在本期技术专题中,中国科学院计算技术研究所智能信息处理开放实验室的几位研究人员将引领我们走近人工智能这一充满挑战与机遇的领域。
计算机与人工智能
"智能"源于拉丁语legere,字面意思是采集(特别是果实)、收集、汇集,并由此进行选择,形成一个东西。intelegere是从中进行选择,进而理解、领悟和认识。正如帕梅拉·麦考达克在《机器思维》(machineswhothinks,1979)中所提出的:在复杂的机械装置与智能之间存在长期的联系。从几个世纪前出现的神话般的巨钟和机械自动机开始,人们已对机器操作的复杂性与自身的某些智能活动进行直观联系。经过几个世纪之后,新技术已使我们所建立的机器的复杂性大为提高。1936年,24岁的英国数学家图灵(turing)提出了"自动机"理论,把研究会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为"人工智能之父"。
人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了"人工智能"(artificialintelligence,ai)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的ibm的"深蓝"在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。
当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的ai软件,而且现在的ai具备了更多的现实应用的基础。90年代以来,人工智能研究又出现了新的。
我们有幸采访了中国科学院计算技术研究所智能信息处理开放实验室史忠植研究员,请他和他的实验室成员引领我们走近人工智能这个让普通人感到深奥却又具有无穷魅力的领域。
问:目前人工智能研究出现了新的,那么现在有哪些新的研究热点和实际应用呢?
答:ai研究出现了新的,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的3个热点是:智能接口、数据挖掘、主体及多主体系统。
智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱:数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。
主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自治地、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统应用等方面。
问:您在人工智能领域研究了几十年,参与了许多国家重点研究课题,非常清楚国内外目前人工智能领域的研究情况。您认为目前我国人工智能的研究情况如何?
答:我国开始"863计划"时,正值全世界的人工智能热潮。"863-306"主题的名称是"智能计算机系统",其任务就是在充分发掘现有计算机潜力的基础上,分析现有计算机在应用中的缺陷和"瓶颈",用人工智能技术克服这些问题,建立起更为和谐的人-机环境。经过十几年来的努力,我们缩短了我国人工智能技术与世界先进水平的差距,也为未来的发展奠定了技术和人才基础。
但是也应该看到目前我国人工智能研究中还存在一些问题,其特点是:课题比较分散,应用项目偏多、基础研究比例略少、理论研究与实际应用需求结合不够紧密。选题时,容易跟着国外的选题走;立项论证时,惯于考虑国外怎么做;落实项目时,又往往顾及面面俱到,大而全;再加上受研究经费的限制,所以很多课题既没有取得理论上的突破,也没有太大的实际应用价值。
今后,基础研究的比例应该适当提高,同时人工智能研究一定要与应用需求相结合。科学研究讲创新,而创新必须接受应用和市场的检验。因此,我们不仅要善于找到解决问题的答案,更重要的是要发现最迫切需要解决的问题和最迫切需要满足的市场需求。
问:请您预测一下人工智能将来会向哪些方面发展?
答:技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络和机器情感。
目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来人工智能应用的新领域,未来智能计算机的构成,可能就是作为主机的冯·诺依曼型机与作为智能外围的人工神经网络的结合。研究表明:情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。
人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。
什么是人工智能?
人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。
