钯碳催化剂作用及制备工艺介绍

在现今炼油、石油化工等工业催化反应中,有很多的钯催化反应,尤其是氢化反应中的选择加氢,以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯,均广泛采用和开发钯催化剂。对石油重整反应,钯也是常选取的催化剂组分之一。在脱氢反应和异构化反应中,虽多数应用贵金属催化剂,但主要是Pt,直接用钯的不多。

钯碳是一种催化剂,是把金属钯粉负载到活性碳上制成的,主要作用是对不饱和烃或CO的催化氢化。具有加氢还原性高、选择性好、性能稳定、使用时投料比小、可反复套用、易于回收等特点。广泛用于石油化工、医药工业、电子工业、香料工业、染料工业和其他精细化工的加氢还原精制过程。

钯碳的制备

1.活性碳载体的预处理

活性炭由于其本身的高比表面积和高吸附性能,在化工生产中有着广泛的用途,特别是以活性炭做载体制备Pd/C催化剂。载体的性质在很大程度上影响活性金属在催化剂中的含量、分散度、负载的均匀程度和牢固程度等因素,从而影响催化剂活性以及其他催化剂性能指标。活性炭表面积的大小对催化剂活性有重要影响,较大的比表面有利于钯晶粒在载体内、外表面的分散,从而增大了反应物分子与活性中心的接触,有利于反应物分子的吸附、扩散、脱附,提高了反应速率。但是当载体比表面积过大时,由于活性组分的分散度高,可能使单位表面上的活性中心数目减少,从而使活性下降。

2.载体碳的酸处理

活性炭的灰分较高,一般用酸洗涤,大大降低活性炭载体的灰分含量(特别是通过除去碱土金属和重金属化合物),又使载体的表面官能化,这两种性能对所催化的化学反应和产物的选择性都有有利影响。用氢氧化钠处理载体,因化学清洗作用和酸碱中和反应,活性炭表面的酚羟基、内酯基和羰基浓度随之发生变化。活性炭的表面羧基在酸性或中性溶液中离解生成OH-,使溶液pH值升高至碱性,这有利于PdCl42-与按沉淀机理吸附在活性炭表面上。厉嘉云[5]提出经盐酸、氢氧化钠溶液或氨水处理的活性炭表面金属钯的平均粒径从大到小顺序为:Pd/C(HCl)、Pd/C(NaOH)、Pd/C(NH3·H2O)、Pd/C(未处理)。而Radkevich等认为,钯分散度随着载体上官能团碱性的增强而增大。经一NH2改性的活性炭为载体的Pd催化剂比酸性含氧基团改性的呈现更高的金属分散度,在氢气氧化中表现出更高的催化活性。

3.载体碳的氧化处理

钯盐在还原前先改变成不可溶化合物,避免金属盐自溶液被还原成金属时常会发生的晶体迁移和长大的问题。一般添加氧化剂对活性炭进行氧化预处理,一是对活性炭中的一些杂质进行选择性氧化,使其变成可溶性盐而除去,二是增加活性炭表面的—COO—(羧基)基团,破坏活性炭表面上的还原性基团,使钯金属更易于在载体表面上的均匀分布,而且可以防止钯金属吸附时的直接还原,有效抑制贵金属晶粒度的增大,可以采用过氧化氢和次氯酸钠作为氧化剂。艾伯斯·P等提出,采用一种氧化剂如过氧化氢,在钯盐被炭还原前先进行水解,这样改善了钯的分布,获得了高活性催化剂。黄伟等采用过氧化氢与次氯酸钠的混合物作为氧化剂对活性炭进行氧化处理,改善了催化剂中钯的吸附及钯在载体表面的均匀分布。

