【作者】王禄生(东南大学法学院教授,东南大学人民法院司法大数据研究基地研究员,北大法律信息网签约作者)
内容提要:21世纪以来,法律人工智能呈现出繁荣复兴的景象。但火热表象的背后,法律领域的语言复杂性、知识丰富性使得法律人工智能仍然面临自然语义处理与知识生成的技术瓶颈。以ChatGPT为代表的大规模语言模型与生成式人工智能技术有望破除法律人工智能的自然语言理解瓶颈,极大提升技术互动性、生成性与嵌入性,推动法律人工智能与用户形成刚需性、高频率和高黏性的联结。尽管如此,现有ChatGPT类技术的底层逻辑无法充分回应法律知识丰富性、严谨性与创造性的领域需求,流畅语言处理能力与相对较低知识生成能力错配产生的知识完满幻觉、知识权威幻觉与知识生成幻觉,制约了大规模语言模型与生成式人工智能的架构对法律人工智能的根本性颠覆。未来需要通过强化高质量多模态法律数据的供给并建构基于法律指令集的指令微调机制和基于法律人知识反馈的强化学习机制,克服“知识幻觉”以实现法律人工智能的进一步迭代。与此同时,在技术社会学意义上调适创新扩散与社会公正的张力,避免可及性与可用性两个层面的数字鸿沟,真正实现全社会围绕法律知识的新一轮赋权赋能。
关键词:ChatGPT类技术;大规模语言模型;生成式人工智能;法律人工智能
目次一、法律人工智能的时代图景二、ChatGPT类技术赋能法律人工智能的进化三、ChatGPT类技术赋能法律人工智能的限度四、ChatGPT类技术赋能法律人工智能的未来结语
一
法律人工智能的时代图景
从应用实践角度观察,法律人工智能是运用自动化技术,完成起诉、审判等通常由法律人借助专业知识与智慧进行的工作,是法律技术中提供实质法律服务解决方案的一类前沿内容。21世纪以来,大数据应用和智能化算法逐渐从理论走向实践,以深度神经网络为核心的联结学派智能呈现出爆炸发展趋势。法律人工智能正是在这一时代背景下重新兴盛,并在各种微观业务场景中产出一定的研究成果。尽管如此,受限于自然语义处理与知识生成的技术瓶颈,当前各类法律人工智能在可持续发展的制度化逻辑方面与既有实践成果之间尚未实现科学衔接,在功能完善、普适性、覆盖面等指标均有待进一步发展完善。对时代图景的客观描绘,有助于更加深刻的理解ChatGPT类技术对法律人工智能的变革式发展。
(一)法律人工智能的当代复兴
首先,世界范围内普遍的司法数字化建设,为本轮法律人工智能的发展提供了可观的数据储备。在信息化浪潮中,传统的“司法公开”概念被赋予了新的时代内涵:司法机关应当推动司法文书以电子形式公开,以保障公民公正审判权与知情权的真正实现。推动司法文书的电子化公开,成为21世纪全球的普遍潮流,并形成了高度趋同的司法文书上网公开制度规范与运行实践。尽管这些司法公开大多不以法律人工智能建设为首要目的,然而在客观上,司法文书的网上公开大大增加了电子化法律语料的丰富性和可及性,这为法律人工智能,特别是本轮联结学派法律人工智能的发展提供了便捷、丰富的数据资源。
其次,专家学者在法律和人工智能交叉领域的长期耕耘,为本轮法律人工智能发展提供了技术积累。1987年,首届国际人工智能与法律会议(ICAIL)标志着法律人工智能学术共同体的正式形成。在1991年的第三届ICAIL上,国际法律人工智能协会(IAAIL)成立,进一步了促进法律人工智能研究与发展。在欧洲,由法律与计算机科学研究人员共同组成的“法律知识系统基金会”(JURIX)自1988年来每年举办一次有关法律知识与信息系统的国际会议,这与ICAIL并列成为国际法律人工智能研究的标杆。即便是在法律人工智能的寒冬期,仍有一批学者耕耘其中。这使得在符号学派到联结学派的范式嬗变中,以及机器学习、深度神经网络等联结学派技术爆发时,法律人工智能界能够迅速吸收上述最新成果,与时俱进构建新型的自动化模型。
