赵伟平台营销的算法欺骗风险及其法律规制

以用户画像和实时个性化为核心的平台营销为算法在数字经济和平台交易中的广泛应用提供了可能。为了优化平台营销模式、实现企业利润最大化,算法在进行个性化推荐的过程中有意或无意地操纵甚至欺骗消费者。“算法欺骗”的产生不仅突破了现有的法律规制体系也挑战了现行法律归责制度。因此,证实“算法欺骗”在法律上的因果关系、实现对平台企业的有效归责、保障用户隐私权和平等权益成为规制算法欺骗风险的重中之重。算法欺骗的法律规制路径主要有:创设算法代理与信义义务理论、用户隐私保护与平等保障机制的构建,以及建立算法监管问责机制。

平台营销的运行理念

平台营销的表征特点

1.无处不在的数据收集

现实情况中,当消费者在浏览平台界面时,他们的行为经常被实时监控,平台可以随时把最合适的产品推荐给顾客。通过无处不在的数据收集,算法收集了大量关于人的信息数据,其中很多可以匹配到跨设备和环境的个人。这些数据主要从个人信用卡和借记卡记录,在线搜索、浏览、游戏、阅读和社交媒体活动,电子邮件和在线日历,声音和通过物联网捕捉的视频以及智能手机定位跟踪传感器等媒介中提取。

2.密集的连接数字接口

3.个性化营销

4.创造性营销

平台营销中的数字环境促成算法欺骗主要有以下三个原因。首先,消费者认为数字界面缺乏代理,这使得消费者不会注意到在线材料可能被设计成欺骗的程度。其次,消费者通常以一种高效的、以任务为中心的、习惯性的方式与在线环境互动,导致他们经常忽略数字界面中的信息。最后,大数据和实时跟踪可以识别出哪些消费者因个人特征、身体或情绪状态而特别容易受到攻击,这让企业有机会利用这一弱点。

数字环境滋生算法欺骗

消费者上网习惯诱发算法欺骗

一项研究发现,在自然条件下,每1000个软件购买者中只有一到两个会点击查看条款和条件,即使是这些罕见的消费者也不太可能阅读他们发现的内容。可以插入在线细则的术语数量几乎是无限的。在线下进行的交易,除了商品的身份和价格之外,没有任何条款,在线交易还伴随着大量的附加条款,在线小字印刷的长度可能正在扩大。因此,企业在网上比在线下有更多的空间来隐藏有关其交易的重要信息。

此外,数字内容的动态特性为利用一种称为变化盲目性的感知怪癖提供了机会,用户通常认为,如果屏幕发生变化,用户就会注意到变化。变化盲目性是指当焦点在其他地方,或者没有视觉线索来提醒消费者变化时,未能察觉到视野中的变化。例如,当页面重新加载或闪烁时,通过更改网页的内容,新内容看起来不会相对于页面的其余部分移动,也不会引起用户的注意。或者,当用户将注意力从屏幕或屏幕的一部分移开时,可以定时进行移动。

算法瞄准并利用平台交易漏洞

从消费者的人口统计数据和行为中可以推断出永久性或暂时性的认知或感知障碍。例如,年龄的增长会降低人们对屏幕外围和蓝色(超链接的传统颜色)的感知。实时数据可以通过减少消费者的注意力来显示损害感知的状态。例如,玩家在玩在线游戏时可能处于“心流”状态,因此更有可能无意识地点击突出显示的按钮继续游戏。暂时性的认知和精神运动能力丧失,包括疲劳或醉酒造成的能力丧失,可以从移动设备的地理空间移动、键盘敲击的方式,甚至是推文的模式中推断出来。发现减值可以利用欺骗性设计来实现销售,如果没有减值就不会发生。

算法可以识别人类意想不到的关系和无法评估的交互变量。正如一名记者在采访虚假产品(如假减肥药、假杀毒软件)的营销人员后总结的那样,“Facebook的目标算法是如此强大……(营销人员)不需要自己去识别那些傻瓜——Facebook会自动识别。”尽管销售合法产品的企业可能没有意识到他们是在微小地锁定漏洞,但针对转化率进行优化的算法无疑也会识别出那些目前也在接受更微妙欺骗的消费者。