4.载体碳的热处理

1974年,英国石油公司开发成功含石墨的活性炭_2,其负载的金属原子可排在石墨的网状组织中,有良好的分散性和稳定il生。石墨具有更强的传输电子能力和更稳定的结构,因此,以石墨化的活性炭作载体具有比活性炭更优良的性能。1990年,英国石油公司与凯洛格公司联合,实现了石墨化活性炭负载钌基氨合成催化剂的工业应用热处理是为了提高活性炭的强度,经过真空高温处理,使之部分石墨化。曹峻清等提出,石墨化程度控制在3%以下,并除去少量有机杂质,处理时的真空度为1.013×~1.013×Pa,温度300~1500℃,升温速度5℃·rain,保温20—50h,真空下缓慢降至室温出炉,处理后的比表面积为900~1500·,孔容0.02~1.20mL·。采用此方法使催化剂活性组分粒度大小适宜,分布均匀。阿纳托利·乌拉帝米若维奇·若曼尼恩科等提出,若载体石墨化程度大于20%,则制备的催化剂钯晶粒度小于3.5nm,钯均匀分布在距离载体表面距离为其半径的1%~30%,形成均匀的蛋壳分布,这种分布有助于提高催化剂活性。

其他预处理方法

使用饱和EDTA·2Na溶液预处理活性炭后,在钯负载量降低的情况下,可实现活性炭表面金属钯呈大粒径、窄分布[6]。将经酸洗后的活性炭用卤化钾和亚硝酸钠进行浸渍处理,利用卤素离子和亚硝酸根离子与钯和活性炭表面较好的亲和作用,增强前驱物与载体的相互作用,遏制还原过程中钯晶粒迁移长大,从而提高钯的分散度及微晶含量[7]。

1.浸渍

2.还原

还原方法是影响催化剂上活性金属颗粒大小的主要因素,而表面金属含量和金属颗粒大小会很大程度上影响催化剂的活性。张曙东[10]等指出Pd(acac)2作前驱体,采用氢气干法还原方式制备的钯炭催化剂活性较好,Pd(acac)2在300℃以上分解为Pd0和Pd的氧化态,在氢气氛围下,氧化态的Pd被还原为Pd0,同时氢气的存在能抑制一些积炭现象,Pd晶粒表面以洁净的形式存在。由于乙酰丙酮钯配合物较为稳定,当采用水合肼和氢气湿法还原方式时,只能使部分Pd2+转变为Pd0。而采用在氮气保护下加热分解的活化方式,Pd(acac)2主要分解为Pd0和Pd的氧化态,但是氮气保护下炭载乙酰丙酮在较高温下分解,易产生积炭将钯晶粒部分包裹或与部分钯原子杂合,阻碍了Pd晶粒与反应物的结合,影响了Pd/C催化剂的催化活性。湿法还原法的缺点是制得的催化剂的粒径较大,因此得到的催化剂的性能较差。若采用加碱性试剂使金属盐水解,再加还原剂还原的一步法制备催化剂,不仅可形成小尺寸的金属微晶,还能简化制备工艺。

1.浸渍法

浸渍法是制备催化剂的最简便的方法,也是工业上最常用的方法。多数情况下使用活性组分的易溶于溶剂的盐类或其他化合物的溶液与载体接触,这些盐类或化合物负载在载体表面上以后,通过加热使溶剂挥发掉,再经焙烧或用还原剂使催化剂活化[11]。

2.浸渍沉淀法

浸渍沉淀法是许多贵金属浸渍型催化剂常用的方法。由于浸渍液多用氯化物的盐酸溶液(如氯钯酸),浸渍液在吸附达到平衡后,再加入氢氧化钠或碳酸钠溶液,用盐酸中和,从而使氯化物转换为氢氧化物沉淀于载体的内孔和表面。此法有利于氯离子的洗净脱除,并可使生成的贵金属化合物在较低的温度下用肼、甲醛和过氧化氢等含氢化合物水溶液进行预还原。此条件下所制得的活性组分贵金属易于还原,且粒子较细,不产生高温焙烧分解氯化物时造成的污染[12]。

