人教版四年级数学上册第一单元教案《数的产生》(通用4篇)
教学目标
1、了解数的产生的历史,建立自然数的概念,了解自然数的一些性质和特点,为以后把数的范围扩展到分数、小数做好准备;
2、认识亿级的数,掌握计数单位“亿”“十亿”“百亿”“千亿”以及千亿以内的数位顺序表,掌握最常用的一种计数方法——十进制计数法
教学重难点
学习重点:
认识亿级的数和计数单位。
学习难点:
能够根据已学过的万级数的数位顺序表迁移类推亿级数的数位顺序表。
教学工具
教学过程
一、导入新课
老师:同学们,我们已经学习了三年的数学,每天都要和数打交道,那么你们知道这些数是怎样产生的吗?今天这节课我们就来学习:数的产生和十进制计数法。(板书课题:数的产生和十进制计数法)
1、数的产生。
提问:很久很久以前,人们在生产劳动中就有了技术的需要,例如,人们出去打猎的时候,要数一数共出去了多少人,拿了多少件武器,回来的时候,要数一数捕获了多少只野兽等等。但是那时候的人们开始只知道“同样多”、“多”、“少”还不会用一、二、三这些数来数物体的个数,那么同学们你们知道古时人们是怎样记数的吗?课前大家查找了一些资料,谁愿意为大家介绍一下数是怎么产生的?(学生介绍)
老师边出示课件边讲述数的产生过程。
你们觉得这些计数方法怎么样?(这样太不不方便了)
师:计数法现在看来很麻烦,但在当时数还没有产生的情况下,能创造这样的计数方法,已经很了不起了,表现出了古代人们的智慧。
2、各国的记数符号:
你知道阿拉伯数字是哪国人发明的吗?
小资料:3世纪时,印度人发明了一种特殊的数字,后来这种印度数字传到了阿拉伯。12世纪时,阿拉伯商人又把印度数字带到了欧洲,欧洲人称它们为“阿拉伯数字”。这样人们误认为这些数字是阿拉伯人发明的,所以才叫阿拉伯数字。
3、自然数:
人类开始只数看得见的东西,对于看不见的东西是不数的,因此没有“0”这个数。随着数字计算的发展,才出现了“0”,同桌讨论一下:0是不是自然数呢?(“0”表示一个物体也没有。“0”也是自然数。学生回答后板书:0)
师:学生独立看黑板观察、思考、交流一下。思考题:
1、这些自然数是怎样排列的?(从小到大)
2、每相邻两个自然数相差几?
3、最小的自然数是几?
4、有没有最大的自然数?为什么?
5、自然数有多少个?
三、探究十进制计数法:
1、后来人们对数的认识逐渐增加,认的数越来越大,每一个数都用符号来表示,很不方便,于是就产生了进位制。一般进率是几,就叫做几进制。(出示:十进制计数法、二进制计数法,八进制计数法、十二进制计数法、六十进制计数法……,)因为十进制计数法比较方便,所以一直沿用至今。今天,我们就一起来认识十进制计数法。
2、要了解什么是十进制计数法,先从计数单位开始,我们已经学习了哪些计数单位呢?(个、十、百、千、万、十万、百万、千万、亿)
每相邻两个计数单位之间有什么关系?
3、至今为止,我们学习的最大的计数单位是什么?(亿)还有没有比亿更大的计数单位呢?
前后桌四名同学自然组成一个学习小组自主学习:
(1)、比亿大的计数单位有哪些?
(2)、它们之间有什么关系?
4、小组汇报交流:比亿大的计数单位有哪些?
(1)、比亿大的计数单位有哪些?(十亿、百亿、千亿)
(2)、它们之间有什么关系?(10个亿是十亿、10个十亿是一百亿、10个一百亿是一千亿)你们是怎么知道的?学生在计数器上拨数进行验证。
提问:“到现在我们一共学了哪些计数单位?”