不受法律约束的数字设计过程导致算法欺骗

算法制作的网上档案和机器人欺骗了选民、求偶者和其他人,这通常是金融骗局的一部分。不太为人所知的是,算法可以自主选择并参与欺骗,即使人类设计的算法系统并没有参与欺骗。当Facebook的人工智能研究实验室使用算法来训练机器人与人类谈判时,机器人很快就采取了“最初假装对一件毫无价值的东西感兴趣,后来却妥协承认”的策略。研究人员没有料到会有这样的结果:“我们的算法学会了欺骗,没有任何明确的人类设计,只是试图实现它们的目标。”2018年,一个人工智能系统在执行任务时欺骗了自己的程序员。

欺骗性的数字商业行为将日益威胁旨在保护消费者和确保公平竞争的法律的可执行性。这些法律包括广泛禁止不公平、滥用和欺骗性的做法,以及有针对性地禁止在特定情况下的误导性陈述、遗漏或做法。它暴露了每一种方法在证明数字消费者欺骗方面的效力在下降。就在不受约束的平台营销不可避免地导致消费者欺骗的时候,消费者保护和不公平竞争指控变得越来越难以证明,使得数字欺骗越来越不受法律的影响。在与数字屏幕的短暂互动中,消费者可能没有意识到他们被欺骗了,可能会责怪自己没有更仔细地检查屏幕。此外,当平台针对不同的消费者使用不同的算法时,消费者可能无法理解彼此的体验。最后,平台会尽可能避免与会投诉的消费者进行在线交易。因此,平台营销信息瞬息即逝和以实时个性化为目标的特性,导致企业逃避了为算法欺骗承担的法律责任。

算法欺骗的法律界定

美国联邦贸易委员会法案(FederalTradeCommissionAct)将算法欺骗定义为可能误导消费者合理行为的陈述、不作为或行为。为了取得成功的索赔,原告必须查明被告的具体通信或活动是非法的,并证明该具体通信或活动导致或可能导致理性消费者怀有错误信念。此外,只有当这些虚假的消费者信念是实质性的,即影响消费者关于产品或服务的行为或决定,并对消费者和竞争造成伤害时,算法欺骗才产生。由于算法系统越来越多地实时生成商业材料和面向消费者的微观目标定制版本,算法欺骗变得很难甚至不可能得到证明。

算法欺骗的证明及其困境

1.算法欺骗的证明方法

随着人工智能的发展和算法的广泛应用,法律上已经采用了各种方法来确定一个平台企业是否从事算法欺诈行为。事实发现者检查具体的商业沟通或行为,并应用事实发现者自己的判断、常识和直觉来确定沟通或行为留下的“净印象”是否具有欺骗性。

2.算法欺骗的证明困境

(1)理性人假设标准失效

(2)欺诈意图缺失

在没有人有意欺骗的情况下,企业可以违反法律对误导或欺骗行为的禁令。尽管如此,欺骗案件往往在很大程度上依赖于被告意图欺骗的证据或对其行为的欺骗性的了解。根据一些法规,这一证据可以减轻原告获取昂贵的专家证人证据的负担。如果企业意图欺骗消费者,法院通常会认为它成功地做到了这一点。然而,随着机器更多地使用人工智能而不是人类智能来执行营销和销售任务,欺骗意图可能会消失。如上所述,企业正朝着使用人工智能来设计和定位数字材料的方向发展。在某种程度上,没有人需要直接参与。唯一可识别的业务意图可能是最大化业务指标,如点击率、销售额或留存率。没有人需要有意欺骗或知道设计是欺骗性的。

此外,一个算法可以同时使用数百个其他数据点来决定在任何特定时刻向哪个消费者显示哪个销售门户设计。此外,市场调研和用户体验可用性研究正变得越来越少。在数字环境中,如上所述,企业正转向依赖平台营销及其在该领域的真实消费者身上自主试验的能力。这种实验产生了快速的、生态上有效的结果,然后系统使用这些结果来不断改进和适应。人类不再需要审查测试结果并决定如何处理该结果。因此,在平台营销的时代,企业可以在无意中,甚至在不知情的情况下欺骗客户。没有了商业专家,原告就必须寻找其他途径来证明数字欺骗。

