小学数学分数除法教案(精选15篇)

1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重难点

教学重点:弄清单位“1”的量,会分析题中的数量关系。

教学难点:分数除法应用题的特点及解题思路和解题方法。

教学过程

一、复习

出示复习题:

1、下面各题中应该把哪个量看作单位“1”

2、用方程解下列各题。

3、根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5,六年级学生小明的体重为35千克,他体内的水分有多少千克

让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。

选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

小明的体重×4/5=体内水分的重量。

4、指名口头列式计算。课件出示。

二、新授

1、教学例1

根据测定,成人体内的水分约占体重的2/3,而儿童

体内的水分约占体重的4/5,小明体内有28千克水分,

他的体重是爸爸体重的7/15,小明的体重是多少千克

爸爸的体重是多少千克

例1的第一个问题:小明的体重是多少千克

(1)读题、理解题意,并画出线段图来表示题意:

(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重×4/5=体内水分的重量

(3)这道题与复习题相比有什么相同点和不同点

(相同点是它们的数量关系是一样的;不同点是水分28千克,水分占体重的4/5。体重千克水分28千克已知条件和问题变了)

(4)这道题什么是单位“1”单位“1”是已知的还是未知的怎样求(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)

(5)启发学生应用算术解来解答应用题。

先在小组内独立解答。

课件演示计算的算式。

(根据数量关系式:小明的体重×4/5=体内水分的重量,

反过来,体内水分的重量÷4/5=小明的体重)。

2、解决第二个问题:小明的体重是爸爸的7/15,爸爸的体重是多少千克

(1)启发学生找到分率句,确定单位“1”。

(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(课件出示线段图)

爸爸:

小明:

根据数量关系式:爸爸的体重×7/15=小明的体重

小明的体重÷7/15=爸爸的体重

①解方程:解:设爸爸的体重是χ千克。

7/15χ=35

χ=35÷7/15

χ=75

②算术解:35÷7/15=75(千克)

课件演示计算的`算式。

3、用方程解应用题应注意哪些问题

首先要弄清题里有哪些数量,它们之间有什么样的关系,然后找出题中数量间

的等量关系,再确定设哪个量为χ,并列出方程.

4、巩固练习:P38“做一做”课件出示:

学校有科普读物320本,占全部图书的2/5,科普读物相当于故事书的4/3,图书馆共有多少本书图书馆有多少本故事书(学生先独立审题完成,然后全班再一起分析题意、评讲)

三、巩固应用

1、小明看一本课外读物,周末看了35页,正好是这本书的5/7,这本课外读物一共有多少页

(先分析数量关系式,然后确定单位“1”,最后再进行解答。)

2、一杯约250ml的鲜牛奶大约含有3/10g的钙质,占一个成年人一天所需钙质的3/8。一个成年人一天大约需要多少钙质

(注意引导学生发现250ml的鲜牛奶是多余条件)

3、人造地球卫星的速度是8千米/秒,相当于宇宙飞船的40/57,宇宙飞船的速度是多少

(引导学生先分析数量关系式,然后确定单位“1”,再根据数量关系式进行计算)

4、小军家爸爸每月工资是1500元,妈妈每月工资是1000元,家里每月开支大约要占爸爸妈妈两人工资的3/5,小军家每月开支大约是多少元

独立完成后订正。

四、课堂总结

这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。

设计说明

1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。

教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆运算的同时,计算能力得到提高。

3.重视对学生解决问题能力的培养。

教学中,把用分数乘、除法解决问题和用比解决实际问题作为重要的复习内容之一,结合教材习题,重点分析题中的数量关系,使学生通过对比练习,更好地掌握解决分数乘、除法问题以及比的有关问题的思路,提高学生分析问题、解决问题的'能力。

课前准备

教师准备PPT课件

⊙整理复习

1.结合教材习题,复习分数乘、除法的意义,计算方法及一些特殊规律。(板书课题)

(1)(出示课件)先想一想分数乘、除法应该怎样计算,再计算下面各题。

×=×=×18=

÷=÷=21÷=

÷=÷=×=

①复习分数乘法的计算方法。

(分子与分子相乘的积作分子,分母与分母相乘的积作分母。能约分的可以先约分再计算)

②复习分数除法的计算方法。

[甲数除以乙数(0除外)等于甲数乘乙数的倒数]

③生独立计算。

④观察左边两列算式,你能发现乘法与除法之间有什么规律吗?

(乘法与除法是互逆运算)

(2)结合×和×18复习分数乘法的意义。

(一个数乘分数表示求这个数的几分之几是多少;一个数乘整数表示求几个相同加数的和的简便运算,与整数乘法的意义相同)

(3)结合÷和21÷复习分数除法的意义。

(分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算)

(4)复习分数四则混合运算。

①分数四则混合运算的运算顺序是怎样的?

(与整数四则混合运算的运算顺序相同)

②下面各题怎样简便就怎样算,并说一说算理。

+++

15×

+3÷

3.7×+1.3÷

÷

0.5×

(1)什么叫倒数?0为什么没有倒数?