教师把板书出的计数单位加上横线和竖线,并告诉学生还有比千亿大的计数单位,由于不常用,暂时不学,因此在千亿的左面用省略号“……”表示还有其他计数单位。
提问:每相邻两个计数单位之间的关系是什么?(每相邻两个单位之间的进率是10,即十进制关系。)
说明像这种“每相邻两个单位之间的进率都是10”的计数方法叫做“十进制计数法”。
3。认识数位和数位顺序表。
这些计数单位它们所占的位置叫做数位。请同学们依次说出这些计数单位所对应的数位。然后引导学生把亿以内的数位顺序表扩展到“千亿”位,并告诉学生还有比千亿大的数,由于不常用,暂时不学,因此在数位顺序表后面用省略号“……”表示还有其他数位。
再说明数位的作用:有了数位以后,由于一个数字在不同的数位上表示的数的大小不同,所以用十个阿拉伯数字就可以表示出任意大的数。
(4)使学生明确右起第五位是万位,第九位是亿位。
(5)引导学生对数位分级,同时说明数位分级的作用:数位多了,一位一位地读不方便,通过分级可以很方便地读数。在我国按惯例从右起每4个数位为一级
在已写出的数位顺序表上接着板书:个级、万级、亿级,制成表,并把它和计数单位表连接起来。
5、学生独立完成数位顺序表。
四、基本练习
判断:
1、个位、十位、百位、这些都是计数单位。
2、没有最大的自然数。
3、0是最小的自然数。
4、自然数的个数可以数出来。
填空:
1、一百亿里有个十亿。个百亿是一千亿。
2、计数单位之间的进率都是,这种计数方法叫做十进制计数法。
3、和亿位相邻的两个数位是和。
4、“4”亿位表示个
巩固练习:
说出下面每个数各是几位数,最高位是什么位,每个“3”所在的数位和表示的意义。
拓展训练:
故宫的房间有9999间,“9999”中每个数位上的“9”表示的意义一样吗?为什么?百位上的“9”表示的数是最低位上的“9”表示的数的多少倍?
五、课堂小结:
回忆这节课你有什么收获?
通过今天这节课的学习,我们知道了数的产生经历了一个漫长的过程,这其中充分体现了古代人民的聪明才智。其实我们生活中的所有发明创造都是人们为了不断适应生活的需要,希望同学们在今后的生活中能发挥自己的聪明才智,发明创造出更多的东西来解决人们在生活中遇到的难题。
1、知道数是怎样产生的以及数字的演变过程。
2、在讨论交流中获取知识的形成过程。
3、教育学生要喜欢数学,乐学数学。
重点难点
理解数的产生过程。
教学资源
课件、教学用书
课时1课时
备课方式
在学生自主探究中掌握知识,提高运用知识解决问题的能力。
一、复习铺垫情境激趣
出示0、1、2、3、4、5、6、7、8、9
问:这些都是什么?
那这些数字都是怎样演变而来的?
这节课,我们就来研究学习《数的产生》
板书课题
学生活动
齐读课题,激发学生学习数学的兴趣
二、探索交流获取新知
师:古时候,人们在生产劳动中,逐渐有了记数的需要。你知道古人是怎样记数的吗?
学习古人的记数方法。
课件16页中的例题
观察交流古人都是怎样记数的。
根据学生的汇报随机板书并补充讲解。
实物记数
结绳记数
刻道记数
指名读一读问:看到古人的记数方法,你有什么想法?
师:由于古时候人类文明发展的程度较低,还没有数字的出现,人们只有借助一些物品来表示数,确实不方便。
学习数字符号,随着文字的发展,后来人们逐渐发明了一些记数的符号,这就是最初的数字。
出示课件16页例题
观察,有哪几个国家的记数符号?
并说说看到这些记数符号有什么感想?
师:数的产生,各个地区的数字不同,交流很不方便。
出示课件17页的图,问:你知道了什么?
课件出示17页的例题。
指名汇报。
认真倾听
仔细观察
交流汇报
“实物记数”
“结绳记数”
“刻道记数”
认真记忆
“太麻烦、不方便”
倾听
观察
汇报
评议
生观察交流自己的发现
生阅读识记掌握有关的知识
设计意图
让学生在自主交流学习中获取知识的形成过程
培养学生总结概括的能力
在观察中发现新知,并掌握知识的形成过程
培养学生搜集整理信息的能力
让学生在自主学习中掌握基础知识
三、巩固练习内化新知
课件出示练习题
思考汇报
师生共同评议
汇报评议
达到学以致用的目的
四、总结回顾自我评价
这节课你有什么收获?