(3)缺乏人口效度

数字商业材料的定制性质为许多证明欺骗的常用方法带来了人口有效性的挑战。由于法官和消费者的背景知识、信息处理技能和感知能力往往不同,司法面部分析的结果可能缺乏人口效度。可能欺骗实际消费者的东西可能骗不了法官,可能欺骗法官的东西可能骗不了实际消费者。例如,法官通常比普通消费者更有文化和计算能力,并且可能比消费者更仔细地处理文本。数字接口的非文本元素对消费者的影响更大。司法面部分析的结果在线下语境中已经具有较弱的人口效度,而数字媒介的出现更是雪上加霜。数字格式通过超链接、折页下方定位等方式,扩大了企业可以塞进交流中的文本数量。同时,在线浏览习惯减少了消费者阅读文本的比例。有不同浏览习惯的法官不知道消费者如何与界面互动。因此,在数字界面上阅读所有文本的法官面前的信息与消费者所理解的完全不同,而且法官和消费者之间的鸿沟可能在网上比在线下更大。

(4)缺乏生态效度

(5)无法分析的算法欺骗

如今的企业利用大数据、算法和数字环境来进行实时的现场实验,以收集有关实际消费者反映的证据。他们不再完全依赖于诉讼中使用的任何方法——不再依赖于专家判断,不再依赖于复制和可用性测试,不再依赖于调查和可用性实验。此外,企业明白消费者反应是难以预测的,并且受到微目标营销算法选择的数据点组合所反映的消费者特征和状态的严重影响。因此,现行法律体系中用来证明欺骗行为的机制也必须改变,以解释这些事实。

创设算法代理与信义义务理论

1.算法契约中的算法代理角色

2.算法信义义务与算法问责的可能

代理对算法合约的做法将允许代理在当前的标准下,成功地对欺诈、市场操纵和其他不当行为的公司采取行动。这促进了算法问责,允许公司有被问责的必要意图。目前,由于法律的不确定地位,公司能够在他们的算法合同方面有两种方式。他们使用算法契约,这意味着同意给定交易的特定意图。但当涉及为算法所造成的交易的不良结果承担责任时,评级机构难以证明其意图足够具体。美国商品期货交易公司对期货合约市场的监管就是一个很好的例子。

GregoryScopino描述了他曾经工作过的机构面临的监管困境。在商品交易法(CEA)和商品期货交易委员会(CFTC)的监管下,有几项明显的非法交易行为,尽管如此,它们仍例行地通过交易算法进行。CFTC无法对使用算法进行交易的公司提起成功的诉讼,因为法律要求要么有明确的意图,要么完全不计后果。人们认为,这些算法对使用它们的公司的意图产生了太大的削弱,从而达到了这种意图的水平。根据对算法合约的代理解释,CFTC或其他参与者可以提出这样的论点,即使用算法参与这类欺诈的公司实际上有必要的意图因违反CEA和CFTC的规定而被起诉。通过这种方式,我们可以从算法契约中算法的代理角色推断出算法或平台应承担的信义义务。

算法越来越多地涉及企业对企业合同的形成,所以在分析算法如何形成合同时,考虑法律如何发挥作用是很重要的。本书为它们是如何形成和被认为是可执行的提供了一个理由,以促进算法问责。在订立合同的目的中,算法应被视为建设性代理人,以便能够对合同中产生的欺诈或市场操纵等不当行为追究法律责任,并促进算法问责制。

构建用户隐私保护与平等保障机制

每个人的数据隐私需求都是不一样的。统计资料显示,低收入者成为发薪日贷款和营利性教育诈骗等掠夺性产品的营销活动的目标。因此,数据隐私不仅是自治和尊严等价值观的组成部分,也是经济公正的一个重要问题。这是指确保每个人都能获得创造机会的物质资源,以过上不受紧迫经济问题影响的生活。

欧盟通用数据保护条例(GeneralDataProtectionRegulation,以下简称GDPR)于2018年5月18日在欧盟生效,它为欧盟成员国提供了统一的隐私保护法律框架。GDPR实施后限制了大数据对低收入群体和边缘社区居民的危害,并通过提高算法透明度和问责制的方法,对个人的隐私权和平等权进行了更有针对性、更实质性的保护。因此,GDPR中的一些保护方式,可以为我们加强弱势群体的数据隐私保护、促进社会公平公正提供思路和参考。

