagutmicrobiotamodifierinhealthyindividuals.[J].SciRep,2020,10:21641.
ThomasMK,Lloyd-JonesDM,ThadhaniRI,ShawAC,DeraskaDJ,KitchBT,VamvakasEC,DickIM,PrinceRL,FinkelsteinJS.HypovitaminosisDinmedicalinpatients.NEnglJMed.1998Mar19;338(12):777-83.
GrberU,KistersK.InfluenceofdrugsonvitaminDandcalciummetabolism.Dermatoendocrinol.2012Apr01;4(2):158-66.
Pereira-SantosM,CostaPR,AssisAM,SantosCA,SantosDB.ObesityandvitaminDdeficiency:asystematicreviewandmeta-analysis.ObesRev.2015Apr;16(4):341-9.
ElliottME,BinkleyNC,CarnesM,ZimmermanDR,PetersenK,KnappK,BehlkeJM,AhmannN,KieserMA.Fracturerisksforwomeninlong-termcare:highprevalenceofcalcanealosteoporosisandhypovitaminosisD.Pharmacotherapy.2003Jun;23(6):702-10.
KennelKA,DrakeMT,HurleyDL.VitaminDdeficiencyinadults:whentotestandhowtotreat.MayoClinProc.2010Aug;85(8):752-7
PalaciosC,GonzalezL.IsvitaminDdeficiencyamajorglobalpublichealthproblemJSteroidBiochemMolBiol.2014Oct;144PtA:138-45.
ZadkaK,Pakowska-GodzikE,Rosoowska-HuszczD.TheStateofKnowledgeaboutNutritionSourcesofVitaminD,ItsRoleintheHumanBody,andNecessityofSupplementationamongParentsinCentralPoland.IntJEnvironResPublicHealth.2018;15(7):1489.Published2018Jul14.
SordilloJE,ZhouY,McGeachieMJ,etal.Factorsinfluencingtheinfantgutmicrobiomeatage3-6months:FindingsfromtheethnicallydiverseVitaminDAntenatalAsthmaReductionTrial(VDAART)[J].JAllergyClinImmunol,2017,139(2):482-491.
LutholdRV,FernandesGR,Franco-de-MoraesAC,etal.GutmicrobiotainteractionswiththeimmunomodulatoryroleofvitaminDinnormalindividuals[J].Metabolism,2017,69:76-86.
MaiV,MccraryQM,SinhaR,etal.Associationsbetweendietaryhabitsandbodymassindexwithgutmicrobiotacompositionandfecalwatergenotoxicity:anobservationalstudyinAfricanAmericanandCaucasianAmericanvolunteers[J].NutritionJournal,2009,8(1):49.
SchfflerH,HerlemannDP,KlinitzkeP,etal.VitaminDadministrationleadstoashiftoftheintestinalbacterialcompositioninCrohn’sDiseasepatients,butnotinhealthycontrols[J].JournalofDigestiveDiseases,2018,19(4):225-234.
OoiJH,LiY,RogersCJ,etal.VitaminDregulatesthegutmicrobiomeandprotectsmicefromdextransodiumsulfate-inducedcolitis[J].JNutr,2013,143(10):1679-1686.
ShangM,SunJ.VitaminD/VDR,Probiotics,andGastrointestinalDiseases[J].CurrMedChem,2017,24(9):876-887.
李子傲.母乳喂养对肠道菌群的影响[J].营养与健康,2016,10(8):97-99.
汪英,袁莉,李广利,等.肥胖与血清维生素D水平的关系研究[J].中华内分泌代谢杂志,2011,27(7):589-590.
祝海波,周苗苗,王海,张晓宇.婴儿早期维生素D补充水平对生长发育和肠道菌群的影响[J].中国食物与营养,2018,24(12):87-89.
李苹,昌雪莲,尚煜,刘雅静,陈晓宇,梁爱民,齐可民.婴儿早期维生素D补充对生长发育及肠道菌群的影响[J].公共卫生与预防医学,2018,29(01):12-16.