自由发言
学会归纳知识点
五、作业设置
我会填:
1、古人使用记数的。
2、阿拉伯数字是发明的。
3、也是自然数,所有的`自然数都是。
4、自然数的个数是。
5、一个物体也没有用表示。
板书设计
数的产生
0、1、2、3、4、5、6、7、8、9
古人记数:实物记数
数字符号
1、教学任务分析
(1)通过本节课的学习让学生知道如何利用计算器或计算机Excel软件产生均匀随机数,并会利用随机模拟方法估计未知量.
(2)通过本节课学习让学生学会建立严格的几何模型来解决多元的几何概型问题。
(3)这是概率必修章节的最后一个知识点,前面已经学过了(整数值)随机数的产生和用蒙特卡罗模拟方法估计概率值.本节的主要思路是对照前面学过的知识让学生自主思考、设计方案。
(4)用随机模拟法估计未知量.例3是圆周率的估计,例4则是不规则平面图形面积的估计.
(5)建立严格的几何模型,解决例1中涉及到的两元几何概型问题.
2.教学重点与难点
重点:
(1)均匀随机数的产生,设计模型并运用随机模拟法估计未知量;
(2)转化为严格的几何概型再分析上述问题.
难点:
(1)如何设计随机模拟法;(2)如何转化为严格的几何概型问题.
3.教学流程
4.教学情境设计
问题
问题设计意图
师生活动
(1)谁能叙述一下几何概型的有关知识?
师:提出问题,引导学生回忆.
生:回忆、概括.
(2)与古典概型相比,是否可以用一个区间内的随机数进行模拟几何概型呢?
使学生从两种概型的区别中认识随机实数的产生方法.
生:通过阅读思考认识到随机实数产生方法在估计几何概型事件概率时的必要性.
(3)对于例2的事件A,你能设计一个随机模拟的方法求它的概率吗?
应用随机模拟的方法估计几何概型中随机事件的概率.
老师带领学生解答例2,并对数据进行变化,让学生体会随机性和频率会在某个范围内变化.
(4)对于例3,你能设计一个随机模拟的方法来估计圆的面积吗?
随机模拟方法估计圆的面积,进而估计圆周率p的值.
师:引导学生依据几何概型需满足的条件设计随机模拟方法.
生:回忆几何概型的定义,设计方案.
(5)对于例4,你能设计一个随机模拟的方法来估计阴影部分的面积吗?
随机模拟方法估计不规则图形的面积.
师:画一些曲线围成的图形,让学生设计方案求面积的估计值.
生:思考问题,给出方案.
(6)对于例2,不用随机模拟法,用几何概型公式该怎么解决呢?
引入图形法求几何概型.
老师给学生讲解对于二元变量的问题如何转化为平面图形的方法解决.
(7)模仿例2,练习1和练习2如何转化为几何概型解决呢?
练习图形法求几何概型.
学生练习,老师进行总结提升.
(8)小结:如何利用随机模拟法估计几何概型的概率;如何利用图形法求二元变量几何概型的概率.
总结本节课所学的知识.
师:提出问题,引导学生思考归纳概括.
生:思考、整理、归纳概括.
(9)课后作业:复习参考题A、B组.
一、教学目标:
1、知识与技能:
(1)了解随机数的概念,掌握用计算器或计算机产生随机数求随机数的方法;
(2)能用模拟的方法估计概率。
2、过程与方法:
(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;
(2)通过模拟试验,感知应用数学解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:
通过模拟方法的设计体验数学的重要性和信息技术在数学中的应用;通过动手模拟,动脑思考,体会做数学的乐趣;通过合作试验,培养合作与交流的团队精神。
二、重点与难点:
重点:随机数的产生;
难点:利用随机试验求概率。
三、教学过程
(一)、引入情境:
本节主要介绍随机数的产生,目的是利用随机模拟试验代替复杂的动手试验,以便求得随机事件的频率、概率。
(二)、产生随机数的方法:
1。由试验(如摸球或抽签)产生随机数
例:产生1—25之间的随机整数。
(1)将25个大小形状相同的小球分别标1,2,,24,25,放入一个袋中,充分搅拌
(2)从中摸出一个球,这个球上的数就是随机数
2。由计算器或计算机产生随机数
由于计算器或计算机产生的随机数是根据确定的算法产生的,具有周期性(周期很长),具有类似随机数的性质,但并不是真正的随机数,而叫伪随机数
由计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法。
(三)、利用计算器怎样产生随机数呢?