ai理论的实用性
这种ai机器人组队打比赛看似无聊,但是有很强的现实意义。因为通过这类活动可以加强机器之间的协作能力。我们知道,internet是由无数台服务器和无数台路由器组成的,路由器的作用就是为各自的数据选择通道并加以传送,如果利用一些智能化的路由器很好地协作,就能分析出传输数据的最佳路径,从而可以大大减少网络堵塞。
我国也已经在大学中开展了机器人足球赛,有很多学校组队参加,引起了大学生对人工智能研究的兴趣。
未来的ai产品
安放于加州劳伦斯·利佛摩尔国家实验室的asciwhite电脑,是ibm制造的世界最快的超级电脑,但其智力能力也仅为人脑的千分之一。现在,ibm正在开发能力更为强大的新超级电脑--"蓝色牛仔"(bluejean)。据其研究主任保罗·霍恩称,预计于4年后诞生的"蓝色牛仔"的智力水平将大致与人脑相当。
2人工智能与信息技术的关系
3“新型”信息技术
4结束语
第一,植物的规格要确定好,要结合植物所适应的地质条件来对各种规格的植物进行协调搭配。一般来说,中型及其以上规格的乔木作为园林的架构之一,会对整个园林所呈现出来的景观效果起着重要作用,应当先进行安放,然后才是小型规格的植物的安放,保证在园林景观的细节处做好处理;第二,要合理组合植物的品种类型,落叶植物和针叶常绿植物之间在园林中所占的比例应当保持一定的平衡关系,对于植物如花卉、叶丛的颜色要协调好,一般以夏东两季的植物色彩为主色调,其他色调为辅,以保证视觉上能起到互相补充的效果。
2园林设计中人工智能应用现状
2.1系统操作方面
由于园林设计既涉及艺术方法也涉及到技术手段,因此,对操作人员的综合能力要求就比较高,也就是说,操作人员应当对建筑理论、园林绿植知识和计算机基础三方面综合掌握,而事实上,很多参与园林设计的人员并没有很强的工程操作能力,要求太高,难以实现。
2.2园林可重复使用性方面
目前来说,园林的重复使用性还是太低,因为每个地方的气候条件和地理环境都不相同,所以,针对一个地方所制作的园林设计并不能简单地复制到另一个地方,如苏州园林的设计不能直接用在辽宁的园林设计,原因在于北方相对南方来说,园林供水相对困难,山石种类不同,绿植花卉种类也不如南方园林的丰富,而且南北审美观不同,北方园林设计多采用浑厚石材,绿植多为松、柏、杨、柳、榆、槐,加上三季更迭的花灌木,呈现刚健雄浑的特点,而南方则因为花木种类丰富,布局特别,注重山石与水的搭配,独具精致淡雅的特点,由此可见,园林的可重复使用性不高。
2.3计算机辅助设计方面
计算机辅助设计即常说的CAD。目前来说,CAD并不能完全对口符合园林设计的需求,因为CAD只能呈现出单一的图形画面,既不利于设计者进行设计,也不利于客户对设计者的设计的理解,导致客户与设计者之间难免信息不对称,造成一定的信息偏差,影响之后园林设计出来的成果。
3加强人工智能在园林设计中应用的办法
3.1园林子系统的设计
3.2地形子系统的设计
3.3主干道路子系统的设计
3.4图纸和图表输出子系统的设计
2人工智能技术在飞行冲突探测与解脱管理方面的应用
人工智能技术的应用可以使空中交通管理系统具有高智能化的特征,从而满足飞行冲突与解脱管理方案自动生成的需要。具体来说,实现这一功能的模块是飞行冲突探测与解脱辅助决策模块,而该模块是由冲突探测与解脱系统和辅助决策系统组成的。该模块不但可以实现飞行冲突的预测,还可以为管制人员提供飞行冲突调配的决策方案,从而减轻管制人员的压力,帮助他们做出正确的决定。所以,该系统的应用,弥补了人类与机器各自存在的不足,从而有效的避免了因人为失误或机械故障而造成的飞行事故。从原理角度来看,系统首先通过分析飞行冲突情况来制定可能的解脱方案,然后根据航空器优先级分类方法和冲突类型判定法等多种规则,进行方案的选择和排除。在这一推理过程中,为了保证系统推理的有效性,系统需要根据大量的规则来进行方案的推理选择。而这些规则,则要被统一存入知识库系统中。这样,管制人员只要在平时做好知识库系统的更新和维护,就能够保证系统推理的有效性,从而根据系统提供的方案,来进行飞行冲突航班的排序。
3结论
机械电子产品虽然结构相对简单化,没有掺杂过多的运动元件或者部件,但是它的内部结构是非常复杂的,若想要产品的性能得到提高,就必须将传统落后的笨探究机械电子工程与人工智能的关系姚磊河北农业大学机电工程学院河北保定071000重机械面貌彻底抛弃,缩小物理体积。由于机械电子工程所涉及和利用到的内容非常广泛,所以电子机械工程是一种具有极强综合性的学科。机械电子工程的基础是传统机械工程,同时充分利用计算机的辅助作用,来强化机械电子工程的核心力量。这使得机械电子工程与其他学科相比较而言更能体现出科学性,并且能够保证满足系统配置方面的设计需求。机械电子工程充分利用到专业设计模板来完善机械电子设备,发挥设计应用中的模板作用,这样有利于保证机械电子工程设计能够顺利进行。机械电子工程产品在设计结构方面较为简单,并且元件利用数量也是相对较少的。所以在这种情况下,要通过持续提升产品性能,强化机械电子产品质量,优化机械电子产品的结构,来满足消费者的更多需求。
