在日常生活中,我们经常会遇到排序问题:
在打扑克牌的时候,原本拿到手上的牌是乱序的,我们会按照自己喜好的顺序一张一张排好手上的牌,最后看起来是顺眼的。
摄影师给毕业的同学们拍照片,要求同学们站好队形,然后要求中间高,两边低的方式排队。如果摄影师发现某个同学的高度跟旁边的同学不协调,这个同学必须马上调整自己的位置,最后是一派整齐的景象:
经常泡图书馆的泡友,会发现有很多志愿者会帮忙整理图书位置。每一本书的书背上面都有一张标签,书架上的图书需要按照标签上的编号排好顺序,这样泡友才能快速找到想要的图书。
这些例子就是排序问题了。排序问题不仅在生活中常见,在IT届也常见。据说,某科技公司在做一个项目时遭遇大量排序问题,运算速度奇慢,项目经理非常头痛,为招收能制伏排序问题的人才,干脆总结成了一道题目:
如何在一亿个数当中找到最大的10000个数?
方法一:重复寻找法
我们可以先用最直观的方式来做这道题目,起个名字叫重复寻找法:
第1步:我们先在这一亿个数当中,寻找到最大的那个数字,把它记录下来。
第2步:从这一亿个数字中,剔除这个最大的数字。
第3步:重复执行第1步和第2步,直至记录下来10000个数字。记录下来的结果即为所求。
以挑苹果为例,重复寻找法就好比我们在苹果堆中挑苹果的时候,先在所有苹果里面挑出最好的一个,然后继续在剩余苹果里面再挑出最好的一个……如此类推。
怎么找到最好的苹果?那必须拿着某个苹果,对比一遍所有苹果,如果发现有更好的苹果,把好的苹果拿在手上,把次好的苹果放下,直至对比完所有的苹果后,手上拿着的就是最好的苹果。
重复寻找法,就好比在苹果堆中不断挑最大最好看的苹果到自己的篮子里
为了方便讨论起见,我们设n=1亿
我们知道,求n个数最大值的比较次数为n,求最大值的过程需要执行10000次,因此,重复寻找法的总比较次数为:
10000×n
虽然这个问题有答案了,但是心里貌似有一些遗憾,不知道大家感受到了没?
其实,遍历10000次,这个次数有点多,为什么不可以遍历1次就得到结果呢?
方法二:局部淘汰法
实际上是可以的,还有一个能够一步到位的方法,叫做局部淘汰法:
第1步:先创建一个数组,保存这1亿个数字中的前10000个数字,计算数组的最小数字。
第2步:遍历剩下的数字。如果遍历到某个数A大于数组的最小数字,那么则用A替换掉数组的最小数字。并重新计算数组的最小数字。
第3步:遍历完成后,数组内的数字即为所求。
以打麻将为例,一开始我们拿了n个牌,局部淘汰法类似我们在打麻将过程中,如果摸到一个比自己手上最坏的牌要好的牌,就打出自己手上最坏的牌……如此类推,使得胜利的概率不断增大。
局部淘汰法,可以类比打麻将的过程,不断更换手上的牌,使得胜利的概率越来越大
这样,遍历1次就能得到最后的结果了。总比较次数如何呢?
最好的情况是,如果这1亿个数字刚好已经是降序排列,那么前10000个数字就是结果,只需要进行1次最小值的计算(比较次数为1×10000),9999万次最小值的比较(次数向上近似为n)。
最坏的情况是,如果这1亿个数字刚好已经是升序排列,那么直到最后的10000个数字才是最终结果,因此需要进行9999万次最小值的计算(比较次数为n×10000),9999万次最小值的比较(次数向上近似为n)
因此,平均的情况是,要算5000万次最小值(比较次数为1/2×n×10000),要算9999万次最小值比较(次数向上近似为n,因此总比较次数近似为:
1/2×n×10000=5000×n
总比较次数下降了一半,这个优化有点用。
但是……大家有没有觉得这个方法还有优化空间?
方法三:最小堆维护法
这个问题嘛……事实上是有的。这个方法能够大幅度降低总比较次数,称之为最小堆维护法:
第1步:先利用前10000个数字,搭建一个元素个数为1万的最小堆。
有同学可能会问,什么叫做最小堆呢?在这里解释一下:
首先,什么是堆
在计算机领域中,堆这个概念与生活中的有一点点类似,一般的堆也是上面窄下面宽的结构。堆结构,非常类似圆木堆放的结构,充满大自然的气息。
堆结构,可能源自圆木木堆的灵感
堆(heap)是一种基于树(tree)的特殊的数据结构。堆有两种形式,分别是最大堆(maxheap)和最小堆(minheap)。在堆顶的节点则被称为根节点。
我们关心最小堆就可以了。最小堆中,如果节点A是节点B的父节点,节点A中的键值必定小于或者等于节点B中的键值。根节点是堆的最小值。
堆的形式有非常多,不过堆的最常见实现形式是二叉堆(binaryheap),最小二叉堆一般也是被直接简称为最小堆,因此我们只需要理解二叉堆即可。我们可以画一个最小二叉堆的例子出来感受一下:
一个最小堆示例
对图中的最小堆分析,一共有三层圆圈,称之为节点,每一个上层的节点都连着下层的两个节点,而且上层节点的键值均比下层的两个节点的键值要小。这个就是最小堆的特征。
我们来继续做题吧:
第2步:遍历剩下的数字,与最小堆的根元素键值进行对比。如果遍历到某个数确实大于根元素的键值,则替换根元素的键值,并进行堆调整。
第3步:遍历完成后,最小堆当中的所有元素对应的数值即为所求。
n×log210000
总比较次数进一步下降了5000÷14>350倍,这个优化确实漂亮。
比赛流程
比赛名称:
有方AI萌新挑战赛
EmbarkAIMengXinChallenge
比赛赛题:
5道编程题
参赛对象:
所有正在【萌新学习群】学习【AI初探:数据科学】课程的学生都有资格参与
参赛形式:
比赛规则:
是不是很简单!只要你参与,动动你聪明的小脑袋,就能够把你的智慧转换成压岁钱~
而且还是真!金!白!银!想一想,喜欢的都能买买买了呢!