3.离子交换法

离子交换法制备催化剂是利用载体表面存在着可以进行交换的离子,将活性组分通过离子交换负载在载体上,再经过洗涤、还原等制成负载型金属催化剂。以离子形式引入活性组分,能更好地提高颗粒大小的均一性,并适用于制备高分散、大表面积、均匀分布的负载型金属或金属离子催化剂,尤其适用于低含量、高利用率金属催化剂的制备。离子交换方法制备碳材料负载钯催化剂,目前文献仅对带负电的载体和金属阳离子交换法有介绍,应用广泛的正电前驱体是钯的胺类络合物。通常用两种形式的前驱体Pd(NH3)4(N03)2和Pd(NH3)4Cl2络合物[13]。

4.化学气相沉积法

化学气相沉积法与润湿法相比有许多优点:(1)通过载体表面基团与适宜的可挥发性有机金属前驱体的气相的反应使活性物质发生直接有效的沉积;(2)避免了浸渍过程的许多步骤,如:洗涤、干燥、煅烧以及还原;(3)避免了在锻烧和还原步骤中由于高温而引起的金属分散度的变化。化学气相沉积法要求金属前驱体为可挥发性有机金属化合物,该类前驱体一般需要自己制备[14]。

钯合金可制成膜片(称钯膜)。钯膜的厚度通常为0.1mm左右。主要于氢气与杂质的分离。钯膜纯化氢的原理是,在300—500℃下,把待纯化的氢通入钯膜的一侧时,氢被吸附在钯膜壁上,由于钯的4d电子层缺少两个电子,它能与氢生成不稳定的化学键(钯与氢的这种反应是可逆的),在钯的作用下,氢被电离为质子其半径为1.5×1015m,而钯的晶格常数为3.88×10-10m(20℃时),故可通过钯膜,在钯的作用下质子又与电子结合并重新形成氢分子,从钯膜的另一侧逸出。在钯膜表面,未被离解的气体是不能透过的,故可利用钯膜获得高纯氢。虽然钯对氢有独特的透过性能,但纯钯的机械性能差,高温时易氧化,再结晶温度低,易使钯管变形和脆化,故不能用纯钯作透过膜。在钯中添加适量的IB族和Ⅷ族元素,制成钯合金,可改善钯的机械性能。

1.浸渍方式对催化剂性能的影响

在相同还原条件下考察了浸渍方法对催化剂表

表1浸渍方式与催化剂性能的关系

失活

1.钯碳催化剂的磨损流失

钯碳催化剂的磨损主要是由以下原因造成的:

1)在催化剂运输、储存和装填过程中,因振动和碰撞,催化剂颗粒之间以及催化剂颗粒与设备器具之间发生磨擦,引起催化剂落粉;

2)在生产过程中,因反应器液位波动,催化剂床层上的催化剂活性组分钯在进料溶液的直接冲刷下流失;

3)工艺调节不及时,如进料温度变化过大,引起加氢釜内的液体“闪蒸”,颗粒之间的磨擦加剧。

2、钯碳催化剂的结垢

氧化反应的副反应会生成一些高分子有机物以及金属腐蚀产物,这些副产物的粘性较大,吸附在催化剂表面和微孔内,覆盖了一部分催化剂活性中心,阻碍了加氢反应。在氧化单元开、停车时,这些粘性物质的含量更高,会导致催化剂失活。

3、钯碳催化剂中毒

(2)永久性中毒

硫会造成催化剂永久性中毒。硫化物(如硫酸盐等)随原料和辅料进入反应系统后,与钯反应生成硫化二钯或硫化四钯,这两种反应产物又被还原成大晶粒的金属单质钯,这大晶粒钯的活性比高度分散状态下的微晶钯低得多。所以经过上述叙述可以确定钯碳在生产过程中会有部分损失,含量会下降一部分。

1.保持生产工况的平稳运行。尽量减少流量和压力的波动以减少床层移动;控制反应温度平稳以避免催化剂床层的局部过热引起Pd微晶的烧结成长;在催化剂储运和装填过程中应尽量避免颗粒直接摩擦产生炭粉细粒。