2人工智能的定义及特点
何为人工智能,人工智能是一门综合了计算机科学、信息论、控制论、神经生理学、语言学、心理学、哲学等多门学科的交叉性学科,是21世纪最伟大的三大学科之一。人工智能的发展其实经历了一段非常漫长的历程,人工智能在计算机开始发展的初期就已经被应用到了各个方面,只是它在起初所发挥的作用相对而言是非常小的,并没有得到足够的重视或者引起足够的注意。但是随着时代的进步,人工智能已经摆脱了过去相对弱小的形象,发生了翻天覆地的变化,得到了很大的改善。人工智能发生的这些转变正是人类对计算机的应用和熟悉程度的转变。信息时代的趋势已经使人工智能技术得到了很大的强化,在社会中的地位也越来越重要。机械电子工程的发展需要依靠人工智能的力量和支撑,相信随着人们对人工智能更加深入的研究,人工智能模仿人类思维的能力定会越来越强大。只有对人工智能不断创新和改善,才能在计算机语言理解和应用方面得到更大的进步,才能更加符合机械电子工程的发展需求。
3机械电子工程与人工智能的关系
【关键词】法理学/法律推理/人工智能
【正文】
一、人工智能法律系统的历史
计算机先驱思想家莱布尼兹曾这样不无浪漫地谈到推理与计算的关系:“我们要造成这样一个结果,使所有推理的错误都只成为计算的错误,这样,当争论发生的时候,两个哲学家同两个计算家一样,用不着辩论,只要把笔拿在手里,并且在算盘面前坐下,两个人面对面地说:让我们来计算一下吧!”(注:转引自肖尔兹著:《简明逻辑史》,张家龙译,商务印书馆1977年版,第54页。)
如果连抽象的哲学推理都能转变为计算问题来解决,法律推理的定量化也许还要相对简单一些。尽管理论上的可能性与技术可行性之间依然存在着巨大的鸿沟,但是,人工智能技术的发展速度确实令人惊叹。从诞生至今的短短45年内,人工智能从一般问题的研究向特殊领域不断深入。1956年纽厄尔和西蒙教授的“逻辑理论家”程序,证明了罗素《数学原理》第二章52个定理中的38个定理。塞缪尔的课题组利用对策论和启发式探索技术开发的具有自学习能力的跳棋程序,在1959年击败了其设计者,1962年击败了州跳棋冠军,1997年超级计算机“深蓝”使世界头号国际象棋大师卡斯帕罗夫俯首称臣。
20世纪60年代,人工智能研究的主要课题是博弈、难题求解和智能机器人;70年代开始研究自然语言理解和专家系统。1971年费根鲍姆教授等人研制出“化学家系统”之后,“计算机数学家”、“计算机医生”等系统相继诞生。在其他领域专家系统研究取得突出成就的鼓舞下,一些律师提出了研制“法律诊断”系统和律师系统的可能性。(注:SimonChalton,LegalDiagnostics,ComputersandLaw,No.25,August1980.pp.13-15.BryanNiblett,ExpertSystemsforLawyers,ComputersandLaw,No.29,August1981.p.2.)
专家系统在法律中的第一次实际应用,是D.沃特曼和M.皮特森1981年开发的法律判决辅助系统(LDS)。研究者探索将其当作法律适用的实践工具,对美国民法制度的某个方面进行检测,运用严格责任、相对疏忽和损害赔偿等模型,计算出责任案件的赔偿价值,并论证了如何模拟法律专家意见的方法论问题。(注:''''ModelsofLegalDecisionmakingReport'''',R-2717-ICJ(1981).)
专家系统与以往的“通用难题求解”相比具有以下特点:(1)它要解决复杂的实际问题,而不是规则简单的游戏或数学定理证明问题;(2)它面向更加专门的应用领域,而不是单纯的原理性探索;(3)它主要根据具体的问题域,选择合理的方法来表达和运用特殊的知识,而不强调与问题的特殊性无关的普适性推理和搜索策略。
法律专家系统在法规和判例的辅助检索方面确实发挥了重要作用,解放了律师一部分脑力劳动。但绝大多数专家系统目前只能做法律数据的检索工作,缺乏应有的推理功能。20世纪90年代以后,人工智能法律系统进入了以知识工程为主要技术手段的开发时期。知识工程是指以知识为处理对象,以能在计算机上表达和运用知识的技术为主要手段,研究知识型系统的设计、构造和维护的一门更加高级的人工智能技术。(注:《中国大百科全书·自动控制与系统工程》,中国大百科全书出版社1991年版,第579页。)知识工程概念的提出,改变了以往人们认为几个推理定律再加上强大的计算机就会产生专家功能的信念。以知识工程为技术手段的法律系统研制,如果能在法律知识的获得、表达和应用等方面获得突破,将会使人工智能法律系统的研制产生一个质的飞跃。
