除雾是空调系统中最重要的功能之一,因为它保证了驾驶员足够的能见度。雾的形成取决于许多参数。因此,要精确地设计空调系统,有必要对除雾过程中的车辆进行模拟。近十年来,人们进行了大量的数值模拟研究,以模拟挡风玻璃上的雾化及其背后的物理过程。使用CAE有助于估算进入客舱的空气流量,并尽可能精确地确定空调系统的参数。当玻璃的温度降到露点温度以下时,周围空气中的水蒸气就会在玻璃表面凝结成微小的液滴。这些小液滴在传热和传质过程中不断长大。
Kitada等人通过CFD分析预测了基于液滴蒸发和冷凝的瞬态除雾模式。Croce等人利用传热传质类比和能量守衡开发了一个在挡风玻璃上结雾和除雾的数值模型。他们假定雾是由表面的小液滴凝结而成的。其他主要假设是根据Beysens的液滴分布的自相似,液滴覆盖面积与总面积的比值保持恒定(A=0.55)。液滴为半球形,接触角恒定且为90°。并利用Margrain和Owen实验对模型进行了验证。这个模型有一些局限性,因为它没有考虑小液滴的热力学和原子核的位置。此外,还没有考虑由于表面潜热传递而产生的热反馈。本文提出的模型着重于一个精确的雾化模型。微小液滴的凝结初始过程取决于凝结核的位置和表面的状态,以及空气的温度和相对湿度。采用附加方程或独立的欧拉相对雾滴进行建模,可以精确计算雾滴与周围潮湿空气之间的传热和传质过程。
采用STAR-CCM+进行仿真。所采用的网格为多面体网格,通过棱柱层网格的改进,基本尺寸为5mm。这七层有1.5倍的拉伸。网格大约为450万个。网格设计非常重要,因为它需要捕捉表面非常小的温度波动,以及影响挡风玻璃的主要流体流动。图1显示了执行的仿真所使用的网格。
图1车辆的网格
流体流动是湍流和计算使用可实现的K-Epsilon模型。此外,采用双层壁面处理模型,对边界层进行了合理计算。
应用冷凝模型的第一步是找出被水滴覆盖的挡风玻璃的比例和干燥部分的比例。因此,对专门为测试而制作的10块不同的挡风玻璃进行了水滴模式的观察。
雾化过程中对雾滴形态的观察显示出几个相似之处。即使液滴的模式看起来不同,湿润的区域也是相似的。
图2用MATLAB对图片进行后处理后得到的液滴图案的例子。(黑色区域代表液滴)
图2为MATLAB后处理后得到的液滴图案实验结果示例。通常,图像被转换成黑白,然后在图像上检测表单,并保存每个表单的几何数据。湿润区域对应黑色区域,干燥区域对应白色区域。这些值用于计算冷凝过程中的总热流量。
在每一种情况下,液滴的模式都是不同的。然而,计算得到的湿润面积占总面积的55%,如Beysens所表明的。然而,这些试验的初始条件并不能完全控制。因此,一种能够更好地控制空气温度和相对湿度的实验装置正在研制中。
雾化模式显示出两个不同的区域。然而在现实中,挡风玻璃的一个区域是模糊和可见之间的。因此,“冷凝指示器”功能不能准确预测可能起雾的区域。由于这个预测是用来知道凝结模型必须应用的地方,因此必须找到一个更精确的标准。因此,使用之前定义的饱和比。图4显示了与图3相同的雾化模式,但用饱和比表示。
图4模拟500秒后的车辆雾化模式
表1车辆数值仿真主要参数总结
此外,相对湿度也影响液滴的大小,因为它直接控制出现在挡风玻璃上的初始液滴的大小。它主要影响液滴的最小半径。
图5在相对湿度为60%的情况下,500秒后有雾状(孔表示无雾)
图6在相对湿度为80%的情况下,500秒后出现雾状
图7在相对湿度为90%的情况下,500秒后出现雾状
图8显示了挡风玻璃温度和相对湿度对最小成核半径的影响。在较低的相对湿度和较高的挡风玻璃温度下,最小半径更大。这意味着,在起雾初期,液滴是相当大的,这样雾化就更分散了。
图8挡风玻璃温度和相对湿度对最小半径的影响
图9相对湿度为60%,500秒后液滴平均直径
图10相对湿度为70%,500秒后液滴平均直径
图11气温对最小半径的影响
图11显示了气温对最小半径的影响。在相对湿度相同、挡风玻璃温度相同的情况下,最小半径随温度升高而略有增大。
图12显示了外换热系数与车体速度的关系。由于高速时的换热系数高得多,挡风玻璃的温度迅速下降,然后雾状现象迅速出现。
图12对流换热系数与汽车速度的关系
表面状态很大程度上影响冷凝过程,因为它直接控制成核的数量,从而在挡风玻璃上增加液滴的数量。图13显示了挡风玻璃上液滴的重新划分。水滴并不总是半球形的,观察到的变形是挡风玻璃表面状态导致的结果。
图13液滴的分布
图14挡风玻璃和侧窗的接触角重新划分
图15最大传热系数与接触角的百分比
表面状态和接触角对冷凝热通量有重要影响。使用半球形液滴,光的传输减少50%,热传递最大化。因此,表面的选择是至关重要的,以避免这种临界接触角。