人工智能训练师:我教AI如何“更懂”人类

电脑前,张力文向记者演示一个火情识别算法模型的数据标注及模型训练的过程。

智慧安防、智慧物流、智能交通……人工智能技术正让我们的生活更便利。而让人工智能(AI)“更懂”人类的新职业——人工智能训练师在当中起到十分重要的作用,相当于人工智能的教练。

人工智能训练师在2020年正式成为新职业并纳入国家职业分类目录。随着去年底该职业的国家职业技能标准颁布,业内开展职业培训和人才技能评价有了基本依据。人社部发布的报告显示,经测算我国人工智能人才缺口超过500万。近日记者采访了解到,在广东,人工智能训练师的需求旺盛,“现在有做AI的公司基本都有自己的人工智能训练师,随着人工智能在各个应用领域的不断拓展,数据标注员等工种存在较大的人才缺口。”业内人士说道。

新职业档案:人工智能训练师

使用智能训练软件,在人工智能产品实际使用过程中进行数据库管理、算法参数设置、人机交互设计、性能测试跟踪及其他辅助作业的人员。

主要工作任务:

1.标注和加工图片、文字、语音等业务的原始数据;

3.设计人工智能产品的交互流程和应用解决方案;

4.监控、分析、管理人工智能产品应用数据;

5.调整、优化人工智能产品参数和配置。

训练:“喂数据”图片数以万计还要避免AI“背题”

“我的日常工作主要包括人工智能需求分析、数据标注、算法开发以及算法调优等,其中数据标注和算法开发是最主要的工作。”电脑前,张力文向记者演示了一个火情识别算法模型的数据标注及模型训练的过程。只见他在电脑用标注工具将图片中的火焰逐一圈出来,并标注为“fire”,标注一定数量后将这些图片数据“喂”给人工智能学习,学习后进行测试,再逐张查看人工智能识别火焰的结果是否正确。张力文发现,人工智能将图片里的黄色盒子误判成“火焰”了,于是他把该黄色盒子重新标注为“非火焰”,对算法进行调优,再对人工智能进行迭代训练,如此往复……

每训练一次,系统会自动生成一次测试结果,在训练两三百次之后形成有多个指标结果的“loss曲线”图,loss值是判断“智能还是智障”的关键指标。“我们主要查看两个指标来判断人工智能是否需要重新学习。”张力文说,一般来说他们会查看人工智能“训练集”和“测试集”的正确率,如果训练集数据正确率高,但测试集的低,那么说明人工智能存在“背题”的情况,需要再次学习,如果两者正确率都高,说明人工智能已经“学会”。

张力文介绍,一个算法模型的训练,少则需要5000-10000张图片数据,多则要几万张甚至几十万张图片数据,“像目标检测一般一万张图片数据即可,但识别类算法,比如人脸识别,通常要几十万张图片数据。”不过在数据标注阶段,如今已有智能标注帮忙,训练师在智能标注后再进行个别的人工标注即可,大大减轻人工标注的工作量。这些图片数据如何来?张力文说,网上开源数据一般可满足人工智能的基础训练,但针对性训练的数据需要购买或搜集,有时候甚至需要他们自己拍摄。

经验:要有核心算法还要“走出去”

为了让人工智能“学得更好”,训练师有时候还要“走出去”调研具体的应用场景。比如明厨亮灶项目,要到厨房观察摄像头安装的位置和角度,摄像头拍摄的画面质量,厨房光线、摆放物品等。“我们都会做一些分析,分析会引起人工智能误判的因素。”张力文说道。

建议:求职者除了懂技术更要懂行业

“一个新开发的算法模型需要大量数据训练,这个时候就需要人工智能训练师介入和参与。”天翼数字生活科技有限公司AI视联及行业应用事业部副总经理王艺指出,人工智能技术已经渗透到各个行业,包括工业、金融、教育、安防、市政、物流、交通等,这些行业对人工智能训练师都有着很高的需求。“现在有做AI的公司基本都有自己的人工智能训练师,随着人工智能在各个应用领域的不断拓展,数据标注和算法训练等工种存在较大的人才缺口。”

人社部2020年发布的《人工智能工程技术人员就业景气现状分析报告》指出,经测算我国人工智能人才缺口超过500万,国内的供求比例为1:10,供需比例严重失衡。不断加强人才培养,补齐人才短板,是当务之急。广州市人工智能产业发展促进会执行秘书长蔡远尘介绍,协会连续四年进行广州市人工智能大数据企业入库工作,目前已累计入库800多家,其中大部分企业都是应用型传统企业转型而来,对人工智能人才有大量的需求。

作为企业管理人员,王艺建议求职者不仅要了解算法调优、数据清洗、标注等基础知识,还要了解不同应用行业的背景知识。“只有了解行业,才能真正知道哪些数据需要标注。训练师既需要有逻辑思维、理性分析,还要有敏锐感、发现数据的能力。”

