一元二次方程求根公式(经典实用)

1、主讲:黄冈中学高级教师一、一周知识概述1、一元二次方程的求根公式将一元二次方程ax2bxc=0(a0)进行配方,当b24ac0时的根为该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2bxc=0(a0);(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.2、一元二次方程的根的判别式(1)当b24ac0时,方程有两个不相等的实数根;(2)当b24ac=0时,方程有两个相等的实数

2、根;(3)当b24ac0时,方程没有实数根二、重难点知识1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。(1)“开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。(3)“配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。

3、(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入(0)求值,所以对某些特殊方程,解法又显得复杂了。2、在运用b24ac的符号判断方程的根的情况时,应注意以下三点:(1)b24ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b24ac;(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;(3)根的判别式是指b24ac,而不是三、典型例题讲解例1、解下列方程:(1);(2);(3).分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,解:(1)因

4、为a=1,c=10所以所以(2)原方程可化为因为a=1,c=2所以所以.(3)原方程可化为因为a=1,c=1所以所以;所以总结:(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;(2)用求根公式法解方程按步骤进行例2、用适当方法解下列方程:分析:要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。就直接开平方法、配方法、公式法、因式分解法这四种方法而言,配方法、公式法是一般方法,而开平方法、因式分解法是特殊方法。公

5、式法是最一般的方法,只要明确了二次项系数、一次项系数和常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入一元二次方程的求根公式求值,所以对某些方程,解法又显得复杂了。如,可以直接开平方,就能马上得出解;若此时还用求根公式就显得繁琐了。配方法是一种非常重要的方法,在解一元二次方程时,一般不使用,但并不是一定不用,若能合理地使用,也能起到简便的作用。若方程中的一次项系数有因数是偶数,则可使用,计算量也不大。如,因为224比较大,分解时较繁,此题中一次项系数是-2。可以利用用配方法来解,经过配方之后得到,显得很简单。直接开平方法一般解符合型的方程,如第小题。因式分解法是一种常用的方

6、法,它的特点是解法简单,故它是解题中首先考虑的方法,若一元二次方程的一般式的左边不能分解为整数系数因式或系数较大难以分解时,应考虑变换方法。解:两边开平方,得所以配方,得所以所以配方,得所以所以因为所以=420=24所以所以配方:所以所以整理,得所以移项,提公因式,得所以小结:以上各题请同学们用其他方法做一做,再比较各种方法的优缺点,体会如何选用合适的方法,下面给出常规思考方法,仅作参考。例3、已知关于x的方程ax23x1=0有实根,求a的取值范围.解:当a=0时,原方程有实根为若a0时,当原方程有两个实根.故,综上所述a的取值范围是.小结:此题要分方程ax23x1=0为一元

7、一次方程和一元二次方程时讨论,即分当a=0与a0两种情况例4、已知一元二次方程x24xk=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x24xk=0与x2mx1=0有一个相同的根,求此时m的值.解:(1)因为方程x24xk=0有两个不相等的实数根,所以b24ac=164k0,得k4.(2)满足k4的最大整数,即k=3.此时方程为x24x3=0,解得x1=1,x2=3.当相同的根为x=1时,则1m1=0,得m=0;当相同的根为x=3时,则93m1=0,得所以m的值为0或例5、设m为自然数,且3m40,方程有两个整数根求m的值及方程的根。解:,方程有整数根,4(2m1)是完全平方数。3m4072m1812m1值可以为9,25,49m的值可以为4,12,24。当m=4时方程为解得x=2或x=8当m=12时方程为解得x=26或x

THE END
1.元次方程的类型及解析(元次方程有几种)在数学的世界中,方程是一个重要的组成部分。而元次方程,即未知数的次数高于一次的方程,根据未知数的次数不同,可以分为多种类型。 首先,最为常见的是二次方程,其一般形式为ax^2 + bx + c = 0,其中a、b、c是常数,且a不等于0。二次方程的解可以通过配方法、因式分解、求根公式等方式求得。 https://ai.zaixianjisuan.com/daishu/article-yuan-ci-fang-cheng-de-lei-xing-ji-jie-xi.html
2.二元一次方程的求根公式,解答一 举报 二元一次方程为:ax^2+bx+c=0,其中a不为0;求根公式为:x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2a 推导过程如下:对ax^2+bx+c=0进行配方,得到(x+b/2a)^2—(b^2-4ac)/4a^2=0移项开方就得到了求根公式 解析看不懂?免费查看同类题视频解析查看解答 https://www.zybang.com/question/0b08e9bb7b0f31fa649e1ddd5e06b4e7.html
3.高中数学知识点:二元一次方程求根公式北京新东方学校高中数学知识点:二元一次方程求根公式 设一个二元一次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为二元一次方程所以a不能等于0. 求根公式为: x1=(-b+(b^2-4ac)^1/2)/2a x2=(-b-(b^2-4ac)^1/2)/2ahttps://bj.xdf.cn/gaokao/bk/cl/138162.html
4.二元一次求根公式爱问知识人二元一次求根公式是ax^2+bx+c=0,一些把简单实际的问题中的数量关系,用二元一次方程组的形式来计算https://iask.sina.com.cn/b/6hepwHdrFNk.html
5.二元一次方程万能解法(求根公式)用消元法或用行列式法,有如下公式: x=(b1a22-b2a12)/(a11a22-a12a21) (3) y=(b2a11-b1a21)/(a11a22-a12a21) (4) 注意:当a11a22-a12a21=0 时(1)、(2)无解 作业帮用户2017-10-11举报 打开作业帮,更多回答 其他回答 方程ax^2+bx+c=0 http://www.360doc.com/content/19/1125/13/40070800_875353847.shtml
6.一元二次方程求根公式计算一元二次方程在线计算器当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a一元二次方程求根公式是是数学代数学中的基本公式之一,是比较高效的一元二次方程的解法,利用一元二次方程求根公式可以快速求出一元二次方程的解。使用一元二次方程求根公式计算器,我们只需输入一元二次方程ax2+bx+c=0(a≠0)的三个系数a、https://www.imathtool.com/jisuanqi/yiyuanercifc/
7.二元一次方程的解法步骤二元一次方程例题宜城教育资源网www.ychedu.com二元一次方程的解法步骤-二元一次方程例题-二元一次方程恒成立条件二元一次方程求根公式解法是什么方程两边都是整式,含有两个未知数,并且含有未知数的项的次数都是1的方程,叫做二元一次方程.使方程左右两边相等的未知数的值叫做方程的解。1二元一次方程的解使二元一次方程两边的值相等http://sx.ychedu.com/SXJA/JLJJA/603948.html
8.求二元一次方程的根二元一次方程虚根求根公式编程怎么写文章浏览阅读714次。【代码】求二元一次方程的根。_二元一次方程虚根求根公式编程怎么写https://blog.csdn.net/whrddddd/article/details/129843412