利用ChatGPT进行数据分析pdf,mobi,epub,txt,百度云盘百度网盘免费下载电子书下载电子版全集免费阅读在线阅读精校版扫描阿里云盘Kindle资源ed2k微盘作者:张俊红

本书以简洁、通俗易懂的语言,详细介绍了如何利用ChatGPT来处理和分析数据,不仅为初学者提供了基础知识,也为有经验的数据分析师提供了新的手段。书中包含详细的指导和应用案例,旨在帮助读者从零开始构建数据分析流程,在实际工作中灵活运用ChatGPT来解决问题和提升效率。

通过阅读本书,你将掌握利用ChatGPT进行数据分析的基本方法和技巧,挖掘ChatGPT的巨大潜力。无论你是想扩展和强化数据分析技能,还是希望掌握ChatGPT这一先进工具,本书都将是你的理想选择。

张俊红

1.ChatGPT技术加成,实现智能化数据分析,快速处理海量数据,轻松实现智能办公。

2.内容实用,案例驱动学习。借助真实项目经验,有效掌握ChatGPT在数据分析中的使用技巧。

3.数据分析师的进阶秘籍。新技术与工作的巧妙融合,紧跟技术发展,保持数据分析领域的竞争优势。

THE END
1.ChatGPT在数据处理中的应用如何用chatgdp处理csv数据? 在SQL结果中,我没有实际去验证。在Python结果中,使用了describe函数,还是很不错的。我们在Python中概览数据时,就是使用该函数。但是describe函数的结果中已经包含了非空值计数,而ChatGPT又单独计算了一次。 1.2 数据预处理 ? 数据预处理主要包括缺失值填充、重复值删除、异常值删除或替换。接下来看看ChatGPThttps://blog.csdn.net/weixin_41905135/article/details/136232210
2.如何利用CHATGPT分析数据快熟生成文案:无论是小红书、微博还是公众号, Chat GPT都能帮你快熟生成吸引眼球的文案,让你的创作更具有吸引力。自动撰写报告:无论是工作汇报还是项目 只需输入相关指令, Chat GPT就能为你生成结构清晰、内容肺腑的报告。Chat GPT使用技巧 1、准确提问 Chat GPT功能虽然非常强大, 但由于目前Chat GPT数据库http://www.hlwwhy.com/ask/6705610.html
3.chatgpt怎么做统计?Worktile社区2. 数据预处理:对采集到的对话数据进行预处理。预处理包括数据清洗、去除重复对话、去除噪声等步骤,以确保数据的质量和准确性。 3. 统计指标选择:根据分析的目的,选择适当的统计指标来衡量ChatGPT的性能和效果。例如,可以考虑以下指标:生成回答的准确率、可读性、相关性等。 https://worktile.com/kb/ask/539416.html
4.ChatGPT服务器,深度拆解基于此,我们进一步假设:1)考虑到AI大模型预训练主要通过巨量数据喂养完成,模型底层架构变化频率不高,故我们假设每月最多进行一次预训练;2)人类反馈机制下,模型需要不断获得人类指导以实现参数调优,以月为单位可能多次进行。由此我们计算得ChatGPT单月Finetune算力成本至少为1350.4PFlop/s-day。https://www.51cto.com/article/747956.html
5.从ChatGPT爆火看人工智能大势大数据。ChatGPT训练数据集规模巨大,训练数据集包含六类数据,分别是维基百科、书籍、期刊、Reddit链接、Common Craw以及专门的数据集。GPT-3的预训练数据有45TB。ChatGPT训练数据集规模未公开,推测也是百T级别。 大算力。GPT-3的算力需求为3640Petaflop/s-day(假设每秒计算1千万亿次,需要3640天),微软投入5亿美元建https://www.cnii.com.cn/gxxww/zgdxy/ztjj/202304/t20230420_464182.html
6.ChatGPT作为知识库问答系统的问答能力评测与现有的KBQA模型不同,ChatGPT在问答场景下的输出一般是一段包含了答案的文本,难以直接与数据集提供的答案做精确匹配从而得到模型的精准率。而由于采样的数据规模较小,已有的ChatGPT评估工作一般通过人工评价来计算模型的性能。因此,我们需要建立一套大部分自动化的答案评测方法。 https://maimai.cn/article/detail?fid=1777689012&efid=GJoGHmTuTzjbUa7TLdmtDw
7.ChatGPT原理理解和结构解读〖前言〗问了200+个问题后,终于完全搭建起来对Chat@GPT本身的原理理解和结构了解,形成的理解文件90%的内容都是他生成的。但是结构化这篇文章以及深入时刻,是自己完成的。今后的学习和工作可能都需要和他来共同完成了。 1 从概率角度理解生成式模型原理 https://www.jianshu.com/p/0628b1bd2c48