3.优化氧化反应条件。减少产物CTA中的副产物——高分子有机物,是延长钯炭催化剂使用寿命的一个重要手段;此外,适当提高加氢反应温度,可减少高分子有机物在催化剂表面的沉积,近几年新建PTA装置反应温度已从280℃提高到288℃;另据有关专利介绍[6],一旦判断系统发生有机物覆盖失活,可通过碱洗使催化活性得到恢复,但碱浓度和碱洗温度等工艺条件都需要严格控制,以防止设备腐蚀、催化剂被氧化和被氯污染。

1.回收价值

钯催化剂在化工工业中应用广泛,其失活后损失不大,钯的回收有着较大的经济价值。

钯是一种金属,对氢气和氧气具有特殊的吸附能力,在催化剂行业应用广泛。含钯催化剂的种类很多,大多应用于石油化工中的催化加氢和催化氧化等反应过程中,如制备乙醛、吡啶衍生物、乙酸乙烯酯及多种化工产品的反应过程。

催化剂中钯的质量含量一般在万分之几至百分之几。钯价格昂贵且资源有限,钯催化剂的失活主要是钯晶粒的增长使其催化活性面积减小、杂质的覆盖和中毒等原因。而钯所具有良好耐腐蚀性、高温性能及稳定的电学特性,钯在反应过程得流失并不很大,即废钯催化剂与新鲜催化剂相比钯含量差值不大,因此对废催化剂中的钯进行较完全的回收就成为可能。

钯是贵重金属,是重要的化工原料,国内储藏量及开采量有一定限度。废钯催化剂为钯宝贵的二次资源,有相当高的回收价值。根据我国发展现状和前景的预测,在石化工业、聚酯工业、汽车环保等领域开展钯催化剂的回收生产将产生巨大的经济效益。特别是在石油重质化提高和Pd资源趋紧价格上扬的今后,加强废催化剂回收的研究并将成果尽快用于工业化生产是一项极为紧迫的任务。

