本文选自中国工程院院刊《Engineering》2021年第2期
作者:陈求稳,张建云,陈宇琛,莫康乐,王骏,唐磊,林育青,陈磊,高勇,姜伟,张与馨
一、引言
地球上大多数大河都被密集地筑坝,以进行水力发电、洪水管理、供水和航行,并且大坝的数量仍在快速地增长。筑坝不仅改变了自然水文状况、泥沙通量和水质,而且还对鱼类群落产生了不良的生态影响。大坝的运行会影响本地鱼类的产卵活动,从而影响其数量和种群,这是世界各地的河流都会有的现象,如马德拉河、科罗拉多河和澜沧江-湄公河。鱼的产卵活动很可能是由多种环境因素触发的,包括流速、水温、溶解氧、浊度和初级产物。众所周知,流速对于产漂流卵的鱼类的产卵特别重要。
中国四大家鱼包括鲢(Hypophthalmichthysmolitrix)、草鱼(Ctenopharyngodonidellus)、青鱼(Mylopharyngodonpiceus)和鳙(Aristichthysnobilis),是中国渔业养殖和捕捞的重要鱼类。在20世纪,长江全部淡水鱼的捕捞量中有60%是家鱼。但是,在过去的几十年中,由于三峡大坝的建设引起了水文条件的显著变化,鱼的产卵活动受到了严重影响。2003年,三峡水库(TGR)开始运行时,鱼卵和仔鱼的数量仅为2002年的10%。
调控繁殖过程,包括产卵、受精、孵化和胚胎发育,可能是维持种群或控制家鱼入侵的有效措施。但是,到目前为止,研究仅集中在产卵上,这些研究表明家鱼产卵发生在浑浊的河流中,最低水温要求为18℃,还有特定的流速要求。综合考虑产卵、受精、孵化、仔鱼存活等繁殖过程,建立流速与家鱼繁殖之间的定量关系,目前还缺乏坚实的科学依据。
本研究以家鱼为目标物种,通过物理模型验证两个假设:①流速与产卵行为以及家鱼胚胎发育之间存在定量关系;②存在一个最佳的流速来平衡产卵行为和胚胎发育的要求。同时,开展了多年的家鱼产卵野外试验,与物理模型实验结果相互印证。本研究通过对河流水利工程适应性管理,为提升或控制鱼类繁殖提供坚实的基础。
二、材料与方法
所有实验均在南京水利科学研究院当涂实验中心进行,并获得研究机构动物管理与使用委员会(IACUC)的许可。
(一)野外试验
在2012—2016年的野外试验性生态调度过程中,我们在长江干流宜都市附近的固定断面处采集了漂浮性鱼卵样品(图1)。在繁殖季节,经常会在该断面监测到家鱼的仔鱼和流卵。据报道,从宜昌到杨家嘴的断面上游约10km是产卵场。该河段宽近1km,既没有易蚀的浅滩,也没有狭窄的地段,这些特殊的形态特征创造了有利于家鱼产卵的水流条件。
在为期五年的试验性生态调度期间,采样于每年的五月中旬开始,当时的水温高于18℃的阈值。连续两周采样,直到没有发现鱼卵为止。在采样期间,每天的8:00—9:00和14:00—15:00收集鱼卵。用网(直径为0.5m,网眼为500μm)收集漂流的卵。网被悬挂在水面上,并逆流向上游定向。同时,采用旋转式流速仪用于测量流速。研究河段上游边界处的流量(m3·s–1)和下游边界处的水位(m)从长江水利委员会获得。
为获得整个河段的流场,建立了二维非恒定流水动力模型。通过获取的流量和水位数据以及在CS1~CS4(图1)四个断面处测得的速度对模型进行率定和验证,附录A第1节中介绍了模型基本信息、率定和验证等信息。然后使用校准后的模型来计算整个河段的流场。
(二)实验室控制实验
实验室控制实验分别于2017年和2018年5月15日至6月20日进行。实验装置是一个大型的环形水槽[图2(a)]。安装了两台水下推流器和四台水下水泵提升流速。水槽顺直部分被加宽加深,以方便安置水下推流器的叶轮,并且在两侧都安装了渔网,以防止鲢进入叶轮区域。在水槽周围布置了22个测量点,并通过旋转式流速仪(南京水利水文自动化研究所,LS20B)测量了0.5m深度处的流速。水槽周围有6个水下摄像头,以观察家鱼的产卵行为。实验过程中,水深设定为0.9m,水质与驯化池的水质一致。使用多功能水质分析仪(美国YSIInc.,YSI650MDS)测量水质参数。实验设计了6种具有不同理论最大流速的方案(见附录A中的表S1),每个方案每年重复两次。