人工智能法律系统的发展源于两种动力。其一是法律实践自身的要求。随着社会生活和法律关系的复杂化,法律实践需要新的思维工具,否则,法律家(律师、检察官和法官)将无法承受法律文献日积月累和法律案件不断增多的重负。其二是人工智能发展的需要。人工智能以模拟人的全部思维活动为目标,但又必须以具体思维活动一城一池的攻克为过程。它需要通过对不同思维领域的征服,来证明知识的每个领域都可以精确描述并制造出类似人类智能的机器。此外,人工智能选择法律领域寻求突破,还有下述原因:(1)尽管法律推理十分复杂,但它有相对稳定的对象(案件)、相对明确的前提(法律规则、法律事实)及严格的程序规则,且须得出确定的判决结论。这为人工智能模拟提供了极为有利的条件。(2)法律推理特别是抗辩制审判中的司法推理,以明确的规则、理性的标准、充分的辩论,为观察思维活动的轨迹提供了可以记录和回放的样本。(3)法律知识长期的积累、完备的档案,为模拟法律知识的获得、表达和应用提供了丰富、准确的资料。(4)法律活动所特有的自我意识、自我批评精神,对法律程序和假设进行检验的传统,为模拟法律推理提供了良好的反思条件。
二、人工智能法律系统的价值
人工智能法律系统的研制对法学理论和法律实践的价值和意义,可以概括为以下几点:
四是促进司法公正。司法推理虽有统一的法律标准,但法官是具有主观能动性的差异个体,所以在执行统一标准时会产生一些差异的结果。司法解释所具有的建构性、辩证性和创造性的特点,进一步加剧了这种差异。如果换了钢铁之躯的机器,这种由主观原因所造成的差异性就有可能加以避免。这当然不是说让计算机完全取代法官,而是说,由于人工智能法律系统为司法审判提供了相对统一的推理标准和评价标准,从而可以辅助法官取得具有一贯性的判决。无论如何,我们必须承认,钢铁之躯的机器没有物质欲望和感情生活,可以比人更少地受到外界因素的干扰。正像计算机录取增强了高考招生的公正性、电子监视器提高了纠正行车违章的公正性一样,智能法律系统在庭审中的运用有可能减少某些现象。
五是辅助法律教育和培训。人工智能法律系统凝聚了法律家的专门知识和法官群体的审判经验,如果通过软件系统或计算机网络实现专家经验和知识的共享,便可在法律教育和培训中发挥多方面的作用。例如,(1)在法学院教学中发挥模拟法庭的作用,可以帮助法律专业学生巩固自己所学知识,并将法律知识应用于模拟的审判实践,从而较快地提高解决法律实践问题的能力。(2)帮助新律师和新法官全面掌握法律知识,迅速获得判案经验,在审判过程的跟踪检测和判决结论的动态校正中增长知识和才干,较快地接近或达到专家水平。(3)可使不同地区、不同层次的律师和法官及时获得有关法律问题的咨询建议,弥补因知识结构差异和判案经验多寡而可能出现的失误。(4)可以为大众提供及时的法律咨询,提高广大人民群众的法律素质,增强法律意识。
六是辅助立法活动。人工智能法律系统不仅对辅助司法审判有重要的意义,而且对完善立法也具有实用价值。(注:EdwinaL.Rissland,ArtificialIntelligenceandLaw:SteppingStonestoaModelofLegalReasoning,TheYaleLawJournal.(Vol.99:1957-1981).)例如,伦敦大学Imperial学院的逻辑程序组将1981年英国国籍法的内容形式化,帮助立法者发现了该法在预见性上存在的一些缺陷和法律漏洞。(注:EdwinaL.Rissland,ArtificialIntelligenceandLaw:SteppingStonestoaModelofLegalReasoning,TheYaleLawJournal.(Vol.99:1957-1981).)立法辅助系统如能应用于法律起草和法律草案的审议过程,有可能事先发现一些立法漏洞,避免一个法律内部各种规则之间以及新法律与现有法律制度之间的相互冲突。
三、法理学在人工智能法律系统研究中的作用
2.法理学对人工智能法律系统研制的理论指导作用
GoldandSusskind指出:“不争的事实是,所有的专家系统必须适应一些法理学理论,因为一切法律专家系统都需要提出关于法律和法律推理性质的假设。从更严格的意义上说,一切专家系统都必须体现一种结构理论和法律的个性,一种法律规范理论,一种描述法律科学的理论,一种法律推理理论”。(注:GoldandSusskind,ExpertSystemsinLaw:AJurisprudentialandFormalSpecificationApproach,pp.307-309.)人工智能法律系统的研究,不仅需要以法理学关于法律的一般理论为知识基础,还需要从法理学获得关于法律推理的完整理论,如法律推理实践和理论的发展历史,法律推理的标准、主体、过程、方法等等。人工智能对法律推理的模拟,主要是对法理学关于法律推理的知识进行人工智能方法的描述,建立数学模型并编制计算机应用程序,从而在智能机器上再现人类法律推理功能的过程。在这个过程中,人工智能专家的主要任务是研究如何吸收法理学关于法律推理的研究成果,包括法理学关于人工智能法律系统的研究成果。