(乘积是1的两个数互为倒数。因为0和任何数相乘都等于0,所以0没有倒数)

(2)写出下面各数的倒数。

51

(3)判断下面的说法是否正确。

①一个真分数的倒数一定比这个真分数大。()

②一个数乘分数的积一定比原来的数小。()

③一个数除以分数的商一定比原来的数大。()

(1)(出示课件)说出下面每个比的前项、后项。

2∶50.6∶0.3

(2)结合上题,复习比的意义及比的各部分名称。

(两个数相除又叫做两个数的比,比号前面的数叫做比的前项,比号后面的数叫做比的后项)

(3)复习比值的意义及求法。

(比的前项除以比的后项,所得的商叫做比值)

(4)复习比与分数、除法的关系。

(根据学生的回答进行对比复习。比的前项相当于分数的分子、除法中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商)

本节课通过设置疑问,运用自主探索、合作探究等学习方式理解分数与除法的关系,运用此关系探索假分数与带分数的互化方法,理解假分数与带分数的互化算理,培养学生观察、比较、推理、归纳及交流的能力。本节课在教学设计上主要有以下两大特点:

1.让学生在生活中感悟数学。

从生活实际出发,从“分蛋糕”的情境入手,把教材内容与“数学现实”有机地结合起来,符合小学生的认知特点,可以消除学生对数学知识的陌生感,同时增强学生的数学应用意识,唤起学生对数学学习的兴趣。

2.让学生体验成功的乐趣。

学生准备学具三种颜色的纸条

第1课时

分数与除法(一)

⊙设置疑问,导入课题

1.下面各题的商可以分为哪几类?

36÷6=64÷5=0.880÷5=165÷10=0.5

3÷7=0.428571428571…4÷9=0.4444…

引导学生归纳分类:

36÷6=6和80÷5=16的商为整数;

4÷5=0.8和5÷10=0.5的商为有限小数;

3÷7=0.428571428571…和4÷9=0.4444…的商为循环小数。

2.师总结:两个自然数相除,不能整除的.时候,它们的商还可以用分数来表示。今天我们就来学习这部分内容。[板书:分数与除法(一)]

设计意图:复习旧知,回顾所学知识的内在联系,引出课题。

⊙层层深入,探索分数与除法的关系

1.出示问题,理解题意,列出算式。

课件出示:把1块蛋糕平均分给2个小朋友,每人可以分到几块蛋糕?如果把7块蛋糕平均分给3个小朋友呢?

师引导学生读题

提问(1):把1块蛋糕平均分给2个小朋友,可以写出怎样的算式?把7块蛋糕平均分给3个小朋友呢?

预设生:根据除法的意义,可以分别列式为1÷2和7÷3。

提问(2):把1块蛋糕平均分给2个小朋友,每人分到几块蛋糕?把7块蛋糕平均分给3个小朋友呢?

预设生:每人分别可以分到块和块。

提问(3):与1÷2之间是什么关系?与7÷3呢?

(学生观察、讨论后可以明确:1÷2=,7÷3=)

2.初步探索除法与分数的关系。

师:观察1÷2=,7÷3=,说一说整数除法中被除数和除数与得数中的分子和分母存在着什么样的关系。

(学生小组讨论交流,汇报)

师生共同总结:任何一个分数都可以表示为分子除以分母,其中,分子相当于被除数,分母相当于除数。即:被除数÷除数=(除数不为0)。

如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?

质疑:这里的a和b是否可以是任意自然数?为什么?

(不可以,这里的b≠0。在除法中,除数不能为0,所以在分数中,分母也不能为0。教师板书:b≠0)

教材分析

理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。

学情分析

分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

1.通过具体的问题情境,探索并理解分数除法的计算方法。

2.能正确地进行分数除法的计算。

3.培养学生分析、推理能力。

教学重点和难点

教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

教学难点:分数除以整数计算法则的'推导过程。

一、创设情景,教学分数除法的意义

1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!

(1)每盒水果糖重100g,那么3盒有多重?

100×3=300(g)

(2)3盒水果糖重300g,那么每盒有多重

300÷3=100(g)

(3)300g水果糖,每盒重100g,可以装几盒?

300÷100=3(盒)

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

讨论:分数除法的意义和整数除法的意义一样吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

二、探究分数除法的计算方法

(1)引导参与,探究新知

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/5。

师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

4/5÷2

请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。

方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

4/5÷2=4÷2/5=2/5

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

4/5÷2=4/5×1/2=2/5

(2)质疑问难,理解新知

①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

③通过计算你们有什么发现

生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15

能再讲讲这样做的道理吗?

师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。

请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?

展示学生的分法

师(指着涂色部分):你所表示的这一部分是4/5的多少?

通过直观图理解4/5的1/3是4/15

(3)比较归纳,发现规律。

分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:

结果最简。除号要变成乘号。

三、巩固练习

学生独立完成

四、课堂小结

1、分数除法的意义是什么?