例1:产生1到25之间的取整数值的随机数。
解:具体操作如下:
第一步:MODE—MODE—MODE—1—0—
第二步:25—SHIFT—RAN#—+—0。5—=
第三步:以后每次按=都会产生一个1到25的取整数值的随机数。
工作原理:第一步中连续按MODE键三次,再按1是使计算器进入确定小数位数模式,0表示小数位数为0,即显示的计算结果是进行四舍五入后的整数;
第二步是把计算器中产生的0。000~0。999之间的一个随机数扩大25倍,使之产生0。000—24。975之间的随机数,加上+0。5后就得到0。5~25。475之间的随机数;再由第一步所进行的四舍五入取整,就可随机得到1到25之间的随机整数。
小结:
利用伸缩、平移变换可产生任意区间内的整数值随机数
即要产生[M,N]的随机整数,操作如下:
第一步:ONMODEMODEMODE10
第二步:N—M+1SHIFTRAN#+M—0。5=
第三步:以后每次按=都会产生一个M到N的取整数值的随机数。
温馨提示:
(1)第一步,第二步的操作顺序可以互换;
(2)如果已进行了一次随机整数的产生,再做类似的操作,第一步可省略;
(3)将计算器的数位复原MODEMODEMODE31
练习:设计用计算器模拟掷硬币的实验20次,统计出现正面的频数和频率
解:(1)规定0表示反面朝上,1表示正面朝上
(2)用计算器产生随机数0,1,操作过程如下:
MODEMODEMODE10SHIFTRAN#=
(3)以后每次按=直到产生20随机数,并统计出1的个数n
(4)频率f=n/20
用这个频率估计出来的概率精确度如何?误差大吗?
(四)、用计算机怎样产生随机数呢?
每个具有统计功能的软件都有随机函数。以Excel软件为例,打开Excel软件,执行下面的步骤:
(1)在表格中选择一格如A1,在菜单下的=后键入=RANDBETWEEN(0,1),按Enter键就会产生0或1。
(2)选定A1这个格,按Ctrl+C复制这个格,然后选定A2~A1000要粘贴的格,按Ctrl+V键。
(3)选定C1格,在菜单下=后键入=FREQUENCY(A1:A1000,0。5),按Enter键。
(4)选定D1这个格,在菜单下的=后键入1—C1/1000,按Enter键。
同时还可以画频率折线图,它更直观地告诉我们:频率在概率附近波动。
【例2】天气预报说,在今后的三天中,每一天下雨的概率均为40%。这三天中恰有两天下雨的概率大概是多少?
分析:试验的可能结果有哪些?
用下和不分别代表某天下雨和不下雨,试验的结果有
(下,下,下)、(下,下,不)、(下,不,下)、(不,下,下)、
(不,不,下)、(不,下,不)、(下,不,不)、(不,不,不)
共计8个可能结果,它们显然不是等可能的,不能用古典概型公式,只好采取随机模拟的方法求频率,近似看作概率。
解:(1)设计概率模型
利用计算机(计算器)产生0~9之间的(整数值)随机数,约定用0、1、2、3表示下雨,4、5、6、7、8、9表示不下雨以体现下雨的概率是40%。模拟三天的下雨情况:连续产生三个随机数为一组,作为三天的模拟结果。
(2)进行模拟试验
例如产生30组随机数,这就相当于做了30次试验。
(3)统计试验结果
在这组数中,如恰有两个数在0,1,2,3中,则表示三天中恰有两天下雨,统计出这样的试验次数,则30次统计试验中恰有两天下雨的频率f=n/30。
(1)随机模拟的方法得到的仅是30次试验中恰有2天下雨的频率或概率的近似值,而不是概率。在学过二项分布后,可以计算得到三天中恰有两天下雨的概率0。288。
(2)对于满足有限性但不满足等可能性的概率问题我们可采取随机模拟方法。
(3)随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数。
练习:
。试设计一个用计算器或计算机模拟掷骰子的实验,估计出现一点的概率。
解析:
(1)。规定1表示出现1点,2表示出现2点,。。。,6表示出现6点
(2)。用计算器或计算机产生N个1至6之间的随机数
(3)。统计数字1的个数n,算出概率的近似值n/N
(五)、课堂小结:
随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验。通过本节课的学习,我们要熟练掌握随机数产生的方法以及随机模拟试验的步骤: