五年级上册数学第三单元知识点解析(通用6篇)

五年级上册数学第三单元知识点解析(通用6篇)

在平日的学习中,看到知识点,都是先收藏再说吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。相信很多人都在为知识点发愁,以下是小编整理的五年级上册数学第三单元知识点解析,供大家参考借鉴,希望可以帮助到有需要的朋友。

一、商不变的性质:(包括以下知识点)

1、除数不变,被除数扩大或缩小多少倍,商就扩大或缩小多少倍;

2、被除数不变,除数扩大或缩小多少倍,商就缩小或扩大多少倍;

3、被除数与除数同时扩大或同时缩小多少倍,商不变;

4、被除数与除数同时扩大时或同时缩小不同倍数;

5、被除数与除数一个扩大一个缩小不同倍数;

2.44÷1.3○24.4÷131.8÷7○18÷0.7

二、计算

1、除数是整数的除法

知识点:除数是整数的小数除法的计算方法:按照整数除法的法则去计算,商的小数点要和被除数的小数点对齐。

10.32÷12=14.28÷28=易错题:

2、除数是小数的除法

知识点:除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几们,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用“0”来补足);然后按照除数是整数的除法的计算方法进行计算。

12÷2.4=1.04÷0.26=4.9÷0.07=8.7÷0.03=

竖式易错题:

三、商的近似值

知识点:用“四舍五入”法求商的近似值的方法:根据题目要求或实际情况,除到保留倍数的下一位,这一位上的数小于5就直接舍去尾数,大于或等于5就向前一位进1。

(保留两位小数)(保留一位小数)(保留整数)

324.57÷7≈9÷11≈32÷6≈

四、商与被除数的大小关系

1、除数小与1时,商大于被除数(被除数≠0,除数≠0);

2、除数大于1时,商小于被除数(被除数≠0);

3、除数等于1时,商等于被除数。

3.25÷0.92○3.250.37÷0.99○0.37

0.85÷1.2○0.851.01÷2.4○1.01

五、循环小数

知识点:

1、小数部分依次不断重复的一个或几个数字,叫做这个循环小数的循环节。

2、小数位数是无限的小数,叫做无限小数。循环小数是无限小数。

3、小数位数是有限的小数,叫做有限小数。

4、循环节从小数部分第一位开始的,叫做纯循环小数。如:0.32323……,3.2121……等。

5、循环节不是从小数部分第一位开始的,叫混循环小数。如:0.12424……,15.31414……等。

整除的算式的特征:

1、除数、被除数都是自然数,且除数不为0。

2、被除数除以除数,商是自然数而没有余数。

例:15能被5整除,我们就说,15是5的

倍数,5是15的因数。

知识点一:因数

问题一:一个长方形,它的面积是12平方厘米,如果长方形的长和宽都是整数,请同学们猜一猜这个长方形的长和宽各是多少?

所以12的因数有:

注意:

1、在说因数(或倍数)时,必须说明谁是谁的因数(或倍数)。不能单独说谁是因数(或倍数)。

2、因数和倍数不能单独存在。

例118的因数有那些?

方法一:想18可以有哪两个数相乘得到18=1x1818=2x918=3x6

方法二:根据整除的意义得到

18÷1=1818÷2=918÷3=6

所以18的因数有:

表示方法:

1、列举法︰12的因数有:1,2,3,4,6,12

2、用集合表示︰

练习1:30的因数有哪些?36呢?

30的因数有:

36的因数有:

观察:18的最小因数是(),的因数是()

30的最小因数是(),的因数是)

36的最小因数是(),的因数是()

一个数的因数的个数是有限的,一个数的最小因数是(),因数是()

你要知道:

(1)1的因数只有1,的因数和最小的因数都是它本身。

(2)除1以外的整数,至少有两个因数。

(3)任何自然数都有因数1。

知识点二:倍数

问题二:2的倍数有哪些?

2的倍数有:2,4,6,8…

例1、小蜗牛找倍数(找出3的倍数)。

练习3、5的倍数有哪些?7的倍数呢?

5的倍数:

7的倍数:

一个数的倍数的个数是(),一个数的最小的倍数是(),()的倍数。

用字母表示因数与倍数的关系:a—b=c(a、b、c都是不为0的整数)a、b都是c的因数,c是a和b的倍数。因数和倍数是相互依存的。

说一说:在0、3、4、7、15、16、77、31、62中择两个数,说一说谁是谁的因数?谁是谁的倍数?

1、根据算式:4x8=32

说一说,谁是谁的因数?谁是的倍数?

2、根据算式:63÷7=9

3、判断:1.2÷0.2=6我们能说0.2和6是1.2的因数;1.2是0.2的倍数,也是6的倍数吗?为什么?

知识点三:质数和合数

1、自然数按因数的个数来分:质数、合数、1、0四类。

(1)质数(或素数):只有1和它本身两个因数。

(2)合数:除了1和它本身还有别的因数。

(3)1:只有1个因数。“1”既不是质数,也不是合数。

注:

①最小的质数是2,最小的合数是4,连续的两个质数是2、3。

②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

③20以内的质数:有8个()

④100以内的质数有25个:()

关系:奇数x奇数=奇数质数x质数=合数

2、常见、最小

A的最小因数是:1;最小的奇数是:1;

A的因数是:本身;最小的偶数是:0;

A的最小倍数是:本身;最小的质数是:2;

最小的自然数是:0;最小的合数是:4;

3、分解质因数:把一个合数分解成多个质数相乘的形式。

例:

分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。把36分解质因数是:36=2x2x3x3

4、用短除法分解质因数(一个合数写成几个质数相乘的形式)。例:

分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。具体步骤是:

5、互质数:公因数只有1的两个数,叫做互质数。

两个质数的互质数:5和7

两个合数的互质数:8和9

一质一合的互质数:7和8

6、两数互质的特殊情况:

⑴1和任何自然数互质;

⑵相邻两个自然数互质;

⑶两个质数一定互质;

⑷2和所有奇数互质;

⑸质数与比它小的合数互质;

三、经验之谈:

书写分解质因数的结果时不能把质因数相乘写在等号左边,把合数写在右边,比如36=2x2x3x3就不能写成2x2x3x3=36;

短除法是除法一种简化,利用短除法分解质因数时,除数和商都不能是1,因为1不是质数

图形的变换

1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2、成轴对称图形的特征和性质:

①对称点到对称轴的距离相等;

②对称点的连线与对称轴垂直;

③对称轴两边的图形大小形状完全相同。

3、物体旋转时应抓住三点:

①旋转中心;

②旋转方向;

③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。

1、axb=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。

找因数的方法:

一个数的因数的个数是有限的,其中最小的因数是1,1的因数是它本身。

一个数的倍数的个数是无限的,最小的倍数是它本身。

2、自然数按是否是2的倍数来分:奇数偶数

奇数:不是2的倍数

偶数:是2的倍数(0也是偶数)

最小的奇数是1,最小的偶数是0.

个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

能同时是2、3、5的倍数的的两位数是90,最小的三位数是120。

3、自然数按因数的个数来分:质数、合数、1.

质数:有且只有两个因数,1和它本身

合数:至少有三个因数,1、它本身、别的因数

1:只有1个因数。“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4。

20以内的质数:有8个(2、3、5、7、11、13、17、19)

100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、

43、47、53、59、61、67、71、73、79、83、89、97

4、分解质因数

用短除法分解质因数(一个合数写成几个质数相乘的形式)

5、公因数、公因数

几个数公有的因数叫这些数的公因数。其中的那个就叫它们的公因数。

用短除法求两个数或三个数的公因数(除到互质为止,把所有的除数连乘起来)

几个数的公因数只有1,就说这几个数互质。

两数互质的特殊情况:

⑴1和任何自然数互质;

⑵相邻两个自然数互质;

⑶两个质数一定互质;

⑷2和所有奇数互质;

⑸质数与比它小的合数互质;

6、公倍数、最小公倍数

几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

如果两数是倍数关系时,那么较小的数就是它们的公因数;

较大的数就是它们的最小公倍数。

如果两数互质时,那么1就是它们的公因数

它们的积就是它们的最小公倍数。

小学数学四大领域主要内容

数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;

图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;

统计与概率:收集、整理和描述数据,处理数据;

实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。

数学做计算题型时需要注意什么

(1)认真读题,仔细审题;