2、分数除以整数的计算法则是什么?(学生总结)

五、作业布置

教学内容:

教材第29-30页的内容。

教学目标:

1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题。

2.探索并掌握分数除以整数的计算方法,并能正确计算。

3.能够运用分数除以整数解决简单的实际问题。

教学重点:

分析分数除法应用题中数量间的关系,用方程解答分数除法应用题。

教学难点:

运用分数除以整数解决简单的实际问题。

教具准备:

多媒体课件

预习提纲:

1.观察课本第29页的图,从中你能获得哪些数学信息呢

2.根据这些数学信息你能提出哪些问题

3.分析例题,写出等量关系,并试用方程解答。

4.想想还有别的算法吗

教学过程:

一、创设情境,引发探究

1.同学们喜欢课外活动吗你们喜欢参加哪些课外活动

2.课件出示:从画面中你能获得哪些数学信息呢这些数量之间有什么关系

(1)打篮球的人数是踢足球的4/9.

(2)踢毽子的人数是踢足球的1/3.

(3)跳绳的人数是参加活动总人数的2/9.

……

二、提出问题,自主探究

1.根据这些数学信息你能提出哪些问题

操场上一共有27人参加活动,跳绳的小朋友人数是操场上参加活动总人数的2/9.跳绳的有多少人

列出这题的等量关系,并解答。全班交流。

2.还能提出哪些数学问题,引出例题

跳绳的小朋友有6人,是操场上参加活动总人数的2/9。操场上有多少人参加活动

这道题与上题有哪些区别和联系呢能找到这道题的数量关系吗

你能用方程的知识,解决这样的问题吗应该如何解设小组讨论,再由教师指名在黑板上演示。

解:设操场上有x人参加活动。

χ×2/9=6

χ×2/9÷2/9=6÷2/9

χ×=27

3.想一想,还有别的算法吗怎么算为什么

6÷2/9=27(人)

三、巩固练习,实践探究

刚才同学们根据图中的数学信息,提出了很多的数学问题,这些数学问题,你们能解答吗

1.操场上打篮球的有4人。

(1)打篮球的'人数是踢足球人数的4/9,踢足球的人数是多少

(2)踢毽子的人数是踢足球人数的1/3,踢毽子的人数是多少

(3)操场上踢足球的有9人,是操场上参加活动总人数的1/3,操场上参加活动有多少人

(4)操场上踢毽子的有3人,是操场上参加活动总人数的1/9,是操场上参加活动总人数的1/3。

2.某月双休日9天,是这个月总天数的3/10,这个月有多少天

(板演过程中,着重分析学生可能存在的误解之处。)

3.根据以下方程,编出相应的应用题。

χ×1/5=30χ×2/3=40

四、回顾反思,总结全课。

通过这节课的学习你有哪些收获

学习目标:

1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2.掌握一个数除以分数的计算方法,并能正确进行计算。

学习重点:理解一个数除以分数的意义和基本算理。

学习难点:运用分数除法的.计算方法解决实际问题。

学习内容:

一、分一分

有4张同样的圆形纸片。

(1)每2张一份,可以分成多少份

画一画:

列示:

(2)每1张一份,可以分成多少份

(3)每1/2张一份,可以分成多少份

(4)每1/3张一份,可以分成多少份

(5)每1/4张一份,可以分成多少份

二、画一画

1.有1根2米长的绳子。

(1)截成每段长1/3米,可以截成几段

(2)截成每段长2/3米,可以截成几段

2.3/4里面有几个1/8

三、填一填,想一想

在〇里填上“>”“<”或“=”。

4÷1/2〇4×24÷1/3〇4×34÷1/4〇4×4

2÷1/3〇2×32÷2/3〇2×3/23/4÷1/8〇×8

你发现了什么()

四、试一试

8÷6/75/12÷3

你能把“除以一个整数(零除外),等于乘这个整数的倒数。”和“除以一个分数,等于乘这个分数的倒数。”这两句画合并成一句话吗

教材分析:

《分数与除法》是北师大版小学数学五年级上册第三单元《分数》第五课时的教学内容。

在学生第一学段初步认识分数、体验分数产生、理解分数的意义、读写一些简单分数的基础上,在本册教材的第三单元前四课时,学生结合具体情境,再次认识分数,大大丰富了学生的感性认识。本节教学内容重视引导学生在观察比较中发现分数与除法的关系,在此基础上探索假分数与带分数的互化方法。教材从分蛋糕的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。它是学生进一步学习分数基本性质的基础。

设计理念:

1、重视知识的获取过程,树立新的教学观。

2、重组教材,树立新的教材观。

新课程主张用教材教,而不是教教材。教师要由对教材的挖掘者、执行者走向课程开发的研究者、设计者。本节课,我对教材进行分析后,把原来教材2课时放在一个课时教学,体现了大容量的课堂。

1、在具体情境中通过观察、比较、发现、理解分数与除法的关系,并会用分数表示两个数相除的商。

2、运用分数与除法的关系,探索假分数与带分数的互化方法,初步理解分数与带分数互化的算理,会正确进行互化。

1、掌握分数与除法的关系,会用分数表示除法的商。

2、运用分数与除法的关系,正确进行假分数与带分数的.互化。

教学教法:

为了完成上述教学目标,突出重点,突破难点,我主要采用创设情境法、引导探究发现、归纳等教学方法。在探索知识本质规律处适当给予启发、指导、点拔,帮助学生完成探索知识的过程。

一、情境导入,引出新知。

课件播放分饼情境,学生观察说出相应的除法算式和用分数表示每人分得的块数。这个环节承接了上一节课学生熟悉的分饼情境,引出除法与分数这两个教学内容的主角。

二、探究发现,归纳认知。

1、分数与除法的关系。这时教师及时将学生分饼的思维顺向发展,快速练习

(1)、把a块饼平均分成8份,每份是多少块?