最后,风险资本给予各类法律科技公司的投资融资,为本轮法律人工智能的发展提供了扎实的基础设施支持。根据Crunchbase的数据显示,2021年美国全年175宗法律科技领域的风险投资超过16亿美元,既远超2020年的5.22亿美元投资,也高于2019年的9.89亿美元,创造历史新高。在国内,据不完全统计,2021年法律科技公司总共获得的投资也超过15亿元人民币。总体而言,在数据与算法的长期储备积累下,法律人工智能对数据处理能力的需求显著增加,而风险资本正可以弥补这些初创法律科技企业的基础设施短板。
综上所述,随着数据、算法、算力的迅猛发展,以及人工智能基础设施的成熟完善,法律人工智能在全球主要国家蓬勃发展。这体现为,当前的法律人工智能不仅尝试面向律师、公众、企业、法官、检察官等主体提供差异化的智慧法律服务,还在法律知识问答(法律问答机器人)、类案推荐、法律文书生成与审查、判决结果预测、诉讼风险分析、同案不同判预警等不同的微观业务场景中,产出具备一定实践应用能力的研发成果。
(二)法律人工智能的技术瓶颈
尽管在数据、算法和算力的三重支撑下,法律人工智能在近年来进入复兴期。然而与法律未来主义者的畅想相比,现有法律人工智能的技术奇点尚未到来。从技术逻辑看,法律人工智能应用的实质是通过自然语言处理技术来准确识别用户的法律诉求,同时将其映射到系统中可用的最佳法律知识响应集。法律语言的复杂性与法律知识的丰富性形塑并固化了法律人工智能的技术瓶颈,提升了开发法律任务人工智能系统的难度,进而使得许多系统未能达到预期效果。
1.法律领域自然语言处理的技术瓶颈
2.法律领域知识构建与生成的技术瓶颈
如果说自然语言处理与流畅的人机交互仅仅只是人工智能的外在能力要求,那么知识构建与生成,则是所有人工智能必须具有的核心能力。这在法律领域即体现为,充分回应法律知识丰富性、严谨性和创造性要求,集合多源异构资源,实现法律知识的自主构建与适配法律知识的自动生成。事实上,早在人工智能研究的萌芽时期,就揭示出知识在人工智能建设中的不可或缺地位。但由于知识的多样性、易变性、模糊性等特质,人工智能与知识的结合始终异常困难。在法律领域,知识的丰富性在很大程度上源自于法律渊源的多样性,除了制定法、判例以及习惯外,法律中还包含了大量法学理论、道德规范、正义观念,甚至在特定场景中宗教规则、乡规民约、哲学观念等也能发挥“法”的功能。不同的法学流派对法律的差异化认识,使得法律知识的外延进一步模糊,甚至相互冲突。不仅如此,法律中蕴含着大量的地方性知识,这些知识可能是诸如“刑事侵财类案件数额认定标准”这类相对显性的知识,也有可能仅仅是默会的、实践性的,甚至无法用语言与一般命题的形式表示。
二
ChatGPT类技术赋能法律人工智能的进化
尽管ChatGPT面世不足一年,但却可能对法律人工智能形成潜在的深远影响。自2022年底发布以来,英文世界有关ChatGPT研究最主要的领域就包括法律。与此同时,根据“职业受人工智能影响”(AIOccupationalExposure,AIOE)榜单的测算,法律行业高居与大规模语言模型联系密切的行业之首。实际上,大规模语言模型与生成式智能的技术架构与法律人工智能具有极强的内在契合性,有望破除法律人工智能在自然语言理解方面的技术瓶颈,推动法律人工智能的技术进化,极大提升互动性、生成性与嵌入性,对法律人和社会公众形成一次重大的赋权赋能。在ChatGPT类技术的赋能下,法律人工智能与法律人、社会公众的联结方式将可能由非刚需性、低频率和低黏度向刚需性、高频率和高黏度进化。
(一)赋能法律人工智能互动性的提升