杜琳.维生素D介导的Th17/Treg细胞稳态调节对孤独症大鼠肠道菌群失调作用的研究[D].吉林大学,2019.
“在人类适应中整合宿主-微生物群的相互作用可以提供新的方法来提高我们对人类健康和进化的理解。”
面对快速的环境变化,生物如何适应新环境是进化生物学中的一个核心问题。
回顾了人类适应新环境的例子,这些例子表明宿主基因和微生物群之间的相互作用。提出宿主机制可以在本地适应过程中替代或补充有益的微生物群功能。寻找微生物群与人类遗传适应性有关的其他例子。
当人类在基因上适应新环境时,他们的微生物群也可能参与这个过程。微生物可以比宿主进化得更快,这使它们能够对环境变化做出快速反应。微生物群还过滤宿主的环境,从而改变宿主的选择性压力。
图1人类及其微生物的局部适应
举例说明适应性宿主等位基因和适应性微生物群功能之间的相互作用。
在许多情况下,主要的遗传变异体被确定为如下:
乳糖消化所需的乳糖酶:(由基因区域LCT编码)突变和截短
缺氧诱导因子2α:(由PAS1编码)在高原适应中产生作用
β-珠蛋白基因单倍型或镰状细胞性状:(由血红蛋白编码)在疟疾抗性中产生作用
此外,人类微生物群的组成和功能变化已被广泛描述。Amato等人最近回顾了可能影响人类本地适应性的微生物群的有益功能,例如微生物群增强营养和预防传染病。然而,在人类局部适应过程中,宿主适应性等位基因和适应性微生物群功能之间的特定相互作用仍有待研究。
接下来的两小节,作者详细研究了LCT–双歧杆菌和AMY1–瘤胃球菌之间的相互作用。在这些例子中,适应性宿主等位基因和适应性微生物功能是相联系的。
不同大陆的动物驯化(2500年到10000年前)和对非人类牛奶的反复消费导致了强烈的选择压力,使乳糖酶的生产持续到成年,即乳糖酶持久性LP(乳糖耐受)。LP是突变,在有长期放牧和挤奶历史的人群中常见。
宿主和微生物共争乳糖
许多肠道微生物群中常见的微生物可以使用β-半乳糖苷酶来裂解乳糖,然后发酵,乳糖可能被乳酸菌隔离。不管如何加工,微生物利用乳糖的副产物给宿主产生的能量更少。这意味着宿主和微生物在争夺乳糖,宿主有强烈的动机去战胜微生物。
乳糖耐受——宿主赢
乳糖耐受宿主胜过微生物,因为乳糖酶在微生物生物量较低的上层消化道中具有活性。
乳糖不耐受——微生物赢
相比之下,乳糖不耐受宿主主要在较低的消化道中获取微生物乳糖代谢的低能量密度产物。
因此,未消化的乳糖进入结肠可以被认为是一种需要微生物酶来处理的纤维形式。
LCT位点的相同变异与肠道微生物群中双歧杆菌的相对丰度有关。
这种关联是迄今为止微生物组全基因组关联研究最一致的信号,该关联取决于牛奶消费量。
乳糖耐受基因型和双歧杆菌相对丰度之间的反比关系支持了哺乳动物乳糖酶和细菌β-半乳糖苷酶直接竞争乳糖的观点。
双歧杆菌是重要的乳糖降解菌,可能在产奶动物驯化后和选择乳糖耐受等位基因前帮助成年宿主从牛奶中提取能量。在畜牧业兴起后,乳糖代谢细菌可能在缺乏乳糖耐受等位基因的情况下对宿主的适应性产生积极影响。后来,有益的宿主等位基因出现并取代了微生物群的功能,在一些人群中变得几乎固定。
双歧杆菌(或功能过剩的微生物)产生的β-半乳糖苷酶也可能通过降低LCT基因型之间的适应度差异而减轻了对乳糖耐受等位基因的选择压力。
乳糖的例子表明,由微生物组和宿主基因组编码的活性可能特别容易受到宿主和微生物组之间竞争的影响。
与乳糖相反,人类饮食中的各种淀粉为宿主提供了一种机会,在较高的消化道中获得一种带有淀粉酶的淀粉,而在较低的消化道中为微生物群消化留下抗性淀粉。