THE END
1.为什么贵金属的催化活性那么好?在固体催化剂作用的基本原理中,有一种学说就是d电子理论。这个理论认为:催化剂(特别是金属催化剂)的https://wenda.guidechem.com/question/detail45303.html
2.钯为什么有催化活性(钯催化活性好吗?)平泽回收钯催化活性好吗? 除胶剂对电镀层有腐蚀性吗? 钯催化和分子筛是一回事吗? 三元催化器有什么贵金属? 铁皮扣电镀流程? 三元催化中铂的作用是什么? 三元催化含什么金属? 钯催化活性好吗? 钯催化剂具有良好的催化活性和良好的选择性,在石油化工、制药、精细化工、有机合成等领域具有重要应用价值。 https://www.pzgjs.com/68036.html
3.TiO2光电催化制氢基本原理及其影响因素可利用贵金属沉积在TiO2表面来改变体系的电子能级结构,改善TiO2表面性质,从而提高其光催化性能。当贵金属沉积到TiO2表面时,电子就会从半导体向贵金属转移,直至二者的费米能级相匹配,并在二者接界处形成空间电荷层和Schottky势垒,Schottky势垒能有效地充当电子陷阱而阻止光生载流子之问的复合,从而提高光生载流子的分离效率https://www.sotai.cn/news/show-2756.html
4.催化剂厂范文12篇(全文)将处理好的载体加入到氯铂酸溶液中,搅拌,调节pH值,浸渍若干时间,过滤,然后洗涤至中性,把洗涤好的滤饼放入蒸馏水中,搅拌,调节pH值,过滤,洗涤,真空干燥,在固定床反应器中高温还原,降温后即得到铂贵金属催化剂[11-12]。 1.2催化剂催化性能评价 仪器:GSA-0.25型高压反应釜。步骤:将计量后的双甘膦和水加入到高压https://www.99xueshu.com/w/ikeyf4fcftce.html
5.催化燃烧与RTO在卤素等有机废气治理中的技术分析贵金属催化剂的制备一般包含了第一载体(蜂窝陶瓷或堇青石),上面涂附第二载体Al2O3, 之后再涂附活性组分Pt,Pd,Rh,和助催化剂CeO2等。第二载体的粘结牢度和比表面积,以及贵金属涂层的粒子尺寸和活性反应单元决定了催化剂的性能。 因此,除了昂贵的金属价格,多次烧结多层涂附的复杂的制备工艺也提高了贵金属催化剂https://www.safehoo.com/item/5665757.aspx
6.电催化最新章节孙世刚著表明优良的电催化剂与吸附中间物的结合强度应当适中,吸附作用太弱时,吸附中间物很易脱附,而吸附作用太强时中间物难于脱附,二者均不利于反应的进行。吸附能适中的催化剂,其电催化活性最好,火山形规律是对不同电极材料电催化活性进行关联的依据。图1-6给出中性溶液中甲酸在不同的贵金属电极(Pt、Rh、Pd和Au)上https://m.zhangyue.com/readbook/11555331/8.html?showDownload=1+m.zhangyue.com
7.世界一流科技期刊文章精选厦门大学化学化工学院、能源材料化学协同创新中心郑南峰和傅钢课题组,采用乙二醇保护的超薄二氧化钛纳米片作为载体,应用光化学方法,成功制备了负载量高达1.5wt%的单原子分散钯催化剂;在温和条件下高效脱除前驱体氯钯酸上的氯离子是成功制备的关键;研究成果发表于《科学》杂志。贵金属催化剂广泛应用于环保、能源和化工等领http://www.scichi.cn/zinecontent.php?id=1827
8.磷化镍纳米晶的可控合成与组装及其电催化制氢性能研究因此开发低成本和丰富储量的非贵金属催化剂具有十分重要的意义。本文以非贵金属磷化镍为研究对象,围绕着磷化镍纳米晶的可控合成与组装规律及其电催化制氢性能展开研究,设计了一种能够实现磷化镍晶相和尺寸可控合成的方案,并揭示了不同微观结构的磷化镍与电催化制氢性能的构效关系。在此基础之上,采用材料复合、组分调控https://wap.cnki.net/touch/web/Dissertation/Article/1018702834.nh.html
9.催化顶刊合集:Nature子刊AMAEMACBCEJAdv.Sci.等成果相比之下,700 CO2Fe-NC催化剂则表现出优异的ORR性能,其Eonset为0.93 V,E1/2为0.83V,这些值与先前报道的最先进的非贵金属催化剂相当,并且接近于商业Pt/C催化剂(Pt:20wt.%,Eonset=0.98 V,E1/2=0.85 V)。 然而,进一步提高活化温度至800和900 °C时,催化剂的ORR性能显著降低,E1/2分别为0.815和0.798 V。https://www.v-suan.com/index.php/2023/09/30/8a5c5315ef/
10.S异质结与非贵金属助催化剂协同提升ZnO/CdS/MoS2光催化产氢性能该文报道了一种新型三元ZnO/CdS/MoS2 异质结,其中ZnO,CdS,MoS2三者具有六方晶系结构,有助于形成紧密接触的异质界面,从而促进电子、空穴的转移速率,提高CdS的光催化活性,加之,S异质结与非贵金属助催化剂的协同作用,有效地抑制电子-空穴对的复合,进一步提高了CdS的光催化析氢性能。 https://www.nayuansu.com/read/3904.html