(2)、把a块饼平均分成b份,每份是多少块?

学生先写出除法算式,再用分数表示结果,教师板书

12=1/2块

94=9/4块

a8=a/8块

ab=a/b块

通过这个练习完成从个别到一般的思维过渡,为充分发现分数和除法的关系创造条件。

2、归纳认知,明确关系。

(1)、学生观察思考:分数和除法有怎样的关系?

(2)、汇报发现。

板书:被除数除数=

(3)、引导思考:在除法中除数不能为0,那在分数中应该有怎样的规定呢?

学生讨论得出:分母不能为0。

板书:(除数不为0)。

3、尝试用字母表示。

4、及时练习。

23=87=165=1012=

5/6=()()13/15=()()

12/7=()()100/6=()()

(二)假分数与带分数的互化。

怎样把7/3化成带分数呢?怎样把2化成假分数?

1、学生进行小组合作学习。师出示温馨提示,引导学生合作学习。

2、检测合作学习效果。

3、师做针对性点评。

课本40页第2题。这个环节引导学生探索出假分数与带分数的互化方法,并采取边学边练的形式,使知识得到及时巩固。

四、全课小结,学生谈收获。

学生总结出本课的知识点,对本节课的学习形成一个完整的认识。

板书设计:

板书是一节课的缩影,我的板书就是抓住本节课的教学重点分数与除法的关系来进行设计的。

1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商

3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

掌握分数与除法的关系,会用分数表示两个数相除的商。

教学工具

多媒体课件,圆形纸片,剪刀

一、创设情境,导入新课,

师:同学们过生日都要吃生日蛋糕,喜欢吃吗(生:喜欢)

1.师:今天老师就带来了8个小蛋糕把8个小蛋糕平均分给4个人吃,每人分得多少个

怎么列式生:8÷4=2(个)

2.师:把8个小蛋糕变成1个大蛋糕把1个大蛋糕平均分给4个人吃,每人分得多少个

怎么列式生:1÷4=

二、动手操作,探索新知

1、探索一个物体平均分,体会分数与除法的关系。

(1)师:每人分得多少个请同学们利用这张白色的圆形纸片,折一折,分一分,看看到底是多少个生动手折纸,思考

生:把1个蛋糕看作单位“1”,把它平均分给4个人,也就是平均分成4份,每人分得其中的.一份,也就是这1个蛋糕的1/4,就是1/4个蛋糕

(2)师:把1个蛋糕平均分给3个人,每人分得多少多少个怎么列式

生独立思考并回答。

全班交流,明确:求每人分得多少个,要把1个蛋糕平均分成3份,用除法计算;而把“1”平均分成3份,表示这样一份的数,可以用分数()来表示。所以1÷3=()(个)

2、探索多个物体平均分,体会分数与除法的关系。

师:把3个蛋糕平均分给4个人,每人分得多少个

师:怎样分公平每人分得多少个下面,利用你手中的学具3张圆形纸片,小组合作,分一分,剪一剪。

(1)充分交流、展示学生的想法与做法(可能出现以下几种情况)。

方法一:一张一张分,把每个蛋糕分别平均分成4份,共12份,每人分到3份,3个(1/4)张拼在一起得到(3/4)个。

方法二:三个蛋糕摞在一起,平均分成4份,每人分到1份,1份中有3个(1/4)个,拼在一起得到(3/4)个。

(2)演示:(突出方法二中3个的1/4就是1个的3/4,深化3/4的意义)无论哪一种方法我们都得到:3个蛋糕平均分给4个人,每人分到的就是3/4个蛋糕。即:3÷4=()(个)(板书)

(3)在这里,3/4就有两层含义:既表示1个的蛋糕的3/4,又表示3个蛋糕的1/4

(4)师:同学们真了不起,老师还想考考你们:如果把5个蛋糕平均分给7个人,每人分得多少个呢你能想象一下分的过程吗好好想一想,并和同学交流一下。

学生汇报,明确:5个蛋糕的1/7就是1个蛋糕的5/7,即:5÷7=5/7(个)(板书)(5)师:刚才我们是分的蛋糕,现在我们来分分绳子。把3根绳子平均分成5份,每份是多少根怎么列式学生思考后回答:3÷5=3/5(根)(课件演示)

3、总结概括分数与除法之间的关系。

1÷4=(个)3÷4=(个)

5÷7=(个)3÷5=(个)

师:观察黑板上的这些算式,你发现了什么

三、观察算式,概括分数与除法的关系。

(1)请同学们观察这两组算式,你发现分数与除法有什么关系请观察思考一下,并把你的发现和同学交流一下。

(2)生汇报:我发现除法算式中的被除数相当于分数的分子,除法算式中的除数相当于分数的分母,除法算式的除号相当于分数的分数线。师补充:除法算式的商相当于分数的分数值。