事实上,淀粉有许多不同的形式,包括难以被宿主淀粉酶降解的结构,淀粉酶将淀粉分解成葡萄糖亚基。宿主和微生物群分配淀粉底物的程度可能取决于宿主基因型。
与AMY1拷贝数含量低的个体相比,AMY1拷贝数含量高的个体在食物到达较低的消化道及其微生物群之前,更彻底地消耗了给定饮食中对淀粉酶敏感的淀粉(图2,C和D)。
图2宿主基因型和微生物群之间联系的例子
不同类型的糖分以不同的形状和颜色显示。
AMY1拷贝数为2是祖先的情况:AMY1拷贝数在人类中的扩展可能是由从低淀粉饮食到高淀粉饮食的饮食转变所驱动的。
随着农业的发展,唾液淀粉酶水平的提高可能会促进高淀粉饮食人群的健康。与乳糖耐受的进化相似,宿主淀粉酶通过其比微生物发酵产物更大的能量产量而具有适应性优势。
具有AMY1高拷贝数的宿主还能从结肠微生物对抗性淀粉的强化降解中获益。
抗性淀粉发酵中的重要属——Ruminococcus
与AMY1低拷贝数个体的肠道微生物群相比,高AMY1拷贝数宿主的肠道微生物群富含瘤胃球菌属(Ruminococcus)。
在AMY1低拷贝数宿主中,肠道细菌优先发酵淀粉酶敏感型淀粉,宿主不能使用这些淀粉,因为它们的唾液淀粉酶水平较低。
乳球菌,或功能冗余的微生物,可能通过放大AMY1高拷贝数和低拷贝数个体之间的相对适应度差异,增强了对AMY1拷贝数扩增的选择压力,并可能增强了宿主基因-微生物的关联(图2,C和D)。因此,这种动态可能导致基于宿主基因型的微生物补充。
以上,作者提出宿主机制可以在本地适应过程中替代或补充有益的微生物群功能。接下来的章节,作者寻找微生物群与人类遗传适应性有关的其他例子,其中适应性的遗传基础得到了很好的描述。
有新的证据表明,微生物参与了其他几种人类遗传适应(图3),之前在这些适应中,微生物的作用没有得到充分认识。
图3人类的局部适应性与微生物群有关
微生物群的研究群体与宿主基因位点的研究群体不匹配.
类似地,酒精脱氢酶1B(ADH1B)位点在人类中显示出正向选择的证据,并与脱脂摄入有关,人们认为这是伴随着农业的发展而产生的。
这些观察表明:
气候是参与常见代谢紊乱基因的重要选择压力
低温
·Christensenellaceae
人类肠道中最紧密和高度可遗传的分类单元,细菌家族christensenellaceae,它与较低的体重指数(BMI)和代谢紊乱有关。甲烷菌科、脱水杆菌科和Tenericutes在多个人类群体中也表现出遗传性,并与Christensenellaceae共存。
最近的证据表明,这些菌群之间的代谢相互作用可能会影响宿主对代谢物的利用。
GWASs没有发现显著的宿主遗传变异。这表明,一些明显可遗传的分类群可能具有多基因性质,其中许多基因的影响很小。
·Akkermansia
太阳辐射
皮肤中的黑色素保护皮肤免受紫外线辐射,其抗菌特性被认为是皮肤色素沉着纬度梯度的替代假设。因此,人类黑素细胞中皮肤色素沉着的增加可以通过暴露于微生物产物如脂多糖来诱导。
Guéniche等人报道了乳酸菌对皮肤的保护作用,紫外线照射后的全身免疫反应。鉴于肠道微生物群在调节皮肤内环境稳定中的新兴作用,进一步的研究可能有助于确定色素沉着基因与皮肤和肠道微生物之间的潜在相互作用。
高海拔环境
最近,肠道微生物群被证明通过产生短链脂肪酸来调节血压,短链脂肪酸有可能在高海拔环境中帮助调节血压。
包括丁酸盐在内的短链脂肪酸的产生影响小鼠缺氧诱导因子的活性,这也是多个人类群体中参与高海拔适应的关键途径。作用于肾素-血管紧张素系统的细菌血管紧张素转换酶(ACEs)的产生也可能改变高海拔环境中的血压。细菌ACEs已被证明能在体外转化哺乳动物血管紧张素。