11.不同载体Pt基整体式催化剂对氢气低温反应性能的影响贵金属铂(Pt)为活性组分,制备了 Pt/载体 /堇青石整体式催 化剂.利用 XRD,SEM,TEM和 XPS等表征手段,对催化剂的结构与性质进行了分析.探讨了在氢气 体积分数为 2 5%的环境中,不同载体,不同 Pt负载量对氢气低温催化燃烧反应性能的影响.研究 结果表明:以 HZSM 5为载体的整体式催化剂性能最优,这与催化剂活性https://zzs.ujs.edu.cn/xbzkb/EN/article/downloadArticleFile.do?attachType=PDF&id=2092
12.第3分会场:碳基催化材料与碳催化过程基于这一概念,开发出整体式非贵金属“铠甲催化剂”,并将其应用到电解水中,解决了电解水中非贵金属催化剂活性低和稳定性差的双重挑战。在此基础上,成功研制出高性能、长寿命、低成本的电解水制氢制氧装置和系统,并实现其在工业绿氢和生命健康等领域的应用。https://www.csp.org.cn/meeting/9thCarbonCatalysis/a2586.html
13.镍基纳米材料的可控制备及电催化性能研究.pdf因此,寻找价 格低廉,储存量较大,催化活性可以和贵金属相媲美的电极材料成了当前研究的 3 淮北师范大学2020 届硕士学位论文 镍基纳米材料的可控制备及电催化性能研究 [35] 热点 。过渡族金属原子中存在着未成对的电子和未填满的原子轨道,可以跟 氢结合成键,所以一直以来过渡族金属元素被认为是贵金属催化剂最有效https://max.book118.com/html/2020/0905/8057045103002140.shtm
14.贵金属催化剂的作用原理贵金属催化剂是一类广泛应用于有机废气处理领域的催化剂,主要利用贵金属的特殊性能促进有机物质的氧化反应,从而实现有害物质的转化。常见的贵金属催化剂有铂(Pt)、钯(Pd)和铑(Rh)等稀有金属。这些金属具有优异的催化性能,能够显著降低有机废气中挥发性有机化合物(VOCs)的氧化反应活化能,使反应在较低的温度下进行http://kelihuoxingtan.com/knowledge/442.html
15.单原子催化剂综述梳理:基本概念制备方法及能源催化应用单原子催化不同于纳米催化和亚纳米催化,因为当粒子分散度达到单原子尺寸时,引起很多新的特性,如急剧增大的表面自由能、量子尺寸效应、不饱和配位环境和金属?载体的相互作用等。正是这些与纳米或亚纳米级粒子显著不同的特性,赋予单原子催化剂优越的催化性能。单原子催化剂不仅金属负载量极低而且极大地提高了金属原子https://www.scholat.com/userPostMsgPage-getDynamic.html?usermessageid=209716
16.2种制备方法对PtCoCe催化氧化甲苯性能的影响刘艺.pdf用寿命长的优点而应用广泛,例如Pt基催化剂催化氧化芳香烃[7-9]。目前, 关于负载型贵金属催化剂的研究集中于降低贵金属含量和提高催化性能两个方面[2]。采用活性载体 负载贵金属,不仅可以提高贵金属的分散度,而且贵金属与载体之间的相互作用可以影响催化性 能[10-12]。MENG等[13]在meso-Co3O4上负载了Pt纳米颗https://m.taodocs.com/p-694510570.html
17.如何理解金属掺杂提高氮掺杂的催化性能?短平快之氢燃料电池如何理解金属掺杂提高氮掺杂的催化性能? 非铂贵金属催化剂具有两个鲜明特征:①使用与贵金属铂同属第VIII副族的金属元素;②经常以配合物的形式存在。配合物的四个特征见文[No.543],其中特征之一是含有C、N、O、P、S等配位原子。 掺杂金属可以提高氮掺杂的催化活性,尤其是在Mn、Fe、Ni、Cu等过渡金属中,表现出https://www.1633.com/article/75238.html
18.纳米人催化前沿每周精选丨1125在众多CO2还原电催化剂中,分子类催化剂具有活性中心明确、结构调控容易的特点而被广泛研究。但是分子催化剂在催化性能上往往不如常用的贵金属催化剂,而且分子类催化剂大多只能实现CO2的两电子还原(如CO2还原成CO)。近日,耶鲁大学王海梁,南方科技大学梁永晔等团队合作,将酞菁钴分子(CoPc)负载在碳纳米管(CNT)上,制备http://www.nanoer.net/e/action/ShowInfo.php?classid=32&id=13685
19.北京大学:贵金属单原子材料的水分解催化研究进展电化学水分解制氢技术可为能源的可持续发展和解决环境问题提供新的方案,因而在近些年引起了人们的广泛关注。其中,贵金属基单原子催化剂(PMSACs)由于其最大的原子利用率和独特的电子结构,可在减少金属负载量的同时保持较高的催化性能,被广泛应用于水分解催化。 http://m.xincailiao.com/news/app_detail.aspx?id=603003&ptype=1