(2)在计算一般算式时,得数的末尾也应该写出单位名称,但不打括号。例:32千克x4=128千克;

(3)应用题在算式中要在得数后加括号,填上单位名称。

例:一筐苹果重5千克,8箱苹果重多少千克5x8=40(千克)

第一单元小数乘法

1、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。

如:1.5x3表示1.5的3倍是多少或3个1.5的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。

如:1.5x0.8就是求1.5的'十分之八是多少。

1.5x1.8就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(P10)

⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、(P11)小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)

减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c

乘法:乘法交换律:axb=bxa

乘法结合律:(axb)xc=ax(bxc)

乘法分配律:(a+b)xc=axc+bxc【(a-b)xc=axc-bxc】

除法:除法性质:a÷b÷c=a÷(bxc)

第二单元小数除法

8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

11、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。

12、(P24、25)除法中的变化规律:

①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。

③被除数不变,除数缩小,商扩大。

13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232…………的循环节是32.

14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

第三单元观察物体

15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

第四单元简易方程

16、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可以省略不写。

加号、减号除号以及数与数之间的乘号不能省略。

17、axa可以写作a·a或a,a读作a的平方。2a表示a+a

18、方程:含有未知数的等式称为方程。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

19、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

20、个数量关系式:加法:和=加数+加数一个加数=和-另一个加数

减法:差=被减数-减数被减数=差+减数减数=被减数-差

乘法:积=因数x因数一个因数=积÷另一个因数

除法:商=被除数÷除数被除数=商x除数除数=被除数÷商

21、所有的方程都是等式,但等式不一定都是方程。

22、方程的检验过程:方程左边=……

23、方程的解是一个数;

解方程式一个计算过程。=方程右边

所以,X=…是方程的解。

第五单元多边形的面积

23、公式:

长方形:周长=(长+宽)x2--【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)x2

面积=面积=长x宽字母公式:S=ab

正方形:周长=边长x4字母公式:C=4a

平行四边形的面积=底x高字母公式:S=ah

三角形的面积=底x高÷2--【底=面积x2÷高;高=面积x2÷底】字母公式:S=ah÷2

梯形的面积=(上底+下底)x高÷2字母公式:S=(a+b)h÷2

【上底=面积x2÷高-下底,下底=面积x2÷高-上底;高=面积x2÷(上底+下底)】

24、平行四边形面积公式推导:剪拼、平移

25、三角形面积公式推导:旋转

平行四边形可以转化成一个长方形;

两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;

平行四边形的底相当于三角形的底;

长方形的宽相当于平行四边形的高;

平行四边形的高相当于三角形的高;

长方形的面积等于平行四边形的面积,

平行四边形的面积等于三角形面积的2倍,

因为长方形面积=长x宽,所以平行四边形面积=底x高。

因为平行四边形面积=因为平行四边形面积=底x高,所以三角形面积=底x高÷2

26、梯形面积公式推导:旋转

27、三角形、梯形的第二种推导方法老师已讲,自己看书

两个完全一样的梯形可以拼成一个平行四边形,知道就行。

平行四边形的底相当于梯形的上下底之和;

平行四边形的高相当于梯形的高;

平行四边形面积等于梯形面积的2倍,

因为平行四边形面积=底x高,所以梯形面积=(上底+下底)x高÷2

28、等底等高的平行四边形面积相等;

等底等高的三角形面积相等;

等底等高的平行四边形面积是三角形面积的2倍。

29、长方形框架拉成平行四边形,周长不变,面积变小。

30、组合图形:转化成已学的简单图形,通过加、减进行计算。

第六单元统计与可能性

31、平均数=总数量÷总份数

32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。

第七单元数学广角

33、数不仅可以用来表示数量和顺序,还可以用来编码。

34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)

054001

前3位表示邮区

前4位表示县(市)

最后2位表示投递局

35、身份证码:18位

130521197803010019

河北省邢台市邢台县出生日期顺序码校验码

倒数第二位的数字用来表示性别,单数表示男,双数表示女。

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体特点:

(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:

(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

相同点

不同点

面棱

长方体

都有6个面,12条棱,8个顶点。

6个面都是长方形。

(有可能有两个相对的面是正方形)。

相对的棱的长度都相等

正方体

6个面都是正方形。

12条棱都相等。

3、长方体、正方体有关棱长计算公式:

长方体的棱长总和=(长+宽+高)x4=长x4+宽x4+高x4

L=(a+b+h)x4

长=棱长总和÷4-宽-高

a=L÷4-b-h

宽=棱长总和÷4-长-高

b=L÷4-a-h

高=棱长总和÷4-长-宽

h=L÷4-a-b

正方体的棱长总和=棱长x12

L=ax12

正方体的棱长=棱长总和÷12

a=L÷12

4、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长x宽+长x高+宽x高)x2

S=2(ab+ah+bh)

无底(或无盖)

长方体表面积=长x宽+(长x高+宽x高)x2

S=2(ab+ah+bh)-ab

S=2(ah+bh)+ab

无底又无盖长方体表面积=(长x高+宽x高)x2

S=2(ah+bh)

贴墙纸

正方体的表面积=棱长x棱长x6S=axax6用字母表示:S=6a2

生活实际:

油箱、罐头盒等都是6个面

游泳池、鱼缸等都只有5个面

水管、烟囱等都只有4个面。

注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

5、物体所占空间的大小叫做物体的体积。

长方体的体积=长x宽x高V=abh

长=体积÷宽÷高a=V÷b÷h

宽=体积÷长÷高b=V÷a÷h

高=体积÷长÷宽h=V÷a÷b

正方体的体积=棱长x棱长x棱长

V=axaxa=a3

读作“a的立方”表示3个a相乘,(即a·a·a)

长方体或正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积x高

用字母表示:V=Sh(横截面积相当于底面积,长相当于高)。

注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

固体一般就用体积单位,计量液体的体积,如水、油等。

常用的容积单位有升和毫升也可以写成L和ml。

1升=1立方分米

1毫升=1立方厘米

1升=1000毫升

(1L=1dm31ml=1cm3)

长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

x形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

排水法的公式:

V物体=V现在-V原来

也可以V物体=Sx(h现在-h原来)

V物体=Sxh升高

8、【体积单位换算】

大单位乘进率=小单位

小单位÷进率=大单位

进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)

1立方分米=1000立方厘米=1升=1000毫升

1立方厘米=1毫升

1平方米=100平方分米=10000平方厘米

1平方千米=100公顷=1000000平方米

注意:长方体与正方体关系

把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

数学奇偶数性质

1、两个连续整数中必有一个奇数和一个偶数。

2、奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+...+偶数=偶数。

3、奇数-奇数=偶数;偶数-奇数=奇数;奇数-偶数=奇数。

4、若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数。

5、n个奇数的乘积是奇数,n个偶数的乘积是偶数;算式中有一个是偶数,则乘积是偶数。

6、奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8。

7、奇数的平方除以2、4、8余1。

8、任意两个奇数的平方差是2、4、8的倍数。

数学时分秒知识点

1、钟面上有3根针,它们分别是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。(时针最短,秒针最长)

1时=60分1分=60秒半时=30分30分=半时

7、分针走一圈,时针走一大格,是1小时。秒针走一圈,分针走一小格,是1分。

五年级数学下册知识点梳理

1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

2、分母越大,分数单位越小,最大的分数单位是2(1)。

3、举例说明一个分数的意义:7(3)表示把单位“1”平均分成7份,表示这样的3份,还表示把3平均分成7份,表示这样的1份。7(3)吨表示把1吨平均分成7份,表示这样的3份.还表示把3吨平均分成7份,表示这样的1份。

4、4米的5(1)和1米的5(4)同样长。

5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。

6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。

7、男生人数是女生人数的4(3),则女生人数是男生人数的3(4)。

8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。

被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)

10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,3(4)就可以看作是3(3)(就是1)和3(1)合成的数,写作

13(1),读作一又三分之一。带分数都大于真分数,同时也都大于1。

11、把分数化成小数的方法:用分数的分子除以分母。

12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……

13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。

16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。

18、一些特殊分数的值:

2(1)=0.54(1)=0.254(3)=0.755(1)=0.25(2)=0.45(3)=0.6

5(4)=0.88(1)=0.1258(3)=0.3758(5)=0.6258(7)=0.87510(1)=0.116(1)=0.0625

16(3)=0.187516(5)=0.312520(1)=0.0525(1)=0.0450(1)=0.02100(1)=0.01

19、求一个数是(占)另一个数的几分之几,用除法列算式计算。

THE END
1.身份证32开头的,马上自查!(二)未满16周岁的,由父母或其他监护人陪同,携带居民户口簿、本人及监护人居民身份证申请办理;其中,居民户口簿无法体现监护关系的,还需提供注明监护关系的材料。 办理地址 目前居民身份证业务已实现“全国通办”,群众可选择就近的公安窗口(承办户政业务)申请换(补)领居民身份https://mp.weixin.qq.com/s?__biz=MzI5MDEwMjQwNg==&mid=2650811643&idx=1&sn=0ba67a6f1faf5f66b07ae43b99b35a11&chksm=f6d8315f4fe16bd091608f66e000bbdd7500bc7a8889f49836d63fcf1f299a9c99f5afedcf26&scene=27
2.2024港澳台居民申请大陆身份证攻略(最新政策+条件+流程+时间+材料7至14位为出生年月日; 15至17位是同一地址码所标示的区域范围内对同年同月同日生人编订的顺序码。其中第17位表示性别,奇数为男性,偶数女性; 最后一位为校验码。 身份证号码是由18位数字组成,分别表示: 第1、2位数字表示:所在省份的代码; 第3、4位数字表示:所在城市的代码; https://www.extrabux.cn/chs/guide/7564945
3.身份证号后四位查询身份证号尾号4位查询身份证号地区位号段特别说明 身份证号前6位表示地区,前2位为省份,3-4位为市/盟/州,5-6位为区县。同一地区,在不同时间段前6位可能是不同的。例如:110221和110114,都是北京顺义的身份证号段。 再例如:110221和110114,都是天津武清的身份证号段。 http://sfhh4wcx.tongchahao.com/
4.川人社发〔2021〕4号四川省人力资源和社会保障厅关于印发《四川第十六条?失业登记实行告知承诺制,劳动者持本人有效身份证件,填写《四川省失业人员登记表》(附件4),由本人对填写信息真实性作出书面承诺。公共就业服务机构通过信息比对或人工核查等方式核验。 劳动者的有效身份证件为居民身份证或社会保障卡。 第十七条?公共就业服务机构应在3个工作日内办结失业登记申请,并在办http://rst.sc.gov.cn/rst/zcwj/2021/2/24/8abc18c11dfc4ffa81d7eb5f1d7c9c99.shtml
5.身份证号码规则身份证号码规则:前1、2位数字表示:所在省份的代码;第3、4位数字表示:所在城市的代码;第5、6位数字表示:所在区县的代码;第7-14位数字表示:出生年、月、日;第15、16位数字表示:所在地的派出所的代码;第17位数字表示性别:奇数表示男性,偶数表示女性;第18位数字是校检码:也有的说是个人信息码,一般是随计算机的https://mip.64365.com/tuwen/mhaht/
6.身份证后四位数3634是哪里的您好,身份证后四位数3634是江西的号码。 身份证号后4位数字中的前两位代表当地派出所的编码。您好,身份证共18位数字,第1-2位数字:代表省份代码;第3-4位数字:代表城市代码;第5-6位数字:代表区县代码;第7-14位数字:代表出生年月日;第15-16位数字:代表所在地派出所代码;第17位数字:https://wen.baidu.com/question/763026375991998604.html
7.现在明白,身份证后面四位数字的含义,长见识了!身份证后数字代表的含义: 1、第1、2位数字表示:所在省份的代码。 2、第3、4位数字表示:所在城市的代码。 3、第5、6位数字表示:所在区县的代码。 4、第7-14位数字表示:出生年月日。 5、第15-17位数字表示:同一地址码所标示的区域范围内,对同一天出生的人编订的顺序码。其中第17位表示性别,奇数为男性,偶https://kan.china.com/mobile/article/3027313.html
8.身份证号码末四位数是什么意思?法律分析:非律。身份证末4位就是身份证号码最后4个数字身份证最后4个数字分别代表“校验码”和“顺序https://www.findlaw.cn/wenda/q_41336493.html