3.1.1含金硫化矿物生物氧化的细菌(2)
3.1.2细菌氧化含金硫化矿的机理(2)
3.1.3细菌氧化工艺(2)
3.1.4影响细菌浸金效果的主要因素(3)
3.2氧化焙烧法(4)
3.2.1概述(4)
3.2.2氧化焙烧原理(5)
3.2.3加石灰氧化焙烧法(5)
3.3加压氧化法(6)
3.3.1概述(6)
4难浸金矿三种预处理方法的比较及评价(8)
5难处理金矿的其他预处理方法(9)
结束语(11)
致谢(11)
参考文献(12)
浅谈难浸金矿的预处理技术
1.序言
随着易处理金矿的不断开采,可直接氰化提取的易浸金矿床资源日趋枯竭,难处理(难浸)金矿已成为金矿的重要新资源。据估计,全世界现在至少有三分之一的金产量产自难处理金矿,储量约占全国金矿地质储量的30%,现已探明的难处理金矿存在选冶联合金回收率低和氰化物耗量高等问题。因此,如何有效并可持续地开发利用难处理金矿石已成为金的提取研究中最重要的研究课题,也是我国黄金工业迫切需要解决的技术难题之一。对于难处理金矿,直接用氰化物处理浸出其金矿石和浮选精矿,很难获得满意的回收率,并会消耗大量的氰化物,为了解决这一难题,目前已研究出针对不同矿石的各种预处理方法,即常规氧化焙烧、热压(加压)浸出和细菌氧化法。
2难处理金矿的工艺矿物学特点
2.1难处理金矿的工艺矿物学特点
从工艺矿物学上看难处理金矿中金的赋存状态和矿物组成方面的原因阻碍了金的氰化浸出,可归结为物理包裹和化学干扰两类。
化学状态,氰化浸出时金也不易接触到氰化物溶液。
包裹金的主题矿物主要是黄铁矿和砷黄铁矿(毒砂),其次为铜、铅和锌的硫化物。物理包裹是目前最主要和最重要的难金浸金矿类型,也是目前研究最多解决得较好的一类难浸金矿。
对于化学干扰,主要是指矿石中存在耗氰、耗氧和吸附金的物质等,干扰氰化过程,造成金矿石难浸。
2.2我国难处理金矿类型和特征
我国黄金资源大多属易选冶矿,也有相当数量的难处理金矿床。我国难处理金矿资源比较丰富,现已探明的黄金地质储量中,约有1000t左右属于难处理金矿资源,约占探明储量的1/4。这类资源分布广泛,在各个产金省份中均有分布。其中,贵州,云南、四川、甘肃、青海、内蒙、广西、陕西等西部省份占有较大比重,辽宁、江西、广东、湖南等省区也有较大的储量。主要的资源矿区如:广西金牙金矿(30t)、贵州烂泥沟矿区(52t)、贵州紫木函矿区(26t)、贵州丫他矿区(16t),云南镇源冬瓜要矿区(10t),甘肃舟曲坪定矿区(15t),甘肃岷县鹿儿坝矿区(30t),辽宁凤城(38t),广东长坑矿区(25t),安徽马山矿区(14t)等。造成这些矿石难处理的原因是多方面的,矿石中金的赋存状态和矿物组成是最根本的原因,根据工艺矿物学的特点分析,国内难处理矿金矿资源大体上可分为三种主要类型。
第一种为高砷、碳、硫类型金矿石,在此类型中,含砷3%以上,含碳1%~2%,含硫5%~6%,用常规氰化提金工艺,金浸出率一般为20%~50%,且需消耗大量的Na
CN,采用浮选工艺富集时,虽能获得较高的金精矿品位,但精矿中含
2
砷、碳、锑等有害元素含量高,而给下一步提金工艺带来影响。