为了研究流速对胚胎发育的影响,建立了一个小的环形槽[图2(b)],它使用小型水泵来控制流速。于2018年6月测试了三种方案,最大流速分别为0.4m·s–1、0.8m·s–1和1.2m·s–1。每个方案处理重复三次。鱼卵孵化后24h新孵化的仔鱼的总孵化率和存活率用于表征胚胎发育。以与上述相同的方式监测水质参数。在小的环形水槽中,水位保持恒定,每天更换一半的水。如果产卵受阻,则从大水槽中选出200颗鱼卵,以评估每次测试中胚胎的发育。
为了获得整个环形槽的流速,在研究中使用了计算流体动力学(CFD)方法,该方法在CFX11.0(美国ANSYS公司)中完成。通过从22个测量点观察到的流速数据对模型进行校准和验证。附录A中的第3节介绍了模型原理、率定和验证的详细信息。
(三)实验数据的统计分析
通过单方差分析(ANOVA)研究了来自实验室和野外试验的鱼卵数据以及与之对应的流速数据,以确定流速对家鱼产卵和胚胎发育的影响。使用Duncan多差距测试和Tukey-t检验对显著性进行了分析,显著性值(P)设为0.05。数据表示为平均值±标准误差(SE)。所有分析均使用SigmaPlot11.0(SystatSoftwareInc.,美国)进行。
三、结果
(一)长江中游家鱼繁殖野外试验
图3长江中游2012–2016年的产卵事件及相应的流速和流速上升率。黑色曲线表示产卵点的流速。点是观察到的鱼卵密度。红色虚线表示产卵事件。蓝点表示在触发水流速度下的鱼卵密度,该速度定义为发生在产卵事件中的第一个产卵动作时的流速。红点是在合适的速度下发生显著产卵的密度。蓝色箭头指示产卵事件期间的流速上升率(a)
流体动力学模型的率定和验证结果如图S3所示。可以看出,验证过程中流速和水位的相对均方根误差分别在0.7%~4.1%和0.15%~0.23%范围内,这表明该河流段的模拟流场是可靠的。测算的产卵地点表明,产卵事件的地点在胭脂坝和红花套之间[图4(a)],与以前的研究一致。从水动力模型结果中提取出每个定位地点产卵事件的相应流速,并与图3中的卵密度数据结合分析。统计结果(图4)显示,在所调查的河段中,家鱼产卵的触发流速为(1.30±0.20)m·s–1[图4(b)],而家鱼产卵的适宜流速为(1.40±0.23)m·s–1[图4(c)]。
(二)水槽模拟实验中家鱼的繁殖
图5给出了不同实验情景下大型环形水槽的流场。由于在最大速度分别为0.8m·s–1和1.8m·s–1的实验场景中未观察到产卵行为,因此未进一步分析其实验结果。6台水下摄像机(图2)的视频显示,所有产卵活动(请参见补充视频“繁殖鱼和产卵”)都发生在弯道部分。因此,从CFD模拟流场中提取了这些弯道处的流速,以进行进一步分析。实验期间水槽中的水质条件示于表S4中。
对提取的各实验场景流速和产卵雌性比例进行统计分析[图6(a)],发现该比例随着流速的增加先显著增加,直到1.4m·s–1,然后在1.6m·s–1时急剧下降。在1.4m·s–1流速下观察到产卵雌性的比例最高,达到67%[图6(a)]。但是,鱼卵的最大受精率出现在流速为1.2m·s–1的情况下[图6(b)],并且显著高于流速为1.0m·s–1和1.6m·s–1情况。受精率在1.2~1.4m·s–1之间时数据没有显著差异。
随着流速的增加,家鱼胚胎的孵化率(孵化的卵/实验卵总数)下降[图6(c)]。在1.2m·s–1的速度下,孵化率低至15%。幼鱼在24h内的存活率(存活的幼鱼/总实验卵)显示出与孵化率相似的趋势。在静态水中的存活率约为12%,在1.2m·s–1时,存活率降至4%。孵化率和存活率低主要是由于从大水槽收集的实验卵的低受精率,因为产卵实验期间大水槽中的高流速导致了低受精率。
(三)室内实验和野外试验一致性分析
在水槽实验中,最高鱼卵密度出现在1.4m·s–1的流速下,最低鱼卵密度出现在1.6m·s–1的流速下[图7(a)]。野外试验产卵事件数据的分析表明,速度范围为1.05~1.60m·s–1适合家鱼在天然水体中产卵[图7(b)]。
采用Vismara等的方法对室内和野外试验数据进行归一化处理,使用高斯回归拟合归一化的产卵数据(S)和流速(v),发现对于水槽实验,S=exp[–(v–1.3062)2/0.0707](R2=0.9289,P<0.0001),野外试验S=exp[–(v–1.3143)2/0.0968](R2=0.9828,P<0.0001)(图7),实验室和野外试验的结果高度一致,可以归一化写为S=exp[–(v–1.31)2/0.097]。因此,确定在河流中家鱼产卵的最佳流速为1.31m·s–1。
(四)研究结果的工程试验性应用
研究结果在指导三峡水库适应性运行方面产生了显著的效果。根据最低速度限值和逐日上升速度、最大速度限值以及宜都四大家鱼产卵场的断面几何形状,在产卵事件开始的第一天,建议流量从12500m3·s–1(流速为1.05m·s–1)开始,在产卵达到高峰时的第4天逐渐增加到18600m3·s–1(流速为1.40m·s–1),然后迅速下降以支持孵化和仔鱼生存[图8(a)和附录A中的第4节]。在家鱼产卵季节(三峡水库下游的5月中旬至6月中旬),重复上述流量过程。在2017—2019年的测试期间,按照与野外试验中采集鱼卵相同的程序监测,以评估效率。结果表明,建议的三峡水库生态调度在增加家鱼产卵方面取得了持续的显著效果[图8(b)]。
四、讨论
通过野外试验和实验室控制实验,量化了流速对家鱼(一种产漂流性鱼卵的物种)产卵和胚胎发育的影响。研究结果直接表明一定的流速是鲢产卵的先决条件。在水槽实验中,成功产卵亲鱼的百分比随着流速的增加而增加,并在流速为1.4m·s–1时达到最大值(图3)。但是,当流速高达1.6m·s–1时,产卵行为将受到严重抑制,这是由于家鱼一直处于游泳状态、体力消耗过多所致。对于长江自然产卵场,在1.05~1.60m·s–1的较宽速度范围内均观察到了鲢鱼卵。天然水体中适宜产卵的流速范围较宽,归因于复杂的水文条件和生境特征。除了家鱼产卵的适宜流速外,触发流速是另一个重要指标。在0.8m·s–1的速度下,水槽中未发现产卵行为,确定的触发速度约为1.0m·s–1(图4)。在天然河段,产卵速率为0.90~1.90m·s–1(图4)。不同鱼类产卵所需的流速存在巨大差异,雌性大西洋鲑鱼在平均流速为0.53m·s–1的区域产卵,而在流水条件下,青鳉鱼产卵会减少,当水流静止时又恢复产卵。本研究表明,尽管鲢多在相对静态的水域中生活和生长,但其繁殖仍需要一定的水流速度。
众所周知,硬骨鱼的繁殖性能受垂体激素,尤其是促性腺激素(GtH)的调节,而垂体激素受促性腺激素释放(GnRH)的控制。人们认为环境条件,如增加流速、长光照周期和暖和的温度是控制硬骨鱼繁殖的重要因素。通过刺激性腺活性,观察到促性腺激素释放激素的活性上调。据报道,流速上升是许多硬骨鱼(包括鲢)产卵的关键。与普通家鱼(如锦鲤)不同,由于成熟的雌性家鱼卵巢发育停滞,鲢无法在静态水体中自然产卵,人工注射促黄体生成激素释放激素II已被证明可有效诱导鲢产卵。本实验中促黄体生成激素的应用证明了产卵过程中流速的重要性。流速为0.8m·s–1时,即使注入促黄体生成激素也不会引起鲢产卵活动,只有当流速达到1.0m·s–1时才发生产卵。
五、结论
近期研究过度强调了水坝建设的负面影响,特别是对鱼类的影响。家鱼在中国粮食安全和蛋白质获取中发挥着重要作用;然而,由于大坝造成水文情势发生显著变化,因此家鱼在长江的自然种群急剧缩小。流速是鱼类早期发育的关键因素,对鱼类种群起决定性作用。本研究首次通过实验室和野外试验,同时考虑了产卵和胚胎发育需求,定量确定了家鱼繁殖的适宜流速范围。该发现提供了家鱼自然种群管控的非工程方法,如通过水坝调节河流流量。未来,研究将集中于考虑水文不确定性下梯级水库生态多目标优化调度方面。
注:本文内容呈现略有调整,若需可查看原文。
改编原文:
QiuwenChen,JianyunZhang,YuchenChen,KangleMo,JunWang,LeiTang,YuqingLin,LeiChen,YongGao,WeiJiang,YuxinZhang.InducingFlowVelocitiestoManageFishReproductioninRegulatedRivers[J].Engineering,2021,7(2):178-186.
张建云,水文水资源专家,中国工程院院士。
长期从事水文水资源、防汛抗旱、气候变化影响、水利信息化等方面的科研工作。研究并主持开发了“全国洪水预报系统”“国家防汛抗旱会商系统”“防汛抗旱水文气象综合信息系统”等一系列业务系统,为国家防洪抗旱调度决策和指挥提供科学依据。主持国家防汛抗旱指挥系统工程设计和一期工程建设的技术工作,该工程构建了国家防汛抗旱减灾决策平台,提升了国家防汛抗旱决策指挥水平,推动了全国水利信息化发展。在水文预报理论与模型、洪水调度与决策、设计暴雨与设计洪水、气候变化对水文水资源影响评估与适应对策等方面取得重要研究成果。