师强调:相当于

(3)师:请每个同学看着这些算式说一说分数与除法的关系。

(师板书):被除数÷除数=被除数/除数

提问:我们能不能反过来说,分数的分子相当于什么谁来说一说

生:分数的分子相当于除法算式中的被除数,分数的分母相当于除数,分数线相当于除号。

(4)师:如果用a表示被除数,b表示除数,二者的关系可以用字母表示成:a÷b=a/b

讨论:用字母表示分数与除法的关系,b是否可以是任何数为什么补充板书(b≠0)师板书:a÷b=a/b(b≠0)提问:为什么b≠0(因为除数不能为0,所以b不能为0。)

师:分数与除法有着如此紧密的联系,那么它们之间有没有区别呢(学生说不出可以引导)

小组议一议再全班交流,明确:分数是一种数,也可以表示两数相除;而除法是一种运算。

三、练习巩固应用

1、你能很快说出这些算式的商吗3÷8=5÷9=7÷13=4÷7=40÷56=12÷61=

2、把1千克葡萄干平均装在2个袋子里,每袋重多少千克怎么列式

把1千克葡萄干平均装在3个袋子里,每袋重多少千克怎么列式

把2千克葡萄干平均装在3个袋子里,每袋重多少千克怎么列式

四、全课小结今天这堂课你有什么收获还有什么问题吗

教材第25~26页的内容及练习。

1.在涂一涂,算一算等活动中,探索并理解分数除法的意义。

3.能运用分数除以整数的计算方法解决实际问题。

教学重难点:

1.探索并理解分数除法的意义。

2.探索并掌握分数除以整数的计算方法,能正确计算。

一、创设情景激趣揭题

1.引导操作:出示一张7等份的纸,让学生涂一涂,用它表示一个分数。

2.引入并板书课题:分数除法(一)

二、扶放结合探究新知

1.提问:如果把这张纸的4/7平均分成2份,每份是多少

2.把这张纸的4/7平均分成3份,又该怎样解决

3.引导归纳分数除以整数的意义及计算方法。

4.想一想;整数除法也有类似的规律吗

5.填一填,验证猜想。

1÷41×1/4

7÷37×1/3

三、反馈矫正落实双基

1.出示26页试一试。

2.指导完成26页练一练的'1~3题。

四、小结评价布置预习

1.引导小结

(1)这节课我们学习了什么知识

(2)还有什么问题

2.布置预习:27~28分数除法(二)

分数除法(一)

4/7÷2=4/7×1/2=2/7

4/7÷3=4/7×1/3=4/21

分数除以整数的意义,与整数除法的意义相同。

计算法则:分数除以整数(零除外),等于乘这个整数的倒数

苏霍姆林斯基曾说过:“引导学生借助已有的经验去获取知识,这是最高的教学技巧之所在。”本节课的教学通过让学生动手操作、自主探究、合作交流等方式,使学生经历“探究——发现——验证——修改”的过程。通过一系列的活动,使学生完成了知识的自我构建,同时也加深了对分数除以整数的意义的理解,符合学生的发展需要。

另外,本节课的教学设计还遵循学生的认知规律和年龄特点,对计算进行探究式教学。让学生以自主探究和合作交流的方式,在分析问题和解决问题的过程中体验成功的喜悦,不仅使学生获得了知识,发展了智力,还激发了学生学习数学的兴趣

教师准备PPT课件、长方形包装纸

学生准备长方形纸

⊙创设情境,提出问题

1.问题导入。

师:同学们,我们学过整数除以整数(0除外),也知道了整数除法的意义。今天我们将学习分数除法。那么分数除法的意义是什么呢?它和整数除法的意义是否相同呢?下面就让我们带着疑问一起来探究一下几个小朋友分饼的问题。

请你们列出算式并计算。

(1)每人吃张饼,4个人共吃多少张饼?

(2)把2张饼平均分给4个人,每人分得多少张饼?

(3)有2张饼,每人分得张饼,可以分给几个人?

(引导学生观察上面的三道题,并说一说它们都是已知什么,求什么)

2.揭示分数除法的`意义。

讨论:(3)题中涉及了分数除法,想一想,分数除法的意义和整数除法的意义相同吗?

设计意图:通过对一组题的探究和对比,使学生发现分数除法的意义与整数除法的意义相同,这样新旧知识的迁移过渡,可以使学生对分数除法的意义理解起来更加容易。

⊙合作交流,探究新知

1.引导参与,探究新知。

(1)出示教材55页例题。

师:(出示一张长方形的包装纸)老师想用这张漂亮的包装纸把送给妈妈的礼物包装起来,可是这张纸太大了,把它的平均分成2份就够了,每份是这张纸的几分之几呢?

(2)动手操作,分一分,涂一涂。

师:请大家拿出一张长方形纸,涂色表示出这张纸的。

(学生动手操作,教师巡视指导)

师:把一张长方形纸的平均分成2份,想一想,是把哪一部分平均分成了2份?其中的一份是多少呢?请大家用自己喜欢的颜色表示出来。

(学生活动,教师指导)

(3)观察发现。

师:通过画图,你发现了什么?能用一个算式表示出涂色的过程吗?