THE END
1.通过机器学习让图像识别更精准更快速机器视觉是一种利用计算机系统分析和理解数字图像内容的手段。这项技术结合了计算机科学、电气工程和认知科学等多个领域,以模仿人类视觉系统工作原理来解析图片中的对象特征,从而能够执行诸如物体检测、分类以及跟踪等任务。 三、传统方法与挑战 传统图像处理算法依赖于手工设计的人类智慧,这限制了它们适应新环境或新类型数https://www.wbhgwbnd.com/ji-qi-ren/861790.html
2.图像识别算法都有哪些方法图像识别算法都有哪些方法 图像识别算法是计算机视觉领域的核心任务之一,它涉及到从图像中提取特征并进行分类、识别和分析的过程。随着深度学习技术的不断发展,图像识别算法已经取得了显著的进展。本文将介绍图像识别算法的主要方法,包括传统方法和基于深度学习的方法。https://www.elecfans.com/d/4033152.html
3.图像图像识别经典算法图像识别算法特征提取:从图像中提取有助于分类的特征。 模型训练:使用特征和标签数据集训练模型。 预测与分类:利用训练好的模型对新图像进行分类。 二、经典图像识别算法 1. Haar-like Features + AdaBoost (Viola-Jones) Viola-Jones算法是人脸检测领域的里程碑,它结合了Haar-like特征和AdaBoost算法。Haar-like特征简单且计算https://blog.csdn.net/yuzhangfeng/article/details/140436315
4.图像识别算法起源图像识别主流算法卫斯理的技术博客在图片识别方面,人工神经网络是应用最广泛、最有效的技术。神经网络同时执行许多数学过程,神经网络是面部识别系统的基础。 算法执行三个主要功能:识别图像、视频或实时流中的人脸;创建人脸的数学模型;并将模型与训练集或数据库进行比较以确认一个人的身份。 https://blog.51cto.com/u_12207/10760565
5.图片文字识别的算法分类算法中的难例图片判断华为云帮助中心为你分享云计算行业信息,包含产品介绍、用户指南、开发指南、最佳实践和常见问题等文档,方便快速查找定位问题与能力成长,并提供相关资料和解决方案。本页面关键词:图片文字识别的算法。https://support.huaweicloud.com/topic/306993-1-T
6.基于深度卷积神经网络的物体识别算法以上物体检测的方法都只是利用RGB彩色信息,而没有利用深度信息。由于深度数据具有光照和颜色不变性,并且能提供彩色数据不能提供的几何信息,对深度数据提取额外的特征将大幅提升视觉算法的性能。华盛顿大学Lai等[9]创建了一个RGB-D物体数据库用于验证物体识别算法。这个数据库既包含彩色图片又包含对应的深度信息,分别约为https://html.rhhz.net/jsjyy/2016-12-3333.htm
7.图像识别算法有哪些图像识别十大经典算法图像识别是计算机视觉领域中的一个重要分支,它旨在让计算机能够理解和识别图像。下面将介绍一些常见的图像识别算法。 1.图像分类 图像分类是指将一张图像分类到不同的类别中。常用的图像分类算法包括卷积神经网络(CNN)、支持向量机(SVM)等。 2.目标检测 https://www.eefocus.com/e/518039.html
8.三年磨一剑——微信OCR轻松提取图片文字ocr算法文本行图6 长按图片分类标签体系 3. 通用OCR识别 (1)文本检测 常用的基于深度学习的文本检测方法一般可以分为基于回归的、基于分割的两大类,当然还有一些将两者进行结合的方法。 图7 常用文本检测算法 基于回归的方法分为 box回归和 像素值回归。 采用box回归的方法主要有CTPN、Textbox系列和EAST,这类算法对规则形状文https://dy.163.com/article/G5NTLL1U0518R7MO.html
9.秒懂算法基于主成分分析法随机森林算法和SVM算法的人脸识别本文的任务与手写数字识别非常相似,都是基于图片的多分类任务,也都是有监督的。 01、数据集介绍与分析 ORL 人脸数据集共包含 40 个不同人的 400 张图像,是在 1992 年 4 月至 1994 年 4 月期间由英国剑桥的 Olivetti 研究实验室创建。 此数据集下包含 40 个目录,每个目录下有 10 张图像,每个目录表示一个https://xie.infoq.cn/article/ca9d988d0f70305993976225a
10.给照片穿上“隐身衣”,最强人脸识别算法也失灵!业界推出最新AIFawkes ,已经让旷视、微软、亚马逊等公司的面部识别算法失灵。 来自芝加哥的调查团队称。Fawkes的正是为照片添加防识别“隐身衣”的AI软件,经检测,它已经在最先进的面部识别技术中取得了百分百的胜利。 我们先来看一组图片。 相信你很难看出两组照片有任何差别。事实上,后者已经过了Fawkes处理,并能够屏蔽任何人脸识别https://www.leiphone.com/category/industrynews/AZf9RS8Y63Uvxi2j.html
11.有哪些免费图片转word软件APP推荐有哪些免费图片转word软件下载豌豆荚有哪些免费图片转word软件榜单为您提供最新有哪些免费图片转word软件大全,这里不仅有有哪些免费图片转word软件安卓版本APP、历史版本应用下载资源,还有类似有哪些免费图片转word软件的应用推荐,欢迎大家前来豌豆荚下载。https://www.wandoujia.com/bangdan/395418/
12.基于改进残差网络的扬尘图像识别方法由于扬尘图像识别目前没有公开的数据集. 因此,通过在互联网上收集各类有关扬尘场景的图片, 整理形成训练集和测试集, 然后使用数据增强在训练集和测试集中生成更多的数据, 解决了该研究中没有数据集以及数据量不足的问题. 为了增强模型的泛化能力, 采用数据增强的操作扩充所需的数据样本, 让网络模型更好的适应各种应https://c-s-a.org.cn/html/2021/5/7909.html
13.深入解析机器学习核心概念分类特征有时称为离散特征。 与数值数据相对。 形心(centroid) 聚类的中心,由k-means或k-median算法决定。例如,如果 k 为 3,则 k-means 或 k-median 算法会找出 3 个形心。 检查点 (checkpoint) 一种数据,用于捕获模型变量在特定时间的状态。借助检查点,可以导出模型权重,跨多个会话执行训练,以及使训练在发生https://www.360doc.cn/article/7673502_976517820.html