第二种为金以微细粒和显微形态包裹于脉石矿物及有害杂质中的含矿石,在此类型中,金属硫化物含量少,约为1%~2%,嵌布于脉石矿物晶体中的微细粒金占到20%~30%,采用常规氰化提金,或浮选法浮集,金回收率均很低。
第三种为金与砷、硫嵌布关系密切的金矿石,其特点是砷与硫为金的主要载体矿物,砷含量为中等,此种类型矿石采用单一氰化提金工艺金浸出提标较低,若应用浮选法富集,金也可以获得较高的回收率指标,但因含砷超标难以出售。
3难浸金矿的预处理主要方法
3.1细菌氧化法
3.1.1含金硫化矿物生物氧化的细菌
已发现的能用于生物湿法冶金的微生物有20余种,分别属于硫杆菌属、铁杆菌属、嗜酸嗜热的硫叶菌属和异氧菌、真菌及酵母菌。现在用于工业上预氧化金矿石的细菌主要有四种:氧化铁硫杆菌、氧化硫硫杆菌、氧化铁铁杆菌、氧化硫铁杆菌。优良菌种的获取是微生物技术的核心。这些细菌主要生长在金属硫化矿床和煤炭矿床的酸性矿水中,经过分离、筛选及驯化等培养步骤,可用于金属提取的湿法冶金中。
3.1.2细菌氧化含金硫化矿的机理
在难浸金矿中,存在能被细菌氧化的硫化物,如黄铁矿、黄铜矿、磁黄铁矿、毒砂等。这些载金硫化物氧化,依靠嗜酸细菌如氧化亚铁硫杆菌和中温嗜热细菌氧化硫化矿物,使包裹金的黄铁矿和毒砂氧化,暴露出自然金,然后采用浸出法提金,从而形成细菌预氧化金矿石-浸出提金工艺。也可通过浮选等方法富集后,获得金精矿,再从细菌预氧化浸出提金,从而形成浮选-金精矿细菌预氧化-浸出提金工艺。
细菌氧化硫化矿有直接作用和间接作用两种方式。直接作用指细菌细胞与金属硫化物固体之间直接紧密接触,通过细菌内特有的铁氧化酶和硫氧化酶直接氧化金属硫化物而释放出金属。间接作用指利用氧化铁硫杆菌的代谢产物(硫酸高铁和硫酸)与金属硫化物起氧化还原反应,硫酸高铁被还原为硫酸亚铁或产生元素硫,金属则以硫酸盐形式溶解,而亚铁被氧化成高铁,元素硫被细菌氧化成硫酸,从而形成了一个有效的氧化还原浸出循环体系,但在矿石氧化过程中,细菌的直接和间接作用常常是同时进行的,并以不同的比例存在。综合研究报道,细菌浸出硫化铜矿、辉铜矿和高硫锰矿时,大多为细菌间接作用的结果,反应通式如下:
4FeSO
4+O
+2H
SO
4
→2Fe
(SO
)
3
O(细菌作为催化剂)
MS+Fe
2(SO
→MSO
+2FeSO
+S
细菌浸出黄铜矿和黄铁矿时,细菌的直接氧化起主导作用,反应式分别为:(在细菌的参与下及催化作用)
CuFeS
2+4O
→FeSO
+CuSO
4FeS
2+15O
O→2Fe
毒砂是最常见的载金矿物,它的细菌氧化溶解浸出,细菌的直接和间接作用起效果,细菌通过催化作用促进矿物溶解,并从中获取自身生长代谢所需的能量。其机理如同电化学氧化一样,首先发生阳、阴极反应,具体可表示为:阳极反应:FeAsS→Fe2++As3++S+e-
阴极反应:O
2+4H++4e-→2H
O
反应生成的As3+迅速发生水解:
As3++3H
2O=H
AsO
+3H+
然后再细菌作用下进行氧化过程,其中三价铁离子与砷酸反应生成砷酸铁沉淀。对于直接作用和间接作用在浸出过程的重要性,科研工作者一直试图研究清楚,以便强化和改进浸金工艺。鉴于大多数细菌吸附于矿粒上,溶液中游离细菌数量很少;同时有研究表明,细菌代谢产生的硫酸高铁其浸出效果优于纯化学药剂的浸出效果。