预设

(教师利用课件配合学生汇报)

生1:把平均分成2份,每份是2个小格,占这张纸的。

生2:里面有4个,平均分成2份,每份就是2个,是,即÷2=。

设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生进一步理解、感受分数除法的意义。

2.初探算法。

师:如果不看图,你会计算÷2吗?你能提出大胆的猜想吗?

生:分母不变,被除数的分子除以整数得到的商作商的分子。

提出质疑,验证猜想,理解新知。

(1)尝试验证,发现问题。

师:科学的验证不是仅通过计算一两道题就能得出结论的,你们能不能自己设计一道分数除以整数(0除外)的计算题来验证刚才的猜想是否正确呢?

(学生汇报验证的结果)

师:为什么有些题目能很顺利地算出来,而有些题目却不能很快地算出准确的答案呢?(分数的分子不能被除数整除)

49~50页的内容及练习十二1~12题。

1.知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。

2.过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程

3.情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。

理解可以用分数表示两个数相除的商。

课件

一、复习导入

1.表示什么意思?它的分数单位是什么?它有几个这样的分数单位?

2.把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位1?

3.引入:5除以9,商是多少?板书:59

如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。

二、新课讲授

1.教学例1:出示题目

(1)列出算式。(板书:13=)

(2)讨论:1除以3结果是多少?你是怎样想的?

(3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的,就是个1。

板书:13=1/3(个)

2.教学例2:出示题目

(1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的'4份。

(2)口述方法及每份分得的结果,教师总结几种不同的分法。

(3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的,即3个块,把3个块饼合起来就是1个饼的,即块,因此,34=3/4(块)。

由此可见,不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样1份的数。

学生相互说说表示的意义。

3.教学分数与除法的关系。

教材第29~30页“分数除法(三)”。

1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。

2.在解方程中,巩固分数除法的计算方法。

1.能够体会方程是解决实际问题的重要模型。

2.能够用方程解决实际问题。

1.出示课外活动情况图问:从图中,你们能获得哪些数学信息呢

2.引入并板书课题。

1.根据这些数学信息,你能提出哪些数学问题

2.引导学生逐一解答提出的问题。

3.重点引导:跳绳的`有6人,是操场上参加总人数的2/9,操场上有多少人该怎样解答

4.引导观察,找出有什么相同点和不同点

1.指导完成P29的试一试的1,2题。

2.你能根据方程

X×1/5=30

编一道应用题吗

3.请你想一个问题情景,遍一道分数应用题。

通过本节课的学习你有哪些收获

2.布置预习

整理前面所学知识。

分数除法(三)

跳绳的小朋友有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动

参加活动总人数×2/9=跳绳的人数

解:设操场有X人参加活动。

教学目的:

1、使学生掌握分数与除法的关系,并进行简单的应用。

2、培养学生动手操作的能力和抽象、概括、归纳、思维能力。

教、学具准备:

投影仪、部分胶片、每组学生三个同样大小的圆形纸片、剪刀。

一、复习旧知(投影)

1.表示什么意义?它的分数单位是什么?有几个这样的分数单位?

2、把4个苹果平均分给两个孩子,每个孩子分得多少个?怎样列式?

3、把一根钢管平均截成3段,每段的长度是这根管的几分之几?这里把谁看作单位"1"?

二、引入新课

教师提出问题:3除以7,商是多少?(板书:3÷7=)如果商不用小数表示,怎么办呢?学生一时语塞。今天我们学习了分数与除法的关系就能解决这个问题。

板书课题:分数与除法的关系

三、讨论操作

1、投影例2:工人师傅要把1米长的钢管平均截成3段,每段长多少?

教师让一学生读题,然后就如何解决这个问题,学生分组讨论,教师巡视,参与各小组的讨论,并适时点拨。

师:谁能把你们小组讨论的结果告诉大家?生:我们小组讨论的结果是这样的?因为钢管的长度是1米,把它平均分成3段,求每段的长,用除法,列式为:1÷3(板书:1÷3),但除不尽,商是一个循环小数,等于0.33……

师:说的好,但说到商是一个循环小数时,感到有点美中不足,故声音小了下来。那么是否还有其它的求法呢?

生:要把1米长的钢管平均分成3段,根据分数的意义,把1米长的钢管看作单位"1",求1段的长就是米。(师板书:米)

师:太棒了。这样所求的钢管长度不再是烦人的循环小数,而是一个简洁的分数。随即指着1÷3和米,它们有什么关系?

生:相等关系。因为它们表示的是同一段钢管的长度,所以它们相等

师:由上可知:1除以3,商是用什么数表示的?

师生共同小结:整数除法不能整除时,可以用分数表示它们的商。

2、投影例3:幼儿园里,老师把3个饼平均分给4个孩子,每个孩子分得多少个?

师:

(1)要求每个孩子分得多少饼,怎样列式?(生说师板书:3÷4=)

(2)3除以4能否整除?我们能否像例2那样用分数表示它的商呢?

(3)如果能,那么商又是多少?现在老师把这个问题交给同学们,请拿出准备好的纸片和剪刀,用三个同样大小的圆形纸片比作三个饼,4人一组扮作幼儿园里的4个孩子,你们帮助幼儿园的老师分一分。看每个孩子分得多少个饼?

