水下机器人应用及展望

水下机器人能够在极端海洋环境下工作,到达人类难以到达的海区,在探索人类未知世界发挥越来越重要的作用。通过自主航行控制、导航定位通信、能源动力推进、目标探测识别、机械手作业等高新技术的不断突破,水下机器人将有效推动在海洋环境观测、深海资源探测和开发、深渊和极地的科学考察等领域的应用。

国外水下机器人发展现状

国外水下机器人研究已有近70年的历史。以美国为代表的西方发达国家,先后研发了ROV、AUV、ARV,以及水下滑翔机等多种不同类型的水下机器人,成功用于深海资源调查、海洋科学考察、水下搜索救捞等领域。

目前全球有上百家ROV制造商,正在使用的ROV数以千计,而且还在继续增长。其中美国、加拿大、英国、法国和日本等发达国家在ROV领域处于领先地位,占据了绝大部分的商用市场份额。美、日、俄、法等国家已经拥有了从水面支持母船到潜深3000—11000m的系列深海装备,通过装备之间的相互支持、联合作业和安全救助等,能够顺利完成水下调查、搜索、采样、维修、施工和救捞等任务。

自20世纪50年代美国华盛顿大学研制出世界上首台AUV以来,其发展已经历了60余年。20世纪90年代后期,随着计算机技术发展和电子技术的日益成熟,AUV进入快速发展阶段,一批有影响的AUV相继研制成功并成功应用,包括美国的ABE、英国的Autosub、加拿大的Theseus。进入21世纪,AUV技术得到了进一步的发展,产品化的AUV不断涌现,如美国Hydroid公司的Bluefin系列、挪威Kongsberg公司的REMUS系列和HUGIN系列、美国Teledyne公司的Gavia系列,标志着AUV进入了实际应用阶段。

美国、日本等海洋强国先后研成功研制于不同工作目标的ARV,其研究成果得到国际广泛认可。最具代表性的是美国伍兹霍尔海洋研究所研制的HROVNereus(“海神”号),具有AUV、ROV两种作业模式,但需要在机器人下水前现场进行作业工作的换装。自2011年起,在“海神”号基础上,针对极地海冰调查,伍兹霍尔海洋研究所开始研制新的混合型水下机器人NereidUI,其最大工作水深2000m,携带20km的光纤微缆,并搭载多种生物、化学传感器,可进行大范围的冰下观测和取样等作业。

国外水下滑翔机技术的发展与应用主要集中于美国、法国、英国和澳大利亚等国。20世纪90年代,美国相继开发成功Slocum、Seaglider和Spray3种水下滑翔机,并持续进行技术攻关和应用。此外,欧洲和澳大利亚从21世纪开始专注于水下滑翔机的应用和协作技术的研究,并组建了各自的水下滑翔机观测网络。

总结国外水下机器人目前发展的现状,ROV已产业化并被广泛使用,其发展更强调作业能力,以及提高其作业的自主性;由于水下能源、通信和导航技术的约束,AUV依然是当前研究的热点并且正在经历产品化的过程,系列化的产品不断涌现;ARV技术在极地和深渊科考中的应用,有效拓展了AUV的应用领域;水下滑翔机作为低成本大范围海洋观测设备,通过获取海量数据,改变了人类对海洋的认识。水下机器人技术的发展,离不开需求牵引的广泛应用,正是不断地应用,推动了水下机器人的技术进步。本文重点介绍我国水下机器人应用现状。

我国水下机器人应用现状

我国的水下机器人研究工作始于20世纪70年代末期。40多年来,我国水下机器人技术得到了快速发展。进入21世纪,在科学技术部、中国科学院、中国大洋矿产资源研究开发协会(以下简称“中国大洋协会”)等部门和组织的支持下,以“潜龙/探索”系列自主水下机器人、“海星/海龙/海马”遥控水下机器人、“海斗”系列自主遥控水下机器人、“海翼/海燕”系列水下滑翔机等为代表的深海技术装备成功研制与应用,带动了深海技术的进展,极大地提高了我国深海科学研究与深海资源勘探水平。中国科学院沈阳自动化研究所(以下简称“沈阳自动化研究所”)是我国最早开展水下机器人研究的单位,其研制的海洋技术装备在一定程度上反映了中国水下机器人的研究进展。下面,以沈阳自动化研究所为例,介绍我国水下机器人应用现状。