四、人工智能法律系统研究的难点
第二,关于启发式程序。目前的法律专家系统如果不能与启发式程序接口,不能运用判断性知识进行推理,只通过规则反馈来提供简单解释,就谈不上真正的智能性。启发式程序要解决智能机器如何模拟法律家推理的直觉性、经验性以及推理结果的不确定性等问题,即人可以有效地处理错误的或不完全的数据,在必要时作出猜测和假设,从而使问题的解决具有灵活性。在这方面,Gardner的混合推理模型,EdwinaL.Rissland运用联想程序对规则和判例推理的结果作集合处理的思路,以及Massachusetts大学研制的CABARET(基于判例的推理工具),在将启发式程序应用于系统开发方面都进行了有益的尝试。但是,法律问题往往没有唯一正确的答案,这是人工智能模拟法律推理的一个难题。选择哪一个答案,往往取决于法律推理的目的标准和推理主体的立场和价值观念。但智能机器没有自己的目的、利益和立场。这似乎从某种程度上划定了机器法律推理所能解决问题的范围。
五、人工智能法律系统的开发策略和应用前景
我们能够制造出一台什么样的机器,可以证明它是人工智能法律系统?从检验标准上看,这主要是法律知识在机器中再现的判定问题。根据“图灵试验”原理,我们可将该检验标准概括如下:设两间隔开的屋子,一间坐着一位法律家,另一间“坐着”一台智能机器。一个人(也是法律家)向法律家和机器提出同样的法律问题,如果提问者不能从二者的回答中区分出谁是法律家、谁是机器,就不能怀疑机器具有法律知识表达的能力。
依“图灵试验”制定的智能法律系统检验标准,所看重的是功能。只要机器和法律家解决同样法律问题时所表现出来的功能相同,就不再苛求哪个是钢铁结构、哪个是血肉之躯。人工智能立足的基础,就是相同的功能可以通过不同的结构来实现之功能模拟理论。
从功能模拟的观点来确定人工智能法律系统的研究与开发策略,可作以下考虑:
第一,扩大人工智能法律系统的研发主体。现有人工法律系统的幼稚,暴露了仅仅依靠计算机和知识工程专家从事系统研发工作的局限性。因此,应该确立以法律家、逻辑学家和计算机专家三结合的研发群体。在系统研发初期,可组成由法学家、逻辑与认知专家、计算机和知识工程专家为主体的课题组,制定系统研发的整体战略和分阶段实施的研发规划。在系统研发中期,应通过网络等手段充分吸收初级产品用户(律师、检察官、法官)的意见,使研发工作在理论研究与实际应用之间形成反馈,将开发精英与广大用户的智慧结合起来,互相启发、群策群力,推动系统迅速升级。
第二,确定研究与应用相结合、以应用为主导的研发策略。目前国外人工智能法律系统的研究大多停留在实验室领域,还没有在司法实践中加以应用。但是,任何智能系统包括相对简单的软件系统,如果不经过用户的长期使用和反馈,是永远也不可能走向成熟的。从我国的实际情况看,如果不能将初期研究成果尽快地转化为产品,我们也难以为后续研究工作提供雄厚的资金支持。因此,人工智能法律系统的研究必须走产研结合的道路,坚持以应用开路,使智能法律系统尽快走出实验室,同时以研究为先导,促进不断更新升级。
第三,系统研发目标与初级产品功能定位。人工智能法律系统的研发目标是制造出能够满足多用户(律师、检察官、法官、立法者、法学家)多种需要的机型。初级产品的定位应考虑到,人的推理功能特别是价值推理的功能远远超过机器,但人的记忆功能、检索速度和准确性又远不如机器。同时还应该考虑到,我国目前有12万律师,23万检察官和21万法官,每年1.2万法学院本科毕业生,他们对法律知识的获取、表达和应用能力参差不齐。因此,初级产品的标准可适当降低,先研制推理功能薄弱、检索功能强大的法律专家系统。可与计算机厂商合作生产具有强大数据库功能的硬件,并确保最新法律、法规、司法解释和判例的网上及时更新;同时编制以案件为引导的高速检索软件。系统开发的先期目标应确定为:(1)替律师起草仅供参考的书和辩护词;(2)替法官起草仅供参考的判决书;(3)为法学院学生提供模拟法庭审判的通用系统软件,以辅助学生在、辩护和审判等诉讼的不同阶段巩固所学知识、获得审判经验。上述软件旨在提供一个初级平台,先解决有无和急需,再不断收集用户反馈意见,逐步改进完善。
未来的计算机不会完全取代律师和法官,然而,律师和法官与智能机器统一体的出现则可能具有无限光明的前景。(注:Smith,J.C,MachineIntelligenceandLegalReasoning,Chicago-KentLawReview,1998,Vol.73,No.1,p277.)可以预见,人工智能将为法律工作的自动化提供越来越强有力的外脑支持。电脑律师或法官将在网络所及的范围内承担起诸如收债、税务、小额犯罪诉讼等职能。自动法律推理系统将对诉讼活动发挥越来越多的辅助作用,例如,通过严密的演绎逻辑使用户确信全部法律结论得出的正当性;在解决相互冲突的规则、判例和政策问题时提示可能出现的判决预测;等等。正如网络的出现打破了少数人对信息的垄断一样,电脑法律顾问的问世,将打破法官、律师对法律知识的垄断,极大地推动法律知识的普及,迅速提高广大人民群众的法律素质,使法律真正变为群众手中的锐利武器。