学生操作,教师巡回指导、点拨,然后小组汇报。

生:我们组是一个一个地分的。先把1个饼平均分成4份,得到4个,3个饼共得到12个,平均分给4个孩子,每个孩子分得3个士,拼在一起是个饼。

生:我们组是把3个饼叠在一起,先平均分成4份,剪下其中的一份,再把这一份展开,拼在一起得到个饼,所以每个孩子得到个饼。(板书:个)

师:两种分法都对,相比来说,哪种分法简便些?(后一种)下面请同学们看后一种的分饼过程。

投影图形,与书本上的图形完全相同。(制胶片时要做成抽拉式的,使3个饼的`士部分可移动)(略)

据投影的图形,再让学生思考回答:

(1)三个饼的几分几就是一个饼的几分之几?反过来,一个饼的几分之几就是三个饼的几分之几?

(2)个饼表示什么意义?

(3)表示什么意义?

四、探求规律

教师指着两个算式:1÷3=3÷4=提出以下问题。

1、观察这两个算式,等号左边是什么算式?右边是什么数?你能发现除法与分数之间有什么关系吗?为了便于发现规律,教师可在等式上画出如下的箭号,并再次让学生讨论。

1÷3=3÷4=

生:两个整数相除,商可以用分数表示。并且被除数作分子,除数作分母,除号相当于分数中的分数线。

2.如果用文字表示:被除数÷除数=

3.在这个等式中,要注意什么问题?

生:除数不能是零,分数的分母也不能是零。

4、若用a、b分别表示被除数和除数,那么除法与分数之间的关系又怎样表示?

学生板书:a÷b=(b≠o)

5、两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?

6、分数的各部分分别相当于除法算式中的什么?

7、综合以上问题,能不能说除法就是分数除法与分数之间有什么区别?

生:除法是一种运算,分数是一种数。

师:刚上课时,提出的问题:3÷7商是多少,你会做了吗?

看书质疑。

五、练习巩固(略)

六、全课总结(师生共同总结。略)

1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。

2、通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。

3、通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。

理解分数除法的意义,掌握分数除以整数的计算方法。

分数除以整数计算法则的推导过程。

教学准备:

多媒体课件、长方形纸等。

一、旧知复习,蕴伏铺垫

复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。

1、展示问题:

(1)什么是倒数

(2)你能举出几对倒数的例子吗

(3)如何求一个数的倒数

2、展示多媒体:笑笑和淘气去买白糖。

问题1:他们每人买了两袋白糖,一共买了多少袋白糖

问题2:这些白糖一共重2千克,每袋白糖有多重

问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克

二、创设情境,理解意义

展示多媒体:把一张纸的4/7平均分成2份,每份是这张纸的几分之几

1、利用准备好的纸,先把纸平均分成7份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。

2、汇报

三、大胆猜想

学生通过操作,明白2/7是怎样得到的.。那么到底应该怎样计算分数除法呢让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。

四、再次探究

1、学生很快发现有些算式是无法用以上结论计算出来的,如4/7÷3,分子4除以3是除不尽的。

2、让学生动手分一分、涂一涂,然后再让他们进行小组交流。

3、得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。

板书:分数除法(二)

除以一个整数(零除外)等于乘这个整数的倒数。

教材第27~28页的内容及练习。

2.掌握一个数除以分数的计算方法,并能正确计算。

3.培养学生解决简单实际问题的能力。

1.掌握一个数除以分数的计算方法,并能正确计算。

2.整数除以分数的计算法则推导过程。

1.猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三次分别是几个人分苹果吗

2.引入并板书课题:分数除法(二)

设计意图:设疑激趣。明确目标。

1.分一分,引导感知一个数除以分数的意义。

2.画一画:引导完成27页的画一画,理解分数除以分数的计算方法。

3.引导完成28页的填一填,想一想,你发现了什么

4.引导归纳计算方法。

设计意图:理解一个数除以分数的意义。总结归纳计算法则。

三、反馈矫正

出示P28的试一试。

1.统一分数除法的计算法则。

2.指导完成P28练一练的'1~4题。

1.引导小结:通过这节课的学习,你有什么收获

2.布置预习:P29分数除法(三)

板书设计:分数除法(二)