积极推动我国水下机器人在深海领域的持续应用

初步构建我国深海资源自主勘查的技术装备体系

“十三五”期间,为满足现有国际海底矿区勘查和新矿区圈定的迫切需要,在国家重点研发计划、中国大洋协会、国际海域资源调查与开发等项目的支持下,沈阳自动化研究所联合国内多家机构,攻克复杂海底环境下的高精度导航、自主避障和稳定航行控制等多项关键技术,成功研制了具有微地形地貌测量、海底照相、水体异常探测、磁力探测等功能的深海资源自主勘查系统——“潜龙”系列深海AUV(图1)。结合探测任务及海底环境,“潜龙一号”和“潜龙四号”设计为圆柱回转体,适用于海底相对平坦矿区;“潜龙二号”和“潜龙三号”设计为立扁鱼型非回转体,适用于复杂海底地形矿区。“潜龙”系列深海AUV用于多金属结核、富钴结壳、多金属硫化物、天然气水合物等多种深海资源的精细勘查,填补了我国深海资源自主勘查的空白。“潜龙”系列深海AUV先后参加了10余次大洋科考航次,在太平洋、大西洋、印度洋等海域开展航次应用,累计下潜近百次,完成声学探测测线超过5000km,声学探测面积近2000km2。根据“潜龙”系列深海AUV获取的海底多元数据,科学家对深海矿产资源的分布和成矿机理有了重要发现,为矿区区域放弃和后续资源开发提供了精准数据和模型。

初步构建我国海洋科学研究的自主观测与作业技术体系

海洋科学是海洋技术发展的源泉,海洋技术是海洋科学创新的动力。历史上,海洋学的创新都源自海洋调查观测的结果,海洋科学的创新研究与海洋观测和探测技术密不可分。在国家“863”计划、国家重点研发计划、中国科学院战略性先导科技专项的支持下,沈阳自动化研究所成功研制出“探索”系列自主水下机器人、“海星6000”遥控水下机器人、“海翼”系列水下滑翔机等装备并取得重大突破,初步构建了面向海洋科学研究的自主观测与作业技术体系,成功在西太平洋、印度洋、南海、东海、黄海等海域开展应用,实现多水下机器人集群组网探测,开启了我国海洋科考新模式。

面向海洋科学研究需求,在国家重点研发计划的支持下,沈阳自动化研究所研制的“探索100”是一套集声学探测和光学观测的50kg级模块化便携式AUV,实现了小批量制造,在突破无人潜水器协同控制组网观测等关键技术的基础上,实现了基于声通信的多AUV组网观测应用。2019—2020年,由多台“探索100”(图2)组成的水下机器人组网观测系统开展了多项海洋特征观测海上试验及示范应用。利用多台AUV对大亚湾冷水团入侵和岬角涡旋现象进行观测,首次获得了大亚湾海域高分辨率的冷水团入侵和岬角涡旋精细结构特征,为研究上升流冷水对大亚湾底层生态系统的影响提供依据。在重点海区利用多AUV开展了协同热点区域搜索、编队和温跃层协同观测试验,以及海洋环境场自适应观测应用示范,按实时规划的航迹,对环境场变化最快的海域进行观测,有效修正了该海域海洋系统模式,提高了海洋环境场预测精度。

“探索4500”是一套集成微地形地貌测量、海底照相、热液异常探测等传感器的4500m级AUV,可在深海热液活动区和冷泉区开展精细声学探测、近底光学观测。自2017年起,“探索4500”多次参加海上应用,包括冷泉区近底自主高精度探测,与“海马”号ROV在南海北部陆坡海域开展联合调查等任务。“探索4500”在水体观测和光学调查任务中,获得大量水体观测数据和高清海底照片,拍摄到具有“冷泉”特征的海底生物(图3),为发现新的海底大型活动性“冷泉”,查明其分布范围、生物群落及流体活动等奠定坚实基础。