1.增强算法解释

在某些情况下,以结果为基础的解释可能足以确保一个制度的运作是公平和符合法律的。例如,法律服务律师可以利用解释权来帮助客户,而不必承担繁重的诉讼。在当前的算法黑箱环境中,很难知道为什么一个客户被拒绝工作、住房、公共福利或类似的东西,甚至很难知道是否涉及算法。此外,许多涉及低收入者的诉讼没有证据发现或证据发现工具非常有限。而且,即使在可获得证据的情况下,证据开示也无法替代获得解释的权利,因为证据开示只有在案件立案后才会发生——而如果没有善意的基础,相信发生了不当行为,案件就不能立案。因此,对基于结果的解释的权利将打开算法黑箱接受审查,允许消费者纠正其个人数据中的错误或遗漏、请求复议、解释为何该算法在个人情况下是不准确或不恰当的或者采取措施提高自己达到算法期望结果的机会。

在GDPR中,解释权旨在提高算法决策的公平性、透明度和问责性。算法解释可以帮助发现针对穷人的数字歧视和剥削,提高自动决策系统的准确性,这些系统对穷人进行分类并充当生活必需品的看门人,并将监视系统暴露在公众的监督之下。在所有这些方面,获得解释的权利可以增强经济公正。

2.限制算法自动化决策

GDPR第22条规定,当算法决策对个人产生“法律效果”或“类似重大影响”时,个人“有权不受仅基于自动处理的决策的影响,包括分析”。简而言之,它确保了在影响人类生活的重要决策中,人类可以求助于人类决策者。自动化处理对低收入人群有严重的后果,他们更有可能服从算法决策,对他们来说风险很高。首先,GDPR认识到在使用自动决策时,保持人在循环中的重要性。在许多情况下,算法的输出本身并不是决定性的,而是用来告知人类的判断。考虑COMPAS刑事量刑算法,法官在评估被告再次犯罪的可能性时考虑该算法的建议。在这里,算法应该告知法官的决策,而不是取代它。这并不会违反GDPR关于自动决策的禁令。可以肯定的是,有人担心法官们过于顺从算法,因为他们认为算法是客观的、不会出错的;这就是自动化偏向的困境。尽管如此,司法系统保持了一个“人在循环中”,并提供了倡导机制和对抗过程,对算法知情的结果提出质疑。因此,这一司法程序将满足GDPR关于单独自动处理的禁令,尽管风险预测算法可能会与宪法正当程序和平等保护规范相冲突,并因此提起诉讼。强有力的隐私法所提供的透明度可以成为通过其他法律原则寻求问责的基础。

萨菲娅·诺布尔描述了在互联网上搜索与少数族裔和女性有关的词汇时产生的令人不安的性别歧视和种族主义内容。比如,2011年,诺布尔在谷歌网站上搜索“黑人女孩”时,搜索结果最多的是色情内容链接。这些结果混合了种族和性别分析,“甚至是经济红线”,因为歧视性的数字资料控制了获取关键资源和机会的途径。诺布尔解释说,机器学习不是中立的;相反,它包括“有利于企业精英和有权有势者的决策协议”。

不受限制的自动分析风险进一步巩固了这些趋势,因为它可以使不准确和有偏见的推断永续存在,人们没有知识或求助渠道,这反过来又限制了机会,使人们陷入不利的循环。此外,雇主和企业可以挖掘数据,采取限制人们自主权和经济发展机会的做法。在所有这些方面,自动剖析可能会导致数字歧视和经济剥削,同时掩盖不准确和不完整的数据。此外,在没有人参与的情况下,监控决定可能会在没有正当程序的情况下惩罚某些类别的人。自动化分析的限制可能会缓和这些结果。它将推动实体依靠算法为受影响的个人提供基本的正当程序保护,从而实现透明度和问责制的价值,同时提高决策的准确性。

3.赋予个人被遗忘权

GDPR包含被遗忘的权利,保证数据主体有权要求数据控制器删除其个人数据。这项权利源于2014年欧洲法院裁决的谷歌诉西班牙案,该案件认定,欧洲人有权要求搜索引擎移除指向他们个人数据的链接。在这种情况下,一个西班牙人反对互联网上搜索他的名字,因为搜索结果会显示他过去的债务证据。法院认为,个人隐私权凌驾于谷歌的经济利益,以及公众对获取信息的兴趣之上,尽管这些相互竞争的因素需要逐一进行权衡。本权利不完全删除有关数据主体的在线内容;相反,它使这些内容更难通过搜索引擎找到。