4÷1/2=4×2=8;4÷1/4=4×4=16

一个数除以分数的意义与整数除法的意义相同。一个数除以分数,等于乘这个分数的倒数。

THE END
1.二年级数学计算题专项练习1000题汇编集锦小学教育二年级数学计算题专项练习1000题汇编集锦.docx 61页VIP内容提供方:周周知识分享 大小:36.21 KB 字数:约4.96万字 发布时间:2024-12-14发布于云南 浏览人气:0 下载次数:仅上传者可见 收藏次数:0 需要金币:*** 金币 (10金币=人民币1元)二https://m.book118.com/html/2024/1213/6101122243011010.shtm
2.一年级数学计算题专项练习1000题汇编202412111.docx一年级数学计算题专项练习1000题汇编(1)71+2=(2)79+4=(3)2+6=(4)18+6=(5)67+3=(6)86+2=(7)5+9=(8)15+3=(9)79+2=(10)83+4=(11)67+9=(12)65+2=(13)67+8=(14)59+3=(15)31+3=(16)28+7=(17)44+4=(18)43+4=(19)64+7=(20)29+3=(21)69+2=(22)6+7=(23)35https://www.renrendoc.com/paper/368515488.html
3.小学数学易错题汇总摘要:新东方网小学频道为您提供小学生数学题,为小学生学习数学提供学习资源,下面是小学一年级数学易错题汇总…… 一、判断题: 1.一个两位数,最高位是个位。() 2.66中两个6的意义相同,都表示6个一。() 3.三十六写作306。() 4.钟面上分针从1走到4,走了3分钟。() http://www.360doc.com/showarticle.aspx?id=499739247
4.(完整版)小学六年级数学计算题强化训练集六年级数学计算训练(二) 分数 3. 一、直接写出得数。 (每题3分,共36分) 0.8×0.6= 0.9+99×0.9= 1÷2325 = 58 ×4 15 = 9÷3 7 = 5π= 7.2÷8×4= 3.25×4= 3.3-0.7= 13 +25 = 2-7 11 = 8π= 4. 二、解方程或比例。(每题5分,共15分) 14 ∶12=X ∶25 1.250.25 =X 1.6 https://m.360docs.net/doc/ff19067283.html
5.暑假专题作业:万以内的加法和减法(二)计算题(专项训练)暑假专题作业:万以内的加法和减法(二)计算题(专项训练)-小学数学三年级上册人教版 1.用竖式计算。(带*的要验算) (1)304+696= (2)900-467= (3)*427+543= (4)*507-279= 2.用竖式计算。 (1)478+309= (2)900-546= (3)740-369+123= (4)248+(653-498)= 3.列竖式计算(画△的请验算) (1)https://www.zxxk.com/soft/40068844.html
6.四年级数学三步计算应用题练习(精选15篇)篇2:四年级数学三步计算应用题练习 教学内容:教材15页例4 素质教育目标: 1、使学生借助线段图能够理解简单应用题的数量关系,并会用两种方法解答这类应用题。 2、进一步培养学生的分析问题能力和灵活解题的能力。 3、渗透数形结合和事物相互联系的辩证唯物主义观点。 https://www.360wenmi.com/f/filewe6mbrcx.html
7.上册下册试卷三年级数学应用题计算题强化训练小学数学三年级(计算专题第18讲) 第二十三讲 基本盈亏问题 (应用题专题第33讲) 参考答案 《高思学校竞赛数学课本》与《高思学校竞赛数学导引》一起构成了“新概念奥林匹克数学丛书”。该丛书是小学奥数的顶级篇,适合前10%的智优生使用,适合较高层次的奥数培训班使用。 https://h5.youzan.com/v2/goods/1ybbfeqt6fv36
8.小学数学计算专项训练13篇(全文)小学数学计算专项训练 第2篇 -9004515 41.52.54 7.28-(1.28+0.25) 90.599+90.5 1.252.53.2 375+3601825 2.05-0.82-0.18 8.5-(5.6+4.8)1.3 72( 1618-1 7.6-2.050.82 3.22.77+0.233.2 二、解方程(8题) x- x=14 + x= =0.3 2x+31.5=10.5 https://www.99xueshu.com/w/file1wd1bp8t.html
9.三年级数学计算题100道小学三年级计算题大全三年级数学必练100摘要:三年级是小学教育中至关重要的一年,在这个承上启下的阶段既要吸收新知识又要巩固已学的内容,所以大量的练习巩固必不可少,今天本文就为大家整理了三年级数学计算题100道,希望对您有所帮助。 目录 三年级数学口算题 三年级数学计算题大全 三年级数学计算题竖式解题方法 https://www.maigoo.com/top/430052.html
10.小学五年级下册数学计算题及答案淘豆网为你提供小学五年级下册数学计算题及答案、小学五年级下册数学计算题100道题和小学五年级下册数学计算题下载的服务,相当于小学五年级下册数学计算题大全,这里你可以找到所有关于小学五年级下册数学计算题的内容。https://www.taodocs.com/topdoc/97560-0-0-8.html
11.一道小学数学题a一道小学数学题 题目 四位数abcd为A(即它的千位、百位、十位、各位分别是a,b,c,d),由它的四个数字a,b,c,d组成的最小四位数记为B。printf("\n一共有%d个解\n",count);//解个数 return0; //system("pause"); } 输出结果为: 【答案解析】 A-B=999得到A=B+(1000-1),如果Bhttps://blog.csdn.net/weixin_42467709/article/details/83449593
12.小学三年级学生计算错误的成因及对策教学漫谈教研平台每个学生的问题不同,其中主要原因是计算法则掌握不好,例如2500-1500÷5,正确的结果应该是2500-300=2200,但是有的学生就会这样计算 2500-1500÷5=1000÷5=200。有学生的计算方法不明确,导致计算错误。 4.错题分析及整理不认真 对于小学三年级的学生来说,他们年纪小,玩性大,很难认真分析自己的错误,更不用说整理http://cnsx.haianedu.net/jypt/jxmt/content_113443