“海星6000”是我国首台自主研发面向科考应用的6000m级ROV装备,最大作业功率50HP①,最大工作深度6000m,采用全电动推进,搭载有七功能机械手、回转生物吸取样器、宏生物采集箱、沉积物取样器、采水瓶等深海科考工具,具备浮力调节和水下广播级高清视频拍摄,可进行近海底采样作业。在2018年科考航次中,“海星6000”(图4)连续工作数小时,完成了6000m近海底航行观察、生物调查、海底表层沉积聚成物获取、泥样和水样采集、模拟黑匣子搜索打捞、标识物放置等,最大工作深度6001m,创造我国ROV最大潜深的纪录。

水下滑翔机是一种依靠浮力调整洋流驱动的新型水下机器人,无螺旋桨推进器,具有长续航力优势。2009年,“海翼1000”在国内率先突破海上航行距离1000km的基础上,2021年,“海翼1000”滑翔机海上航行距离已经超过5000km,最长持续工作302天,观测剖面数超过1500条,再次创造我国水下机器人续航力新纪录。

全面引领我国水下机器人在深渊领域的创新应用

近年来,深渊科学正成为国际地球科学尤其是海洋科学的最新前沿领域。随着深渊探测技术瓶颈被逐步突破,深渊科学研究成为我国占领国际海洋科学研究制高点的重要机会,对我国海洋科学事业的发展乃至国家整体科学创新实力的提高均发挥了重要的推动作用。

在中国科学院战略性先导科技专项支持下,沈阳自动化研究所自主研制的全海深无人潜水器关键技术验证平台——“海斗”号(图6),是我国首台下潜深度超过万米的水下机器人,搭载有温盐深仪和高清水下摄像机等传感器和设备,最大工作水深11000m,可通过微细光缆进行通信和视频传输。2016—2018年,“海斗”号连续3年参加我国马里亚纳海沟深渊科考航次。“海斗”号总计下潜40次,其中11次到达万米以下深度,最大下潜深度10905m,创造我国水下机器人最大下潜及作业深度记录,获得我国首批全海深温盐深数据资料,实现我国首次全海深高清视频直播。

2020年5月,在国家重点研发计划支持下,沈阳自动化研究所牵头研制的“海斗一号”自主遥控水下机器人(图7)在马里亚纳海沟成功完成首次万米海试与试验性应用,最大下潜深度10907m,为我国开展深渊科考获取了首批重要数据和样品,填补了我国万米级作业型无人潜水器的空白。

2021年10月,“海斗一号”再次开展马里亚纳海沟万米科考应用,总计完成8次万米深潜与作业,最大深度10908m,海底累计工作超30h、航程超30km、探测覆盖面积超15km2,海底有效高清视频时长超15h,获取了8个点位或区域的典型万米深渊水文、生物、地质等数据或样品。在国际上首次实现了对“挑战者深渊”西部凹陷区的大范围全覆盖声学巡航探测。“海斗一号”的成功应用,表明了我国全海深无人潜水器正式跨入万米科考应用的新阶段,填补了当前国际上全海深无人潜水器万米科考应用的空白。

持续探索我国水下机器人在极地的科考应用

南、北极对全球系统影响非常关键,其变化将直接影响到全球的气候和海洋环境的变化。我国坚持南、北极科学考察是实现我国海洋防灾减灾、揭示全球气候变化、动态海洋过程形成和演变机理的重要活动。水下机器人作为一种先进的运动平台,搭载有关的观测设备,可为极地海洋环境研究提供一种大范围、连续的观测手段,推动南、北极科学研究的不断发展。沈阳自动化研究所从2003年参加我国第二次北极科学考察以来,一直致力于推动水下机器人在极地科考中的探索应用,相继突破极地密集海冰覆盖安全回收、高纬度冰下导航等关键技术,研制和优化改造了一系列高技术水下机器人科考装备,实现了从冰底精细观测、海洋环境大范围观测到近海底高精度探测的技术跨越。

实现海冰底局部观测到海底大范围探测的技术跨越

在国家“863”计划支持下,沈阳自动化研究所先后研制了两型北极自主/遥控水下机器人(图8),搭载海冰测厚声呐、光通量探测仪、视频观测等设备,分别于2008年、2010年和2014年参加了我国北极科学考察,获取了北极海冰底部物理特征和海洋环境等重要参数,实现了海冰厚度的区域高精度测量。