算法会让贫困歧视更恶化。雇主可以利用筛选服务把低收入者从求职者中淘汰出来。信用评分算法可能导致银行拒绝向低收入人群提供贷款,从而加剧了区域差异。公立学校的排名算法可能更青睐技术先进、富有的家长。算法可以被用来以稀释穷人和有色人种选票的方式重新划分选区。ThomasKoenig和MichaelRustad指出了各种“耻辱的数字标志”,例如肥胖和吸烟与贫困有着密切的联系,但这些在过去可能一直被这些看门人和普通公众所忽视。如今,这些都是雇主通过求职者筛选服务、健康计划和其他监控技术来追踪的特征。因此,雇主可能不愿雇用或解雇某些低收入工人,以节省医疗保险费用。此外,人们面临的推断不仅来自他们自己的社交媒体帖子,还来自他们从社交媒体上的朋友那里收集到的数据,这些数据会推送到他们的数字资料中。他们的朋友的习惯和偏好被用来预测他们的行为。由于所有这些原因,被遗忘的权利可以帮助低收入者摆脱因其经济地位而产生的负面推论。

赋予个人被遗忘权可以确保由数字分析驱动的社会分类不会成为经济发展的永久障碍,数据错误和遗漏不会及时修正,从而损害个人利益。

建立算法监管问责机制

1.建立算法决策的公众参与机制

2.建立算法问责机制

对于他们来说,算法必须遵守各种主动问责机制。GDPR认识到“监管机构不能通过自上而下的控制来完成所有事情,但监管机构必须自己参与更少侵犯隐私的系统的设计。”其中,算法需要采用并实施数据保护政策和安全措施,并任命一名独立的数据保护官监督合规情况。他们必须及时、简明和清楚地与资料当事人沟通有关处理其个人资料的事宜。他们必须向他们国家的数据保护机构以及受影响的个人报告数据泄露。他们要为数据中心和云提供商等处理器违反GDPR的行为负责。当他们处理个人资料可能会对个人利益造成很大风险时,他们必须草拟和执行《个人资料保护条例》,并在出现这些情况时,向其国家的《个人资料保护条例》咨询。GDPR规定,控制人员可以通过自愿认证项目证明其符合性;预计欧盟成员国将发布合规标准。算法问责制的理念是为了确保政府机构和企业对其自动决策系统进行自我评估,并获得外部专家对其算法的审查,同时为个人提供有意义的正当程序权利,以挑战不公平、有偏见或有害的系统。

THE END
1.命令执行漏洞全面解析一、漏洞概述 命令执行漏洞是指攻击者能够在目标系统上执行任意操作系统命令的安全漏洞。这种漏洞一旦被利用,攻击者可以获取敏感信息、篡改系统配置、甚至完全控制目标系统,对系统安全构成严重威胁。 二、常见漏洞场景 Web 应用程序 许多Web 应用程序在处理用户输入时,如果没有对输入进行严格的过滤和验证,就可能将用户输入https://blog.csdn.net/m0_57836225/article/details/144331272
2.大学生安全知识三大学生中发生纠纷的原因主要有:(1)不拘小节;(2)开玩笑过分或刻意挖苦别人;(3)互相猜疑;(4)骂人或不尊重别人;(5)妒忌他人;(6)不谦虚,狂妄自大,目中无人;(7)极端利己,不容他人,争强好胜;(8)酗酒后寻衅滋事等。 其表现形式主要是两种: 一是争吵斗嘴,互相攻击、谩骂。 https://www.qztc.edu.cn/bwc/2009/0707/c949a32303/pagem.htm
3.矿山安全知识问答11、《矿山安全法》规定的有特殊安全要求的设备、器材、防护用品和安全检测仪器有哪些? 答:《矿山安全法》第十五条中指出的有特殊安全要求的设备、器材、防护用品和安全检测仪器是指采掘设备、装载设备、运输设备、提升设备、支护设备、压缩空气设备、电动机、变压器、电控装置、配电柜、电器开关及各种设备的安全保护装置https://www.safehoo.com/item/12903_8.aspx
4.重庆市政府114号文件解读为贯彻落实党中央、国务院公共资源交易监管改革要求,市委、市政府紧扣营商环境优化提升,针对中央巡视和中央巡视“回头看”反馈的我市公共资源交易领域突出问题,以及近年来我市公共资源交易监管职能分散、制度不完善、交易乱象较多、交易中腐败现象易发等问题,着力补短板、强弱项、堵漏洞,切实解决难点、堵点、痛点问题,作出https://www.cqggzy.com/wushanweb/tzgg/001001/20200717/e769be99-50d7-4d66-bff6-59df47bcfdf0.html