人工智能是人类发展到一定阶段而必然产生的一门学科,它既包括人,也包括机和环境两部分,所以也可以说是人机环境系统交互方面的一种学问。它同样“有一个漫长的过去,但只有短暂的历史”。它的起源可以追溯到文艺复兴,接着,又在第一、二次工业革命浪潮中逐渐崭露头角。法国人帕斯卡尔研制了第一台现代意义上的数字计算机,第一、二次世界大战大大加快了该学科发展的进程,剑桥大学巴贝奇的差分机和图灵的测试进一步把人工智能领域的研究范围扩展到了人类学习、生活、工作等方面。到目前为止,研究人工智能的学科不但包括生理、心理、物理、数理、地理等自然科学技术领域,而且还涉及到哲理、伦理、法理、艺理、教理等人文艺术宗教领域。
1997年5月11日,名为“深蓝”的电脑毫无悬念地在标准比赛时限内击败了国际象棋男子世界冠军卡斯帕罗夫,从而证明了在有限的时空里电脑“计算”可以战胜人脑“算计”,进而论证了现代人工智能的基础条件(假设)——物理符号系统具有产生智能行为的充分必要条件(NewellandSimon,1976)是成立的。更有意思的是,2011年2月17日,一台以IBM创始人托马斯·沃森的名字命名的电脑在智力问答比赛中“狂虐”两位最聪明的美国人而夺得冠军,2016年3月9日至3月15日,“围棋名誉九段”AlphaGo在首尔以4:1的比分战胜了围棋世界冠军李世石九段,从而引发了人工智能将如何改变人类社会生活形态的话题。
人工智能是人机环境系统交互的产物
在真实的人机环境系统交互领域中,人的情景意识(SituationAwarensss)SA、机器的物理SA、环境的地理SA等往往同构于统一时空中(人的五种感知也应是并行的),对于人而言,人注意的切换产生了不同的主题与背景感受/体验。在人的行为环境与机的物理环境、地理环境相互作用的过程中,人的情景意识SA被视为一个开放的系统,是一个整体,其行为特征并非由人的元素单独所决定,而是取决于人机环境系统整体的内在特征,人的情景意识SA及其行为只不过是这个整体过程中的一部分罢了。另外,人机环境中许多个闭环系统常常是并行或嵌套的,并且特定情境下这些闭环系统的不同反馈环节信息又往往交叉融合在一起,起着或刺激或抑制的作用,不但有类似宗教情感类的柔性反馈(不妨称之为“软调节反馈”,人常常会延迟控制不同情感的释放),也存在着类似法律强制类的刚性反馈(不妨称之为“硬调节反馈”,常规意义上的自动控制反馈大都属于这类反馈)。如何快速化繁为简、化虚为实是衡量一个人机系统稳定性、有效性、可靠性大小的主要标志,是用数学方法的快速搜索比对还是运筹学的优化修剪计算,这是一个值得人工智能领域深究的问题。
在充满变数的人机环境交互系统中,存在的逻辑不是主客观的必然性和确定性,而是与各种可能性保持互动的同步性,是一种得“意”忘“形”的见招拆招和随机应变能力。这种思维和能力可能更适合复杂的人类各种艺术过程。凡此种种,恰恰是人工智能所欠缺的地方。
人机之间的不同之处
人与机相比,人的语言或信息组块能力强,具有有限记忆和理性;机器对于语言或信息组块能力弱,具有无限记忆和理性,其语言(程序)运行和自我监督机制的同时实现应是保障机器可靠性的基本原则。人可以在使用母语时以不考虑语法的方式进行交流,并且在很多情境下可以感知语言、图画、音乐的多义性,如人的听觉、视觉、触觉等具有辨别性的同时还具有情感性,常常能够知觉到只可意会不可言传的信息或概念(如对哲学这种很难通过学习得到学问的思考)。机器尽管可以下棋、回答问题,但对跨领域情境的随机应变能力很弱,对彼此矛盾或含糊不清的信息不能有效反应(缺少必要的竞争冒险选择机制),主次不分,综合辨析识别能力不足,不会使用归纳推理演绎等方法形成概念或提出新概念,更奢谈产生形而上学的理论形式。
人工智能与哲学
其实哲学与科学、宗教一样,都是一个人为了能够获得理解而必须相信(除非你相信你不应当理解)的过程,这不是盲从,而是一种先信仰后理解的先验!比如,在科学中,物理学研究世界是什么样的(解释世界),计算机(数学)研究怎么造一个世界(建构世界),在这两者之间若没有相信、信任、信仰等先于理解而存在,恐怕是难以坚持进行下去的,毕竟在伸手不见五指的黑夜中,人是很难自行产生前进动力的(如一个没有利润的环境常常少见商人身影一般)。而信仰是一种赞同的思考,常常是一种非理性的激情、冲动情感,通过非理性而达到理性(通情达理),这不能不说是一个有趣的悖论!或许,这同时也是无中生有的禅理(以情化理)吧!