2021年,在中国第12次北极科考中,升级改造后的“探索4500”在北纬85°海域成功完成下潜探测(图9),这是我国首次使用自主水下机器人完成北极高纬度海冰区近海底科考任务。“探索4500”在4000m海底连续工作,成功获取了近底高分辨多波束、水文及磁力数据。其连续成功下潜为我国不断深化对北极洋中脊多圈层物质能量交换及地质过程的探索和认知提供了重要数据资料。

实现我国水下机器人南极科考中首次示范应用

面向南大洋海洋环境调查任务,沈阳自动化研究所对“探索1000”AUV进行了适应性改造,搭载温盐深、溶解氧、浊度计、叶绿素等传感器,以提高南极浮冰覆盖的海洋环境适应性,于2019年和2020年先后两次参加中国南极科考,为考察队执行罗斯海多环境要素综合调查提供了重要技术支撑。

在第35次南极科考中,“探索1000”以南极极区海洋观测应用为目的,获得南极南纬75°海域海洋要素数据,验证了南极环境下自主导航、稳定航行、自主安全潜浮等功能和性能。在第36次南极科考中,“探索1000”(图10)水下连续工作35h,航程近70km,完成了近20个垂直剖面的连续观测,获得了海流、温度、盐度、浊度、溶解氧及叶绿素等大量水文探测数据,验证了我国自主水下机器人在极端海洋环境下开展科学探测的实用性和可靠性,为我国水下机器人南极科学考察业务化运行奠定技术基础。

近年来,在国家有关部门的大力支持下,我国水下机器人技术研发与科考应用能力有了长足的进步,多项技术装备填补了国内空白,部分技术达到国际先进水平。面向深海资源勘查、海洋科学研究等国家重大需求,构建了谱系化技术装备体系,引领了我国水下机器人装备发展,实现了深海资源近底高精度声光综合探测、深海原位取样及分析探测、超长航程跨季度跨海域持续观测及深渊海沟、南极和北极冰下探测,使我国具备了全海深探测与作业能力。在推动材料、流体和声学等基础学科发展的基础上,不断推动设立机器人海洋学、机器人测绘学等新型学科,带动传感器、能源、推进、导航、通信等技术的进步,推动了我国深海科学研究与技术装备研发的紧密结合。

水下机器人应用的成功经验表明,坚持走深海技术国产化道路是我国的正确选择。我国具有全面自主掌握深海核心关键技术的能力和潜力。坚持“战略先导先行—重大研发任务攻关—示范应用”的路线,加强原创性、前瞻性、引领性科技攻关,把装备制造牢牢抓在自己手里,从而为海洋强国建设发挥更大作用。

水下机器人应用展望与建议

面向未来更复杂、更极端的应用场景,需要提高单体水下机器人的智能化水平。通过开展新型能源材料、流体力学、控制导航等传统学科与新兴学科的跨学科交叉融合与技术创新,推动人工智能、大数据等信息技术与水下机器人技术的深度融合。人工智能方法已经在机器人视觉、移动机器人和工业机器人控制等方面展现出优越的环境适应性;随着社会信息化不断提高,大数据技术应运而生,且获得了广泛的应用。这些先进技术为水下机器人智能化提供了新思路和新方法,例如:采用人工智能方法,可提高水下机器人的环境感知理解、自主行为决策等智能化水平;采用大数据技术,可提升水下机器人健康自评估和修复、目标动态识别等能力。研发新一代智能水下机器人,进一步完善水下机器人谱系化装备体系,实现水下机器人向智能水下机器人的技术跨越,已成为水下机器人未来的发展趋势。

面向未来更广泛、更迫切的国家需求,需要充分利用不同类型水下机器人的技术特点,提高水下机器人集群综合探测能力。突破跨域集群多源实时感知、多源信息融合、即时决策响应等关键技术,实现机器人间的互联互通,构建多机器人跨域集群协同探测与作业系统,为实现海洋应用提供前瞻技术储备。

面向我国深海技术装备的未来应用,从研发极端环境装备、长期驻留科考、无人化科考、科学问题认知等方面,提出4点发展建议。

(1)研发适应极端海洋环境的深远海科考装备。面向南极、北极、深渊海沟等“三极”极端海洋环境应用的需求,提高自主环境感知、复杂环境适应、智能决策与自主生存等技术。研发超长航时海洋中小尺度观测系统、穿越北极自主水下机器人、环南大洋跨年连续观测水下机器人、南极冰腔探测作业机器人等。通过水下机器人的技术进步,提高人类对海洋的认知水平,深刻理解海洋对全球气候变化的影响。

(2)实现从航次型科考模式向深海长期驻留型科考模式的转变。针对深渊科考、深海矿产资源开采和深海油气资源开发等需求,突破海洋装备驻留海底所需解决的长期防腐蚀、高速信息交互、高效能源补给、模块化换装、区域全场景监控及自主作业等关键技术。构建海底基站原位观测与智能水下机器人大范围观测探测相结合的近海底科考体系,实现我国深海海底开展长期驻留连续科考与作业,深刻理解全球气候变化对海洋海底环境的影响。

(3)实现从有人科考向无人化科考模式的转变。面向更极端海洋观测与探测的需求,全面提升海洋科考效率,构建高海况适应的少人化或无人智能船与水下机器人深入融合的综合科考体系。突破高海况适应科考母船建造、水下机器人高效布放回收、远程虚拟的水下科考作业操作、自动化实验室样品处理与分析等技术。通过技术进步,降低海上科考队规模,提升海上无人装备应用水平,减少恶劣海况对科考作业的影响。

经过多年的技术攻关和示范应用,中国构建了谱系化的水下机器人的装备体系,具备了开展不同类型水下机器人的正向设计能力。站在新的历史发展阶段,推动产业化进程,加快构建水下机器人工业化体系,加强行业应用,努力提升水下机器人对我国海洋经济的贡献度,为我国加快海洋强国建设作出更重要的科技贡献。

(作者:李硕、李一平、赵宏宇,中国科学院沈阳自动化研究所机器人学国家重点实验室中国科学院大学;吴园涛,中国科学院重大科技任务局;李琛,中国科学院重大科技任务局。《中国科学院院刊》供稿)