除此之外,ChatGPT类技术通过指令微调(InstructionTuning)和基于人类反馈的强化学习(RLHF)等技术进一步优化,进一步增强了模型的意图识别、指示遵循与多轮对话能力。这至少包括三个阶段:综合测试用户提交的各种自然语言指令,通过专业标注人员对模型答案结果的赋分与排序,以强化学习方式鼓励模型生成更加优质的回答。令人惊讶的是,当输入给模型的指令数量达到一定阈值后,GPT-3迭代产生的ChatGPT具备了泛化完成各种新任务的能力——模型在从未见过的新指令上也能够有效回应。特别是ChatGPT类技术所体现出的流畅多轮对话能力,显著有别于先前法律问答机器人只能进行单轮或个别轮次的封闭、僵硬、简短对话,开放连贯流畅的交互感能够极大提升法律人工智能的用户体验。一个直观的感受是,ChatGPT类技术不仅“听得懂”,还“交流连贯”“善解人意”。
总体而言,ChatGPT类技术已经表现出较之原有法律人工智能更加出色的法律语言语义理解、意图识别、多轮对话能力。随着其技术的进一步迭代与完善,将有望赋能法律人工智能互动性的极大提升,进而有效满足各种用户对法律人工智能人机互动性的认知和使用需求。
(二)赋能法律人工智能生成性的提升
不同于传统小模型时代的人工智能,ChatGPT类技术的另一大突出特点在于其生成性,其名称中的字母“G”,其实就是生成式(Generative)的英文缩写。根据知名咨询公司Gartner的定义,生成式人工智能是指从原始语料中自动化学习对象特征,并能够生成全新的、完全原创的、与原始数据具有相似内容的智能技术。在ChatGPT类技术兴起前,基于机器学习与深度神经网络的分析式人工智能占据研发主流,其通过从大量数据中寻找对象的隐藏模式,并对未来的内容进行分类预测。尽管ChatGPT类技术与传统的联结学派人工智能均通过学习大量数据中的模式形成规律性认识,但在模型的输出形式上存在明显差别。一个简单的例子是,传统的分析式人工智能被训练以区分图片中的动物属于何种,而以ChatGPT类技术为代表的生成式人工智能,可以生成一幅与现实世界完全不同的动物图片。也正是因为生成式人工智能在内容生产上的巨大能力,其被认为在工业设计、药物研发、材料科学与数据合成等方面具有广阔前景,乃至颠覆全球互联网内容生产的生态环境。
内容生产是法律的核心工作之一,这不仅涵盖法律咨询与问答中的各类建议回复,也包括贯穿诉讼全生命周期的起诉状、答辩状、判决书等法律文书。然而,与其他领域相似,本轮法律人工智能的复兴同样以分析式智能为核心,即通过海量的法律数据的分析、演绎或计算,挖掘其间包含的法律规律,进而用于诉讼风险评估、诉讼结果预测等特定分类任务中,而生成式智能尚未在法律领域取得实质性推进。相反,借助生成式智能的结构,ChatGPT类技术可以通过对海量语料的深度学习自主生成全新的法律专业内容,推动法律人工智能由“分析式智能”向“生成式智能”进化。测评显示,ChatGPT类技术已经具备一定的根据输入的案件信息、当事人信息、证据材料等内容,自动生成法律文书、评估法律风险、做出法律决策的能力。可以预见,随着ChatGPT类技术的持续迭代与发展,其对法律场景内容生成的技术赋能作用将进一步提升。
(三)赋能法律人工智能嵌入性的提升
ChatGPT类技术通用化的人工智能技术架构,可以有效、灵活嵌入现有的各类日常应用中,为已有系统提供良好赋能。举例而言,2023年2月,微软发布的“NewBing”搜索引擎就是这种路径的典型方法,其将OpenAI公司的大规模语言模型嵌入到Bing搜索产品之中,推动更高质量、更加正确的信息检索与答案生成。与之类似,ChatGPT等技术嵌入常见办公软件提供文档校对、语法检查乃至数据表格、演示文稿的智能生成也并非难事。