病原体被认为是人类适应性进化的主要驱动力之一(图3),微生物群与病原体防御和免疫之间的界面已被广泛研究。
人类本地适应的一个典型例子是疟疾抗性的遗传基础,由疟原虫属的几种寄生原生动物引起。皮肤和肠道微生物可能影响疟疾的不同阶段。
Ippolito等人总结了微生物群在疟疾抗性中可能扮演的多重角色的几种假说:
1皮肤细菌产生可改变蚊子媒介吸引力的挥发性化合物
2由肠道微生物诱导的抗原表达,该抗原表达诱导针对疟原虫传播的保护性抗体
3影响血液阶段疟原虫感染严重性的微生物群的差异
其他可能受到微生物群和宿主遗传变异组合影响的感染包括霍乱、艾滋病毒和蠕虫感染。
霍乱
鉴于在胃肠疾病中离子通道的表达和功能经常被改变,探索微生物群和离子通道基因之间的联系对于治疗或预防腹泻疾病可能是有价值的。
艾滋病毒和蠕虫感染
阴道微生物群在艾滋病毒的获得和传播中起作用,
肠道微生物群与蠕虫相互作用并改变疾病结果。
对研究充分的宿主适应性等位基因和新兴有益微生物群功能之间的相互作用的进一步研究可能会揭示以前未知的抗病机制。
这里提到的所有宿主基因-微生物例子(图3)仍处于研究的早期阶段。但是在每一种情况下,微生物群都有可能通过改变适应性景观来影响宿主的进化。这些微生物可能改变了宿主的环境,导致宿主表型选择压力的改变。
在未来关于适应性宿主基因型和适应性微生物群功能之间关系的研究中,GWASs、候选基因方法或使用基因敲除模型的移植实验可以帮助确定维持有益微生物群功能的宿主遗传机制,并测试微生物群的替代和补充是否是适应性的一般特征。
基因研究已经将越来越多的群体纳入考虑范围,微生物群的特征研究也是如此。但到目前为止,包括宿主遗传学和微生物群的研究,除了少数例外,主要是在西方人群中进行的。
需要将人类基因研究的范围扩大到更广泛的人群和地点,其中包括微生物组成分。这些类型的研究结果将测试当前发现的普遍性,并描述更多微生物介导的适应情况。
SuzukiTaichiA,LeyRuthE,Theroleofthemicrobiotainhumangeneticadaptation.[J].Science,2020,370
BaylessTheodoreM,BrownElizabeth,PaigeDavidM,LactaseNon-persistenceandLactoseIntolerance.[J].CurrGastroenterolRep,2017,19:23.
S.Fan,M.E.B.Hansen,Y.Lo,S.A.Tishkoff,Goingglobalbyadaptinglocal:Areviewofrecenthumanadaptation.Science354,54–59(2016).doi:10.1126/science.aaf5098;pmid:27846491
M.Fumagallietal.,GreenlandicInuitshowgeneticsignaturesofdietandclimateadaptation.Science349,1343–1347(2015).doi:10.1126/science.aab2319;pmid:26383953
T.A.Suzuki,F.M.Martins,M.W.Nachman,Altitudinalvariationofthegutmicrobiotainwildhousemice.Mol.Ecol.28,2378–2390(2019).doi:10.1111/mec.14905;pmid:30346069