THE END
1.不仅造得出还造得好首台“中国造”水下机器人与他有关发展史我国第一台自主研发的水下机器人 “海人一号”试航成功 能灵活自如地抓取海底指定物 技术达到了当时同类型产品的世界水平 是我国机器人发展史上的重要里程碑 这离不开科学家们的辛勤付出 我活着就干,要为国家做贡献。 蒋新松潜心于 “海人一号”的研制工作 https://www.163.com/dy/article/JIOKKQTK0514D3UH.html
2.黑科技来了!美科学家研发可水下探索的鱿鱼机器人美科学家研发可水下探索的鱿鱼机器人 加州大学圣地亚哥分校的工程师们制造了一种像鱿鱼一样的机器人,它可以自由游泳,还可以通过产生水来推动自己。机器人把自己的力量带进身体。它还可以携带用于水下探测的传感器,如照相机。 鱿鱼机器人主要由丙烯酸聚合物等软材料制成,具有刚性、3D打印和激光切割部件。在水下探索https://www.robot-china.com/news/202010/10/64140.html
3.前瞻机器人产业全球周报第35期:中车株洲所超级水下机器人全球首发当地9月3日,中车株洲所旗下的SMD公司,在英国阿伯丁举行的SPE Offshore Europe展会上,发布了一款具有超强作业能力、绿色环保工作级电驱动水下机器人(简称ROV)——QUANTUM/EV。该型号ROV是目前全球最高性能的电动ROV,可以下潜到6000米深的海底,整机功率高达400千瓦,是目前世界上下潜最深、功率最大的作业级电动ROV。还https://ecoapp.qianzhan.com/detials/190909-b3938d94.html
4.“一带一路”青少年科技人文交流活动(广西)科学家报告等系列主题此次“一带一路”人文交流活动(广西)的科技主题系列活动,宛如一座连接不同国家青少年的知识桥梁。从科学家报告中对生态学和鲸鱼保护的深入探讨,到水下机器人主题课程里的创新实践与团队协作,再到红树林实践中的生态感悟与友谊传递,每一项活动都充满了意义与价值。 http://m.gxkjg.com/detail/?id=4792
5.哈佛大学研发水下机器人,ScienceRobotics发表AI日报日前,来自哈佛大学的科学家们就从鱼群中汲取灵感,研发出了一批水下机器人,这种机器人可以像真正的鱼群一样同步运动,且不需要任何外部控制。同时,他们也首次利用水下机器人展示了具有隐性协调的复杂三维集体行为,该论文发表在《科学机器人》(Science Robotics)上,并被遴选为2021年1月份的月度封面。 https://blog.csdn.net/BAAIBeijing/article/details/113011543
6.水下机器人南极首秀!Ta都“探”到了什么?早在20世纪80年代,许多发达国家就开始了极地考察水下机器人的研究与开发,目前已经开发出多种专用于极地考察的水下机器人,包括遥控式有缆水下机器人(ROV)和自治式无缆水下机器人(AUV)。 南极地区存在许多冰架,如何对冰架进行有效的考察一直是极地科学考察的难点。2005年,英国科学家利用AUV对南极芬布尔冰架进行了首次https://aiqicha.baidu.com/qifuknowledge/detail?id=10008293328
7.研发计划“功能可再编辑的拟态水下机器人”项目启动会成功召开近期,由北京大学牵头,清华大学、中国科学院沈阳自动化研究所参与的国家重点研发计划“智能机器人”重点专项青年科学家“功能可再编辑的拟态水下机器人”项目启动会,在北京大学中关新园召开。 工信部产业发展促进中心项目专员马伟佳,项目主管范玫杉,北京大学科研部副部长张琰,重大办主任廖日坤,北京大学工学院副院长王启宁https://www.coe.pku.edu.cn/newsfocus/fast/12057.html
8.一位战略科学家的塑像光明日报他亲自指导和参加了总体设计,提出了完整的动力学分析及各种情况下航行控制的理论。1995年春,深潜6000米的水下机器人经中俄两国科学家的共同努力研制成功。这个当代世界领先水平的水下机器人于当年5月赴夏威夷东南海域进行深潜海试。经过连续3个月的奋战,它成功地测量了海底地貌,并摄取了深海锰核录像和照片。https://www.gmw.cn/01gmrb/1998-04/10/GB/17658^GM1-1018.HTM
9.科学网—战略科学家的领袖胆识——中国机器人之父蒋新松自适应厚度控制系统,1978年获全国科学大会成果奖,中国科学院重大成果奖;我国第一台计算机控制的示教再现机器人SXJ-1号,1981年获中国科学院科技进步二等奖;海人一号水下机器人样机,1987年获中国科学院科技进步二等奖;中型水下机器人RECON-IV(300米水深、有缆),1991年获中国科学院科技进步一等奖,1992年获国家科技https://blog.sciencenet.cn/blog-3426423-1309361.html
10.这款海洋柔性机器人引起世界瞩目,厉害了word中国科学家们!潮科技海洋探索一直是科学家们梦寐以求的事业之一。2016年,哈佛大学的George Whitesides研究团队就曾研制出类似于半透明章鱼的柔性机器人Octobot,用以在海底遨游,收集数据信息。 而令人印象深刻的是,整个Octobot的“身体”以及它的燃料储存系统,都是3D打印的。 中国科学院自动化研究所的研究人员 https://36kr.com/p/1721464700929
11.水下机器人(ROV),你知道多少?特种机器人资讯无人系统网水下机器人是一种可在水下移动、具有视觉和感知系统,通过遥控或自主操作方式使用机械手或其它工具,代替或辅助人去完成某些水下作业的装置。 水下机器人为服务类机器人,具有60多年的发展历程。水下机器人的研究方向以无人化为主,使其可在高危险、被污染以及零可见度的水域环境下工作,配备声呐系统、摄像机、照明灯https://www.youuvs.com/news/detail/201911/2583.html
12.中国水下机器人行业发展分析及投资前景预测研究报告(2024水下机器人可以按照不同的功能和用途进行分类。首先是科研型水下机器人,这类机器人主要用于海洋科学研究和深海探测。它们通常搭载先进的导航系统和传感器,具备高度自主导航和避障能力,可以在深海环境下进行长时间的探测和研究任务。科研型水下机器人的使用不仅为科学家提供了广阔的研究空间,还有助于深入揭示海洋环境的奥https://max.book118.com/html/2024/0417/8124070112006057.shtm