在法律领域,ChatGPT类技术同样可以与Westlaw、LexisNexis以及国内北大法宝等传统的法律专业知识库相结合,为法律问答与文书生成提供可验证的法律条文或者司法案例,提升大规模语言模型对于生成结果的可验证性。可以预见,运用ChatGPT类技术等大规模语言模型成果,以开放式、生成性交互能力为核心,深度嵌入现有智能法律咨询、诉讼自动导引、文书智能生成、争议焦点总结等法律人工智能各类已有系统中,为一体化、集约化法律人工智能的构建与实现创造可能。在极大的降低用户学习与交互成本的同时,嵌入性的提升将推动法律人工智能与法律人的联结方式将由低频率和低黏度向高频率和高黏度进化。
三
ChatGPT类技术赋能法律人工智能的限度
尽管以ChatGPT类技术有望突破传统法律人工智能研发过程中遭遇的语义理解与内容生成瓶颈,进而为法律人工智能的互动性、生成性与嵌入性的提升带来可能。但是ChatGPT类技术赋能法律人工智能依然存在技术限度。其原因在于,ChatGPT类技术的现有技术架构尚无法有效回应法律知识的领域化需求,优秀的自然语言处理能力与相对较低的知识生成能力间的错配关系,使得ChatGPT类技术产生系列的“知识幻觉”现象。“幻觉”(Hallucination)一词在技术界已被充分使用,旨在描述人工智能模型生成了流畅自然、语法正确,但内容上毫无意义或包含事实性错误的文本。更为通俗地说,就是在“一本正经地胡说八道”。本文所讨论的“知识幻觉”的概念外延则更加广泛,这不仅包括在技术治理维度上的错误生成,也包括基于ChatGPT类技术深度使用而导致的不合理信任与依赖。这些“知识幻觉”,将极大制约大规模语言模型与生成式人工智能对现有法律人工智能的根本性颠覆。
(一)法律知识的丰富性与ChatGPT类技术的“知识完满幻觉”
(二)法律知识的严谨性与ChatGPT类技术的“知识权威幻觉”
(三)法律知识的创造性与ChatGPT类技术的“知识生成幻觉”
法律领域高度强调知识的创造性,这尤其体现在司法案件、特别是疑难案件的裁判与法律论证推理的过程中。最为经典的诠释来自德沃金对“建构性解释”(ConstructiveInterpretation)概念的发掘。他指出,法律的解释更贴近于对文学艺术的解释,而非科学性解释。这是因为,法律与文学艺术解释的对象都是人们所创造的某种东西,而非客观存在的事物。并且,在整个解释中起决定性作用的是解释者的目的,并非纯粹的因果关系。这就使得法律解释具有了创造性的特点——旨在获得解释者主观所期望的结果而非理解法律的原意。事实上,即便是以严谨性与确定性自居的法律,也需要适应社会快速变革的现实化需求,并潜藏着各种变化的可能——尽管这种创造性的知识生成行为很少被大陆法系的法官们公开承认。
四
ChatGPT类技术赋能法律人工智能的未来
(一)强化法律数据供给、法律指令微调与法律知识验证
首先,在语料源头端,强化高质量法律数据供给,形成法律领域的多模态中文数据集。当前,域外ChatGPT类技术运用中文语料十分有限。据统计,在GPT-3的训练语料中,中文文档数、中文词语数和汉字数量分别仅占总语料数的1.1‰、1.0‰和1.6‰,在所有语种位列第15、第17和第14位。因此,要有效减少ChatGPT类技术在法律领域的知识幻觉,首要的任务是强化法律领域高质量中文数据集的供给。目前中文互联网上高质量法律语料相对有限,且主要以裁判文书的形式存在。其他的诸如法律法规、法学论文、法律咨询(法律问答)等高质量中文法律语料,仍碎片化地分布于国家机关或各类企业之中,尚无法实现有效数据统筹与共享。下一步,可以在国家数据局的统筹之下推动政务数据层面的各类非涉密法律文书和法律法规的归集汇聚。在此基础上,逐步由单一模态的法律文本数据向图文声像多模态法律数据发展,最终形成高质量、多模态、可开放的中文法律数据集。