实际上,目前以符号表征、计算为代表的计算机虚拟建构体系是很难逼真反映以物理、生理、心理等理论解释真实世界的(数学本身并不完备),而认知科学的及时出现不自觉地把各“理”(物理、生理、心理)解释与各“机”(计算机、飞机、拖拉机)建构之间对立统一了起来,围绕是(Being)、应(Should)、要(Want)、能(Can)、变(Change)等节点展开融合进而形成一套新的人机环境系统交互体系。
有时候,世界是确定的,不确定的是我们自己,面对相同的文字、音乐、视频等情境事物,我们常常会随心情的不同而产生不同的觉察和理解,境随心转。有时候,世界是不确定的,确定的反而是我们自己,面对不同的文字、音乐、视频等情境事物,我们却能够处变不变而产生恒定表征,形成概念,心随境转。不管怎样,世界包括我们自己是由易、不易、简易、迁易、无易、有易、一易、多易……等诸多演化过程构成的,在这些纷繁复杂的变化中,都需要一种或多种参考框架体系协调其中的各种矛盾、悖论,而若追溯到这些框架体系的起源,应该就是人机环境之间的交互作用。或许,最好的智慧/智能真的就隐藏在这些交互的自相矛盾之中?!若果真如此,那又该如何破译呢
哲学意义上的“我”也许就是人类研究的坐标原点或出发点,“我是谁”“我从哪里来”“要到那里去”这些问题也许就是人工智能研究的关键瓶颈?!
结束语
通过研究,我们是这样看待指人工智能技术问题的:首先人工智能过程不是被动地对环境的响应,而是一种主动行为,人工智能系统在环境信息的刺激下,通过采集、过滤,改变态势分析策略,从动态的信息流中抽取不变性,在人机环境交互作用下产生近乎知觉的操作或控制;其次,人工智能技术中的计算是动态的、非线形的(同认知技术计算相似),通常不需要一次将所有的问题都计算清楚,而是对所需要的信息加以计算;再者,人工智能技术中的计算应该是自适应的,人机系统的特性应该随着与外界的交互而变化。因此,人工智能技术中的计算应该是外界环境、机器和人的认知感知器共同作用的结果,三者缺一不可。
一、银行反欺诈发展趋势
国内外银行在传统反欺诈管理中主要依赖专家经验,通过人工方式制定检测规则,当申请或交易信息与反欺诈规则匹配后即执行相应的业务策略。这种管理模式得出的反欺诈规则存在一定的局限性,不能枚举所有业务场景,无法对各类欺诈行为进行全面覆盖。与此对应,欺诈者会针对性的对已有规则进行回避,导致专家规则处于被动调整的位置,无法跟上欺诈手段的更新换代[1,2]。另外,当专家规则积累达到一定数量后误报率通常会比较高,能够影响到实际风险决策制定和实际业务开展。
机器学习是一种重要的金融科技创新手段,近年来在国内外金融机构和金融科技企业中被尝试应用到风险防范、反欺诈等领域。例如花旗银行、美国银行、汇丰银行等机构广泛应用逻辑回归、神经网络等技术以提升欺诈识别能力;京东金融与ZestFinance组建的合资公司以数据挖掘建模为核心竞争力,在反欺诈领域深入应用机器学习技术以发挥大数据价值。机器学习是一种研究机器获取新知识和新技能,并识别现有知识的方法[3];通常针对大规模数据集进行全方位综合考量,挖掘深层次业务场景特征进而建立监督、无监督等类型的学习模型,在大量应用中模型的准确性、稳定性也得到了充分验证[4]。
为此,我们针对信用卡申请审批这一典型业务场景,应用机器学习技术进行欺诈风险管理并设计数据产品对异常客户进行监控预警。区别于将机器学习技术应用到单一反欺诈规则制定的典型做法,我们尝试从整体视角对欺诈风险进行评估,实现精准量化预测并以此作为应对欺诈风险的强有力手段。建模思路及方法具有一定的可迁移性,可以被广泛应用到银行风险防范、反欺诈等业务领域。
二、“会思考”的风控模型
在应用大数据支持业务发展转型的过程中,我们提出构建增强智能(AugumentedIntelligence)系统[5]的创新思路。一个务实的增强智能系统包括客户画像、数据挖掘模型和决策引擎三个组成部分。数据挖掘模型是智能化的核心,客户画像为建模过程持续提供特征输入,决策引擎将模型输出成果转换为实际业务行动。增强智能系统的一个重要目标是提升传统业务流程的自动化水平,过程中的大数据能力主要体现在三个方面,也就是下图中的三个组成部分:更好的客户认知、更智能化的算法、更快速的决策支持。
图1:增强智能系统组成模块
数据挖掘模型发挥动力引擎作用,吸收学术界和产业界先进机器学习知识成果并应用于银行实践。客户画像重点体现大数据背景下的客户多维度刻画,在静态信息和交易行为信息之外可以补充社交网络维度特征信息。伴随大数据的持续采集、生产和交换,客户画像能够进一步补充情绪属性、价值观属性乃至道德属性等信息,为数据挖掘建模提供源源不断的能源输入。决策引擎能够面对业务场景进行快速响应,通过可视化等手段提供自助式业务分析能力,促进数据价值转化为业务行动。
践行上述思路,我们结合传统风险管控和社交网络分析技术,加工基础维度信息和社交维度信息特征指标组成反欺诈客户画像,并应用随机森林等分布式机器学习算法建立欺诈风险预测模型。不同于传统风控模型以年为单位的更新优化周期,智能化预测模型每天都能够进行“思考”,通过更新网络关系并重新训练模型确定最新的欺诈预测思维模式。模型在研发和使用的过程中灵活运用机器学习和社交网络分析技术,催生新型数据产品的开发与应用从而带动传统业务流程的优化。
三、模型构建与结果分析
以银行信用卡申请反欺诈为应用场景,详细描述社交网络构建、特征处理、算法实现、运行结果分析等阶段过程。
1、结合社交视角构造客户特征信息
图2:反欺诈模型特征构造过程
2、建模方案设计
对进行特征工程化处理的数据进行拆分,设置三组建模数据集,分别是基础信息的数据集(base)、社交信息的数据集(social),以及组合在一起的数据集(combine)。建模过程中采用3折交叉验证的方式完成欺诈风险预测模型建立和训练,并比较多组模型输出的计算结果。
算法选择方面,分别选择逻辑回归(LogisticsRegression,LR),随机森林[7](RandomForests,RF)和深度学习[8](DeepLearning,DL)。逻辑回归是银行风控领域的经典算法,以此作为模型结果的标杆参考。随机森林是一种集成学习算法,利用多棵决策树对样本进行训练并预测;通常单棵树性能表现较弱,但进行组合之后能够提供较好的分类性能,同时算法稳定性较好。深度学习(DL)模型是包含多隐层的多层感知器系统,通过应用综合复杂结构和多重非线性变换构成的多个处理层及对数据进行高层抽象的一系列算法,建立具有数个隐层的多层感知网络并实现各种模式的识别和认知。
模型评价方面,选用AUC、Precision、Recall、Accuracy、F1-measure等指标。其中AUC[9](AreaunderCurve)是ROC曲线下的面积,介于0和1之间;AUC值表示将两样本正确分类的概率,AUC值越大说明模型分类性能越好。其他指标均是从不同角度衡量模型性能,这里不再详细说明。
3、建模结果分析
后面三组数据是在整合数据集上应用三种不同算法,整体表现逻辑回归算法较弱,深度学习居中,随机森林表现最优。结果表明目前模型输入特征与预测目标关联性较好,并且总体特征数量为数十个的量级,还不足以发挥深度学习海量特征无监督优化选择的特性,相比之下随机森林、GBDT[10]等集成学习算法表现更为突出。
表1:欺诈风险预测模型结果比较
四、欺诈监控数据产品
大数据在实际应用中体现出强产品化的特点,通过构建反欺诈数据产品能够快速实现决策引擎的功能;同时原始数据从积累到建模均与该数据产品关联,用户画像建立和持续丰富也与反欺诈业务场景相结合。数据产品通过可视化技术实现自助式分析能力,在数据价值转化为业务行动过程中发挥桥梁作用。